LINEAR PROGRAMMING: DUAL PROBLEM AND COMPLEMENTARY SLACKNESS

Integer linear programming: formulations, techniques and applications.

Santiago Valdés Ravelo
santiago.ravelo@inf.ufrgs.br

August, 2020
“Duality is one of the oldest and most fruitful ideas in Mathematics.”

Michael F. Atiyah.

1. Previous lecture
2. Dual problem
3. Duality theorems
4. Complementary slackness
5. Exercises
Previous lecture
Canonical problem

\[CLP(c, A, b): \]

\[
\min \quad c^t \times x \\
\text{s.t.:} \quad A \times x = b \\
\quad x \in \mathbb{R}^n_+
\]
General problem

\[
\begin{align*}
LP_{\min}(c, A=, A\leq, A\geq, b=, b\leq, b\geq) \\
(LP_{\max}(c, A=, A\leq, A\geq, b=, b\leq, b\geq)):
\end{align*}
\]

\[
\begin{align*}
\min(\max) & \quad c^t \times x \\
\text{s.t.:} & \\
A= \times x &= b= \\
A\leq \times x &\leq b\leq \\
A\geq \times x &\geq b\geq \\
x &\in \mathbb{R}^n
\end{align*}
\]
Classifications

- INFEASIBLE.
- UNBOUNDED.
- SOLVABLE.
Equivalences

- $\max c^t \times x \equiv \min -c^t \times x$
- $A \times x \geq b \equiv -A \times x \leq -b$
- $A \times x \leq b \equiv (A, I) \times (x, y) = b$
- $A \times x \geq b \equiv (A, -I) \times (x, y) = b$
- $A \times x = b \equiv \begin{cases} A \times x \leq b \\ A \times x \geq b \end{cases}$
- $x_i \in \mathbb{R} \equiv \begin{cases} x'_i, x''_i \in \mathbb{R}_+ \\ x_i = x'_i - x''_i \end{cases}$
Dual problem
Consider a PRIMAL LINEAR PROGRAMMING problem \(PLP(c, A, b) \) compound by two vectors \(c \in \mathbb{R}^n \) and \(b \in \mathbb{R}^m \), and a matrix \(A \in \mathbb{R}^{m \times n} \) \((m, n \in \mathbb{N})\) and formulated as follows (standard form):

\[
\begin{align*}
\text{max} & \quad c^t \times x \\
\text{s.t.:} & \quad A \times x \leq b \\
& \quad x_i \geq 0 \quad \forall 1 \leq i \leq n \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

* By the equivalences of the previous lecture any linear programming problem can be formulated in the above form.
Given a primal linear programming problem $\text{PLP}(c, A, b)$, the associated **DUAL LINEAR PROGRAMMING** problem $\text{DLP}(c, A, b)$ is formulated as follows:

$$\min b^t \times y$$

s.t.:

$$A^t \times y \geq c$$
$$y_i \geq 0 \quad \forall 1 \leq i \leq m$$
$$y \in \mathbb{R}^m$$
Example. Lunch

Minimize total number of fat milligram in a lunch consisting of a salad and a soup, where the nutritional information is:

<table>
<thead>
<tr>
<th>Vitamin A</th>
<th>Vitamin B</th>
<th>Fats</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 mcg/100g</td>
<td>0.4 mcg/100g</td>
<td>4 mg/100g</td>
</tr>
<tr>
<td>60 mcg/100g</td>
<td>0.2 mcg/100g</td>
<td>6 mg/100g</td>
</tr>
</tbody>
</table>

The nutritional requirements are: at least 450 mcg of vitamin A and 2 mcg of vitamin B, and to avoid consuming more than 700 g.
Example. Lunch Formulation (previous lecture)

\[\begin{align*}
\text{min} & \quad 4 \times x_{\text{salad}} + 6 \times x_{\text{soup}} \\
\text{s.t.:} & \\
80 \times x_{\text{salad}} + 60 \times x_{\text{soup}} & \geq 450 \\
0.4 \times x_{\text{salad}} + 0.2 \times x_{\text{soup}} & \geq 2 \\
x_{\text{salad}} + x_{\text{soup}} & \leq 7 \\
x_{\text{salad}}, x_{\text{soup}} & \geq 0
\end{align*}\]
Example. Lunch
Formulation as PLP

\[
\begin{align*}
\text{min} & \quad 4 \times x_{\text{salad}} + 6 \times x_{\text{soup}} \\
\text{s.t.:} & \quad 80 \times x_{\text{salad}} + 60 \times x_{\text{soup}} \geq 450 \\
& \quad 0.4 \times x_{\text{salad}} + 0.2 \times x_{\text{soup}} \geq 2 \\
& \quad x_{\text{salad}} + x_{\text{soup}} \leq 7 \\
& \quad x_{\text{salad}}, x_{\text{soup}} \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad -4 \times x_{\text{salad}} - 6 \times x_{\text{soup}} \\
\text{s.t.:} & \quad -80 \times x_{\text{salad}} - 60 \times x_{\text{soup}} \leq -450 \\
& \quad -0.4 \times x_{\text{salad}} - 0.2 \times x_{\text{soup}} \leq -2 \\
& \quad x_{\text{salad}} + x_{\text{soup}} \leq 7 \\
& \quad x_{\text{salad}}, x_{\text{soup}} \geq 0
\end{align*}
\]
Example. Lunch
Primal and dual formulations

\[\begin{align*}
\text{max} & \quad -4 \times x_{\text{salad}} - 6 \times x_{\text{soup}} \\
\text{s.t.} : & \quad -80 \times x_{\text{salad}} - 60 \times x_{\text{soup}} \leq -450 \\
& \quad -0.4 \times x_{\text{salad}} - 0.2 \times x_{\text{soup}} \leq -2 \\
& \quad x_{\text{salad}} + x_{\text{soup}} \leq 7 \\
& \quad x_{\text{salad}}, x_{\text{soup}} \geq 0
\end{align*}\]

\[\begin{align*}
\text{min} & \quad -450 \times y_A - 2 \times y_B + 7 \times y_{\text{weight}} \\
\text{s.t.} : & \quad -80 \times y_A - 0.4 \times y_B + y_{\text{weight}} \geq -4 \\
& \quad -60 \times y_A - 0.2 \times y_B + y_{\text{weight}} \geq -6 \\
y_A, y_B, y_{\text{weight}} \geq 0
\end{align*}\]
Each dual variable is related to a nutrient or a measure and they can be interpreted as the amount of milligrams of fat per each unit the nutrient/measure, i.e.:

\(y_A \), amount of milligram of fat for each unit of vitamin \(A \).

\(y_B \), amount of milligram of fat for each unit of vitamin \(B \).

\(y_{weight} \), amount of milligram of fat for each \(100g \) of food.

The dual seeks for a solution where the amount of fat per nutrient is not greater than the amount of fat per dish:

\[
-80 \times y_A - 0.4 \times y_B + y_{weight} \geq -4 \quad \iff \quad 80 \times y_A + 0.4 \times y_B - y_{weight} \leq 4
\]

\[
-60 \times y_A - 0.2 \times y_B + y_{weight} \geq -6 \quad \iff \quad 60 \times y_A + 0.2 \times y_B - y_{weight} \leq 6
\]
Primal and dual

\[PLP(c, A, b) : \]
\[
\begin{align*}
\text{max} & \quad c^t \times x \\
\text{s.t.:} & \quad A \times x \leq b \\
& \quad x_i \geq 0 \quad \forall 1 \leq i \leq n \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

\[DLP(c, A, b) : \]
\[
\begin{align*}
\text{min} & \quad b^t \times y \\
\text{s.t.:} & \quad A^t \times y \geq c \\
& \quad y_i \geq 0 \quad \forall 1 \leq i \leq m \\
& \quad y \in \mathbb{R}^m
\end{align*}
\]
Primal and dual

Primal problem (P LP):

\[\text{max } \mathbf{c}^T \times \mathbf{x} \]
\[\text{s.t.:} \]
\[\mathbf{A} \times \mathbf{x} \leq \mathbf{b} \]
\[x_i \geq 0 \quad \forall 1 \leq i \leq n \]
\[x \in \mathbb{R}^n \]

Dual problem (D LP):

\[\text{min } \mathbf{b}^T \times \mathbf{y} \quad (\times - 1) \]
\[\text{s.t.:} \]
\[\mathbf{A}^T \times \mathbf{y} \geq \mathbf{c} \quad (\times - 1) \]
\[y_i \geq 0 \quad \forall 1 \leq i \leq m \]
\[y \in \mathbb{R}^m \]
Dual problem

Primal and dual

\[
\begin{align*}
\text{PLP}(c, A, b) : & \quad \max \ c^t \times x \\
& \quad \text{s.t.:} \ A \times x \leq b \\
& \quad \quad x_i \geq 0 \quad \forall 1 \leq i \leq n \\
& \quad \quad x \in \mathbb{R}^n \\
\text{DLP}(c, A, b) : & \quad (\text{PLP}(-b, -A^t, -c)) \\
& \quad \max \ -b^t \times y \\
& \quad \text{s.t.:} \ -A^t \times y \leq -c \\
& \quad \quad y_i \geq 0 \quad \forall 1 \leq i \leq m \\
& \quad \quad y \in \mathbb{R}^m
\end{align*}
\]
The dual of $PLP(c, A, b)$ is $PLP(-b, -A^t, -c)$.

Thus, the dual of $PLP(-b, -A^t, -c)$ is $PLP(-(c), -(A^t)^t, -(b)) = PLP(c, A, b)$.

Therefore, the dual of the dual is the primal.
Duality theorems
Theorem. If x is a feasible solution of $PLP(c, A, b)$ and y a feasible solution of $DLP(c, A, b)$, then

$$b^t \times y \geq c^t \times x$$
Weak duality theorem. Proof

Since \(y \) is a feasible solution of \(DLP(c, A, b) \) and \(x \) is a feasible solution of \(PLP(c, A, b) \), it follows

\[
A^t \times y \geq c
\]
Weak duality theorem. Proof

Since \(y \) is a feasible solution of \(DLP(c, A, b) \) and \(x \) is a feasible solution of \(PLP(c, A, b) \), it follows

\[
A^t \times y \geq c \quad (\times x \geq 0)
\]
Duality theorems

Weak duality theorem. Proof

Since y is a feasible solution of $DLP(c, A, b)$ and x is a feasible solution of $PLP(c, A, b)$, it follows

$$A^t \times y \geq c \quad (\times x \geq 0)$$

$$\Rightarrow (A^t \times y)^t \times x \geq c^t \times x$$
Since y is a feasible solution of $\text{DLP}(c, A, b)$ and x is a feasible solution of $\text{PLP}(c, A, b)$, it follows

$$A^t \times y \geq c \quad (\times x \geq 0)$$

$$\Rightarrow \quad (A^t \times y)^t \times x \geq c^t \times x$$

$$\Rightarrow \quad y^t \times A \times x \geq c^t \times x$$
Duality theorems

Weak duality theorem. Proof

Since y is a feasible solution of $DLP(c, A, b)$ and x is a feasible solution of $PLP(c, A, b)$, it follows

\[
A^t \times y \geq c \quad (\times x \geq 0)
\]
\[
\Rightarrow (A^t \times y)^t \times x \geq c^t \times x
\]
\[
\Rightarrow y^t \times A \times x \geq c^t \times x \quad (A \times x \leq b)
\]
Duality theorems

Weak duality theorem. Proof

Since y is a feasible solution of $DLP(c, A, b)$ and x is a feasible solution of $PLP(c, A, b)$, it follows

$$A^t \times y \geq c \quad (\times x \geq 0)$$

$$\Rightarrow (A^t \times y)^t \times x \geq c^t \times x$$

$$\Rightarrow y^t \times A \times x \geq c^t \times x \quad (A \times x \leq b)$$

$$\Rightarrow y^t \times b \geq c^t \times x$$
Weak duality theorem. Proof

Since y is a feasible solution of $DLP(c, A, b)$ and x is a feasible solution of $PLP(c, A, b)$, it follows

$$A^t \times y \geq c \quad (\times x \geq 0)$$

$$\Rightarrow (A^t \times y)^t \times x \geq c^t \times x$$

$$\Rightarrow y^t \times A \times x \geq c^t \times x \quad (A \times x \leq b)$$

$$\Rightarrow y^t \times b \geq c^t \times x$$

$$\Rightarrow b^t \times y \geq c^t \times x$$
Duality theorems

Weak duality theorem. Implications

If $PLP(c, A, b)$ and $DPL(c, A, b)$ have optimal solutions, then:

- Given any feasible solution y of the dual, the value $b^t \times y$ is an **UPPER BOUND** for the optimal value of the primal.

- Given any feasible solution x of the primal, the value $c^t \times x$ is a **LOWER BOUND** for the optimal value of the dual.
Theorem. x^* is an optimal solution of $PLP(c, A, b)$ iff y^* is an optimal solution of $DLP(c, A, b)$, where

$$c^t \times x^* = b^t \times y^*$$
Duality theorems

Strong duality theorem. Proof idea

Proof that if there exists an optimal solution \(x^* \) for \(PLP(c, A, b) \), then there exists a feasible solution \(y \) for \(DLP(c, A, b) \), such that: \(c^t \times x^* = b^t \times y \). \(^2\)

The weak duality implies that such \(y \) is optimal for \(DLP(c, A, b) \).

Since the dual of the dual is the primal, the other direction holds.

\(^2\)The proof can be done by using the Simplex method or can be found in the paper “A short note on strong duality: without Simplex and without theorems of alternatives” by Somdeb Lahiri (2017).
Given a primal linear program $\text{PLP}(c, A, b)$ and its dual $\text{DPL}(c, A, b)$, there are four possibilities:

- The primal and the dual are infeasible.
- The primal is infeasible and the dual is unbounded.
- The primal is unbounded and the dual is infeasible.
- The primal and the dual are feasible and the optimal solution value is the same for both problems.
Complementary slackness
Theorem. Given an optimal solution x^* of $PLP(c, A, b)$ and an optimal solution y^* of $DLP(c, A, b)$, it follows

$$(c - A^t \times y^*)^t \times x^* = 0 \text{ and } (b - A \times x^*)^t \times y^* = 0$$
Any pair \((x, y)\) of (primal, dual) feasible solutions satisfies:

\[A^t \times y \geq c \]
Complementary slackness theorem. Proof

Any pair \((x, y)\) of (primal, dual) feasible solutions satisfies:

\[
A^t \times y \geq c \quad (\times x \geq 0)
\]

\[
\Rightarrow (A^t \times y)^t \times x \geq c^t \times x
\]
Complementary slackness

Complementary slackness theorem. Proof

Any pair \((x, y)\) of (primal, dual) feasible solutions satisfies:

\[
A^t \times y \geq c \quad (\times x \geq 0)
\]

\[
\Rightarrow (A^t \times y)^t \times x \geq c^t \times x
\]

\[
\Rightarrow y^t \times A \times x \geq c^t \times x
\]
Complementary slackness theorem. Proof

Any pair \((x, y)\) of (primal, dual) feasible solutions satisfies:

\[
A^t \times y \geq c \quad (\times x \geq 0)
\]

\[
\Rightarrow (A^t \times y)^t \times x \geq c^t \times x
\]

\[
\Rightarrow y^t \times A \times x \geq c^t \times x \quad (A \times x \leq b)
\]

\[
\Rightarrow y^t \times b \geq y^t \times A \times x \geq c^t \times x
\]
Any pair \((x, y)\) of (primal, dual) feasible solutions satisfies:

\[
A^t \times y \geq c \quad (\times x \geq 0)
\]

\[
\Rightarrow (A^t \times y)^t \times x \geq c^t \times x
\]

\[
\Rightarrow y^t \times A \times x \geq c^t \times x \quad (A \times x \leq b)
\]

\[
\Rightarrow y^t \times b \geq y^t \times A \times x \geq c^t \times x
\]

Since \((x^*, y^*)\) are optimal (strong duality):

\[
y^{*t} \times b = y^{*t} \times A \times x^* = c^t \times x^*
\]
Complementary slackness theorem. Proof

Any pair \((x, y)\) of (primal, dual) feasible solutions satisfies:

\[
A^t \times y \geq c \quad (\times x \geq 0)
\]

\[
\Rightarrow (A^t \times y)^t \times x \geq c^t \times x
\]

\[
\Rightarrow y^t \times A \times x \geq c^t \times x \quad (A \times x \leq b)
\]

\[
\Rightarrow y^t \times b \geq y^t \times A \times x \geq c^t \times x
\]

Since \((x^*, y^*)\) are optimal (strong duality):

\[
y^{*t} \times b = y^{*t} \times A \times x^* = c^t \times x^*
\]

\[
y^{*t} \times b - y^{*t} \times A \times x^* = 0 \quad 0 = c^t \times x^* - y^{*t} \times A \times x^*
\]
Any pair \((x, y)\) of (primal, dual) feasible solutions satisfies:

\[
A^t \times y \geq c \quad (\times x \geq 0)
\]

\[
\Rightarrow (A^t \times y)^t \times x \geq c^t \times x
\]

\[
\Rightarrow y^t \times A \times x \geq c^t \times x \quad (A \times x \leq b)
\]

\[
\Rightarrow y^t \times b \geq y^t \times A \times x \geq c^t \times x
\]

Since \((x^*, y^*)\) are optimal (strong duality):

\[
y^{*t} \times b = y^{*t} \times A \times x^* = c^t \times x^*
\]

\[
y^{*t} \times b - y^{*t} \times A \times x^* = 0 \quad 0 = c^t \times x^* - y^{*t} \times A \times x^*
\]

\[
(b - A \times x^*)^t \times y^* = 0 \quad 0 = (c - A^t \times y^*)^t \times x^*
\]
Is \((x_{\text{salad}} = 3, x_{\text{soup}} = 4)\) an optimal solution for the Lunch problem?

\[
\begin{align*}
\text{max} & \quad -4 \times x_{\text{salad}} - 6 \times x_{\text{soup}} \\
\text{s.t.} : & \\
-80 \times x_{\text{salad}} - 60 \times x_{\text{soup}} & \leq -450 \\
-0.4 \times x_{\text{salad}} - 0.2 \times x_{\text{soup}} & \leq -2 \\
x_{\text{salad}} + x_{\text{soup}} & \leq 7 \\
x_{\text{salad}}, x_{\text{soup}} & \geq 0
\end{align*}
\]
Given \((x_{\text{salad}} = 3, x_{\text{soup}} = 4) \), to test the optimality, analyse the constraints and the dual variables:

\[
-80 \times x_{\text{salad}} - 60 \times x_{\text{soup}} \leq -450 \quad (y_A)
\]
\[
-0.4 \times x_{\text{salad}} - 0.2 \times x_{\text{soup}} \leq -2 \quad (y_B)
\]
\[
x_{\text{salad}} + x_{\text{soup}} \leq 7 \quad (y_{\text{weight}})
\]
Replace the values of \((x_{salad} = 3, x_{soup} = 4)\) in the constraints:

\[
\begin{align*}
-80 \times (3) - 60 \times (4) &= -480 < -450 \\
-0.4 \times (3) - 0.2 \times (4) &= -2 \\
(3) + (4) &= 7
\end{align*}
\]

\((y_A = 0)\)
\((y_B \geq 0)\)
\((y_{weight} \geq 0)\)
Optimality test via complementary slackness

Analyse the dual constraints for \((y_A = 0, y_B, y_{\text{weight}})\):

\[-80 \times (0) - 0.4 \times y_B + y_{\text{weight}} \geq -4\]
\[-60 \times (0) - 0.2 \times y_B + y_{\text{weight}} \geq -6\]
The dual constraints associated with the non-zero primal variables must satisfy the equality:

\[-80 \times (0) - 0.4 \times y_B + y_{\text{weight}} = -4 \quad (x_{\text{salad}} = 3 \neq 0)\]
\[-60 \times (0) - 0.2 \times y_B + y_{\text{weight}} = -6 \quad (x_{\text{soup}} = 4 \neq 0)\]
The solution of the system is $(y_A = 0, y_B = -10, y_{weight} = -8)$ which is infeasible.

\[-80 \times (0) - 0.4 \times y_B + y_{weight} = -4 \quad (x_{\text{salad}} = 3 \neq 0)\]

\[-60 \times (0) - 0.2 \times y_B + y_{weight} = -6 \quad (x_{\text{soup}} = 4 \neq 0)\]
Complementary slackness

Optimality test via complementary slackness

There are no feasible dual solution \(y \) associated with

\((x_{\text{salad}} = 3, x_{\text{soup}} = 4)\), thus \((x_{\text{salad}} = 3, x_{\text{soup}} = 4)\) cannot be optimal for the primal.
Exercises
Exercise 1. Air transport (dual)

Consider your formulation for the **Air transport** problem of the previous lecture:

a) Give a dual formulation and explain the variables meaning.

b) Select a feasible solution of the primal and test its optimality via complementary slackness.
Consider your formulation for the Cargo ship problem of the previous lecture:

a) Give a dual formulation and explain the variables meaning.

b) Select a feasible solution of the primal and test its optimality via complementary slackness.
Exercises

Exercise 3. Servers communication (dual)

Consider your formulation for the Servers communication problem of the previous lecture:

a) Give a dual formulation and explain the variables meaning.

b) Select a feasible solution of the primal and test its optimality via complementary slackness.
LINEAR PROGRAMMING: DUAL PROBLEM AND COMPLEMENTARY SLACKNESS

Santiago Valdés Ravelo
santiago.ravelo@inf.ufrgs.br

Integer linear programming: formulations, techniques and applications.

05 August, 2020