
INF01009 – Computação Gráfica
2003.1

Manuel M. Oliveira
Programming Assignment 2

Passed in: May 28, 2003 Total of Points of the Assignment: 100
Due: June 4, 2003 at 1:30pm

With the first programming assignment you became familiar with some of the most important
features of a graphics application and learnt how to represent them using OpenGL, GLUT and
GLU commands. For example, you did learn:

• how to specify a virtual camera with arbitrary position and orientation;
• about the importance of depth buffering for obtaining proper occlusion in the final renderings;
• how to translate the camera along the axes of the world coordinate system;
• how to render an object using different kinds of primitives, such as points, wireframe and

solid polygons;
• how to perform backface culling to reduce the number of primitives actually drawn;
• how to create some shading effects using a single light source and
• how to change the field of view of the camera to achieve some zooming effects.

This is a good accomplishment, but you can still do much more for your program and learn a lot
from doing so. In this second assignment, you will extend your original program with the following
capabilities (all features present in Assignment 1, except for the rendering of the sphere, should
be preserved):

(a) Read and display arbitrary geometric models represented as triangle meshes. These objects

are described in text files whose layout will be presented next. Once you read the objects,
these should be displayed in the center of the window (20 points);

(b) Translate the virtual camera along its own axes (u, v, n) (not along the world coordinate
system axes) (7.5 points);

(c) Translate the virtual camera along its own axes, while looking at the center of the object (7.5
points);

(d) Rotate the virtual camera along its own axes (15 points);
(e) Reset the camera to its original position (i.e., object centered inside the window) (5 points);
(f) Support for rendering objects whose polygon vertices were defined using CW (clockwise) and

CCW (counter clockwise) orientation – this will affect the behavior of the backface culling
procedure (why is that?) (5 points);

(g) Support for changing the values of the near and far clipping planes (5 points);
(h) Support for interactive change of colors (R, G, B) for the models, making sure that the color

change is apparent under all rendering modes, with or without lighting. A single RGB color is
assigned to all triangles of the model (12.5 points);

(i) Graphics user interface (GUI) (15 points);
(j) Support for reading a new model file through the user interface (7.5 points).

Here is the Layout of the input file

Object name = <obj_name>
triangles = <num_tri>
Material count = <material_count>
ambient color <r_a> <g_a> <b_a>
diffuse color <r_d> <g_d> <b_d>
specular color <r_s> <g_s> <b_s>
material shine <shine_coeff>
-- 3*[pos(x,y,z) normal(x,y,z) color_index] face_normal(x,y,z)
v0 <x> <y> <z> <Nx> <Ny> <Nz> <material_index>
v1 <x> <y> <z> <Nx> <Ny> <Nz> <material_index>
v2 <x> <y> <z> <Nx> <Ny> <Nz> <material_index>
face normal <FNx> <FNy> <FNz>

Example

Object name = SQUARE
triangles = 2
Material count = 1
ambient color 0.694 0.580 0.459
diffuse color 0.992 0.941 0.863
specular color 1.000 1.000 1.000
material shine 0.250
-- 3*[pos(x,y,z) normal(x,y,z) color_index] face_normal(x,y,z)
v0 -1.0 -1.0 -2.0 0.0 0.0 1.0 0
v1 1.0 -1.0 -2.0 0.0 0.0 1.0 0
v2 1.0 1.0 -2.0 0.0 0.0 1.0 0
face normal 0.0 0.0 1.0
v0 1.0 1.0 -2.0 0.0 0.0 1.0 0
v1 -1.0 1.0 -2.0 0.0 0.0 1.0 0
v2 -1.0 -1.0 -2.0 0.0 0.0 1.0 0
face normal 0.0 0.0 1.0

Reading Input Files

This code is showed for the purposes of illustration. Essentially, you can reuse the fscanf
sequence and its formats, but you will have to adapt the rest of the code to fit your own data
structures.

void <tri model>::>.<your function for reading an input file>(char *FileName)
{
 <3d vector> ambient[MAX_MATERIAL_COUNT],
 diffuse[MAX_MATERIAL_COUNT],
 specular[MAX_MATERIAL_COUNT];
 float shine[MAX_MATERIAL_COUNT];

 int material_count,
 color_index[3], i;
 char ch;

 FILE* fp = fopen(FileName,"r");
 if (fp==NULL) { printf("ERROR: unable to open TriObj [%s]!\n",FileName); exit(1); }

 fscanf(fp, "%c", &ch);
 while(ch!= '\n') // skip the first line – object’s name

 fscanf(fp, "%c", &ch);
//
 fscanf(fp,"# triangles = %d\n", &NumTris); // read # of triangles
 fscanf(fp,"Material count = %d\n", &material_count); // read material count
//
 for (i=0; i<material_count; i++) {
 fscanf(fp, "ambient color %f %f %f\n", &(ambient[i].x), &(ambient[i].y), &(ambient[i].z));
 fscanf(fp, "diffuse color %f %f %f\n", &(diffuse[i].x), &(diffuse[i].y), &(diffuse[i].z));
 fscanf(fp, "specular color %f %f %f\n", &(specular[i].x), &(specular[i].y), &(specular[i].z));
 fscanf(fp, "material shine %f\n", &(shine[i]));
 }
//
 fscanf(fp, "%c", &ch);
 while(ch!= '\n') // skip documentation line
 fscanf(fp, "%c", &ch);
//
// allocate triangles for tri model
//
 printf ("Reading in %s (%d triangles). . .\n", FileName, NumTris);
 Tris = new <triangle data struct> [NumTris];
//
 for (i=0; i<NumTris; i++) // read triangles
 {
 fscanf(fp, "v0 %f %f %f %f %f %f %d\n",
 &(Tris[i].v0.x), &(Tris[i].v0.y), &(Tris[i].v0.z),
 &(Tris[i].normal[0].x), &(Tris[i]. normal [0].y), &(Tris[i]. normal [0].z),

 &(color_index[0]));
 fscanf(fp, "v1 %f %f %f %f %f %f %d\n",
 &(Tris[i].v1.x), &(Tris[i].v1.y), &(Tris[i].v1.z),
 &(Tris[i].Norm[1].x), &(Tris[i].Norm[1].y), &(Tris[i].Norm[1].z),

 &(color_index[1]));
 fscanf(fp, "v2 %f %f %f %f %f %f %d\n",
 &(Tris[i].v2.x), &(Tris[i].v2.y), &(Tris[i].v2.z),
 &(Tris[i].Norm[2].x), &(Tris[i].Norm[2].y), &(Tris[i].Norm[2].z),

 &(color_index[2]));
fscanf(fp, "face normal %f %f %f\n", &(Tris[i].face_normal.x), &(Tris[i].face_normal.y),
&(Tris[i].face_normal.z));

//
 Tris[i].Color[0] = (unsigned char)(int)(255*(diffuse[color_index[0]].x));
 Tris[i].Color[1] = (unsigned char)(int)(255*(diffuse[color_index[0]].y));
 Tris[i].Color[2] = (unsigned char)(int)(255*(diffuse[color_index[0]].z));
 }
 fclose(fp);
}

Tips on How to Complete the Assignment

Rendering the object in the center of the window

In order to render the object in the center of the window, you will need to do some calculations.
For instance, as you read the object description from the file, given the vertices’ coordinates in
WCS, the object might be behind the camera or outside of its field of view. It could also be too big
and be only partially inside the view frustum. You will then need to reposition the camera in order
to make sure the object will be completely visible and centered in the window. In order to
accomplish this, you will need to identify the range (minimum and maximum coordinates) of the
object in both X, Y and Z. With these values at hand, you can then imagine a bounding box (a
parallelepiped) for the object. In order for the object to appear centered, the x and y coordinates
for the position of the camera can be computed as the average of the corresponding min and max
values. Note, however, that this might not be enough if the object is too big or if the field of view is
too small. In these cases, the object might be partially outside of the view frustum. You should
then use your trigonometric skills to figure out what should be the z coordinate of the camera so
that the object is completely visible and as close as possible.

Rotating the Camera

In order to perform camera rotation (translation) around (along) the camera’s axes, you will need
to keep track of the vectors that define the camera coordinate system. As you start your program,
let these vectors be: u = (1, 0, 0), v = (0, 1, 0), and n = (0, 0, -1).

As we rotate the camera, we change the vectors that define the CCS (note that this does not
happen when we perform just a translation). Thus, we need to recalculate them. Fortunately, this
not difficulty and can be accomplished using the same basic ideas used to derive the rotations of
points in 2 and 3D. See section Rotating the Camera on page 368 of Hill’s book.

After you have calculated the new vectors that define the CCS you will have all information you
need to call the gluLookAt() command with the appropriate parameters.

Performing the translation while looking at the center of the object

Camera movements should be defined with respect to the CCS independent of its orientation with
respect to the WCS. Otherwise, the movement will appear non-intuitive. Translation implies
change of the camera position. Thus, for instance, in order to produce an intuitive forward
translation by k units, one can compute the new position as pos = pos + k*(-n), where n is the
axis in the CCS associated with the viewing direction. Notice that since we are adopting a right-
hand coordinate system convention, we need to use a minus sign before n. The left/right and
up/down translations are similar. See section Sliding the Camera on page 368 of Hill’s book.

The translation procedure described above will give you the new camera position. But since you
will be looking at a fixed point, you need to calculate a new n vector for the CCS. As n changes,
so does the u vector. Thus, compute a new n vector and use it and the old v vector to compute a
new u vector. Once you have new n and u vectors, compute a new v vector and call gluLookAt()
with the appropriate parameters.

Changing the values of the near and far clipping planes

This can be accomplished with gluPerspective(). Don’t forget to select and initialize the projection
matrix before you call gluPerspective() and to set the current matrix back to the model view matrix
after you are done.

Initialize Znear = 1.0f and Zfar = 3000.0 and play with these values. What happens when Znear
becomes very close to zero?

Selecting the orientation (CW, CCW) for the font facing polygons

Your program should support change of the orientation interactively. For this, use the command
glFrontFace().

Changing the RGB color of the model

Interactively set the RGB color (R, G and B ranging from 0.0 to 1.0) to render the model. When
the lighting environment is disabled you set the color with the command glColor3f(<r>, <r>,).
But as the lighting environment is enabled, you will need to use
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, <object RGB color>);

