INF01009 — Computacao Grafica
2003.1
Manuel M. Oliveira
Programming Assignment 1

Passed in: May 21, 2003 Total of Points of the Assignment: 100
Due: May 28, 2003 at 1:30pm

GOALS

The goals of this assignment are familiarize you with some important OpenGL commands
required for rendering 3D scenes. By completing this assignment you will learn how to:

1)

a) Define a virtual camera in a 3D virtual scene, specifying its position, orientation and field of
view;

b) Render an object using points, wireframe and solid representations;

¢) Change the field of view of the camera;

d) Translate the camera in both X, Y and Z directions;

e) Produce basic shading effects by using one light source.

f) Perform backface culling

Study the section Some Hints for Building Polygonal Models of Surfaces (pages 84 to 92
of the OpenGL red book) and implement the recursive subdivision version of the algorithm
used to render a icosahedron (Example 2-17 on page 91). Your program should display a
view of the 3D model.

Suggestion: start with Example 2-16 and modify it appropriately. Also note that you will need
the vdata and ftindices arrays defined in Example 2-13 as well as the function normalize
defined in Example 2-15.

a) Render the polyhedron using the recursive subdivision algorithm. (20 points)

b) Render the solid using points, wireframe and solid representations. (20 Points).

c) Interactively change the horizontal and vertical field of view of the virtual camera (15
Points).

d) Translate the camera along the X, Y and Z directions using the glTranslatef() command
(15 Points).

e) Produce some shading effect by enabling/disable one light source. (20 Points)

f) Enable/disable backface culling (10 points)

Tips on How to Complete the Assignment

As you know, all C/C++ programs require a main function. In the main function you need to specify the
parameters associated with the window you will be using for display your renderings. Below, you will find a
sample main function (note that you may not need all these commands for your program) and many other
templates for the functions you will need. Study the meaning of all such commands and make sure you
understand exactly what tasks they are performing in this code.

int main(int argc, char *argv[])
{
/"
// initialize the window for rendering with OpenGL
/7
glutnitDisplayMode(GLUT DOUBLE | GLUT RGBA | GLUT ALPHA | GLUT DEPTH);
glutInitWindowPosition(0, 0);
glutInitWindowSize(400, 400);
win_id = glutCreateWindow("OpenGL");
glutDisplayFunc(openglDisplay);
glutReshapeFunc(openglReshape),
glutMouseFunc(Mouse); /" you may not need or want to use this command
glutMotionFunc(worldMotion); /" you may not need or want to use this command
glutKeyboardFunc(worldKeyboard),
glPixelStorei(GL_UNPACK ALIGNMENT, 1);
glClearColor(0.0, 0.0, 0.0, 0.0),

glutMainLoop(),
return 0,

}

All OpenGL program requires that we specify a Display and a Reshape functions. These are specified by the
commands glutDisplayFunc and glutReshapeFunc, respectively. Here are examples of these functions that you
can use in your program. Again, study the meaning of all these commands. You can initialize vfov and hfov
(vertical and horizontal field of view) with 60 (degrees), and Znear and Zfar with 0.1 and 1000.0, respectively
(note that by using variables (as opposed to constants) we can easily change the effect of commands).

”%**

// Reshape function for OpenGL
”***
void openglReshape(int w, int h)
S
v
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity(),
gluPerspective(vfov, hfov/vfov, Znear, Zfar);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

Initialize the camera position (variable <cam_pos> in the code fragment below at (0, 0, 2.5)).

”***

// Display function for OpenGL

”***

void openglDisplay(void)
s

¢
glLoadldentity(); // initialize ModelView Matrix as the Identity Matrix
gluLookAt(<cam_pos.x>, <cam_pos.y>, <cam_pos.z>, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0);

a
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH BUFFER_BIT); // before rendering, clear color and depth buffers
<your function that draws the icosahedron is called here>(),

glutSwapBuffers(); // after you are done rendering, swap buffers

Selecting the rendering mode can be achieved with the following code fragment, which need to be executed
before you draw the actual triangles.

switch(<renderMode>) {
case <POINTS>:
<render_mode> = GL_POINT;
break;
case <WIREFRAME>:
<render_mode> = GL_LINE;
break;
case <SOLID>:
<render_mode> = GL_FILL;
break;
)

s
glPolygonMode(GL_FRONT AND BACK, <render mode>);

You can set the color of the polyhedron (or any of its vertices) using the command gi/Color3f(<r>, <r>,).
For instance, to set the rendering color to white use glColor3f(1.0, 1.0, 1.0).

You can change the field of view using the command gluPerspective(<vfov>, <hfov>/<vfov>, <znear>, <zfar>);

In order to translate the camera, change the camera position using the giuLookAt command as described
before.

Enabling/Disabling lighting and light sources can be achieved with the following commands:

If (<enable>) {
glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0),

}

else
if (<disable>) {
glDisable(GL_LIGHTING);
glDisable(GL _LIGHTO0);

/

Backface culling can be enabled and disabled with the commands glEnable(GL_CULL FACE) and
glDisable(GL_CULL FACE), respectively.

Good luck.

