UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA DEPARTAMENTO DE INFORMÁTICA APLICADA

DISCIPLINA: COMPUTAÇÃO GRÁFICA - Semestre 2008/1

CÓDIGO: INF01009

PRÉ-REQUISITO: INF01047 – Fundamentos de Computação Gráfica

CARGA HORÁRIA: 4 h/s NATUREZA DAS AULAS: Expositivas

CRÉDITOS: 4

PROFESSOR: MANUEL MENEZES DE OLIVEIRA NETO

SÚMULA

Representação de objetos 3D. Visualização de objetos 3D. Síntese de cenas realísticas. Técnicas de modelagem de objetos 3D. Tópicos especiais em visualização e animação.

OBJETIVOS

Fornecer aos alunos conhecimentos sobre algoritmos e hardware para computação gráfica, oferecendo uma sólida compreensão do pipeline gráfico. Familiarizar os estudantes com as técnicas atuais de computação gráfica, preparando-os para empregá-las em situações práticas e para realização de estudos de pós-graduação.

CONTEÚDO PROGRAMÁTICO

Parte I: Conceitos Básicos

Introdução

O que é Computação Gráfica Applicações da Computação Gráfica Modelos, Imagens e Computação Gráfica Arquitetura por Sistema de Varredura (Raster System Architecture)

Graphics APIs

OpenGL and GLUT overview

Part II: Entendendo o Pipeline Gráfico

Geração de Imagens

Como são Produzidas as Imagens de Cenas Tridimensionais? O Pipeline Gráfico

Arquitetura de Hardware Gráfico Programável (GPUs)

Transformações Geométricas

Transformações Lineares, Afins e Projetivas Coordenadas Homogeneas

Mudança de Sistema de Coordenadas

Matrix de Mudança de Sistema de Coordenadas Especificando os Parâmetros da Câmera Virtual

Projeções

Projeções Planares Projeção Linear: O modelo "Pinhole" de Camera Entendendo a Projeção Perspectiva O Volume Canônico para Visualização A Matrix de Projeção

Rasterização

Scan conversion Interpolação em Perspectiva

Part III: Sombreamento (Shading) e Eliminação de Superfícies Ocultas

Shading

Flat, Gouraud, Phong Modelos de Iluminação Modelos de Reflexão

Eliminação de Superfícies Ocultas Depth Buffering

Mapeamento de Textura

Mapeamento de Textura Convencional Mapeamento de Textura de Relevo

Introdução à Programação de Shaders

FX Composer
Programas de Vértices e de Fragmentos
Linguagem Cg (*C for graphics*)

Algoritmos para Geração de Sombras

Part IV. Introdução à Modelagem

Introdução à Modelagem de Curvas e Superfícies

Introdução à Reconstrução de Superfícies a partir de Nuvens de Pontos

Part V. Iluminação Global

Ray Tracing

Introdução ao Método de Radiosidade

PROCEDIMENTOS DIDÁTICOS

Aulas expositivas acompanhadas de vários trabalhos práticos relacionados aos conteúdos apresentados em sala e de um projeto final. Ao final da disciplina, os estudantes terão implementado um subconjunto considerável da espeficicação OpenGL. O curso utilizará uma abordagem construtivista para ensino da computação gráfica tridimensional, sendo que todo o material necessário será derivado a partir dos conceitos primitivos como ponto e vetor.

SISTEMA DE AVALIAÇÃO

Os alunos serão avaliados com base no desempenho nas provas, trabalhos e no projeto final, bem como por sua participação em aula. As provas, trabalhos e projeto final serão avaliados com nota entre 0.0 e 10.0. Conforme regulamento da Universidade, a freqüência às aulas é obrigatória.

Ao longo do semestre, serão realizados:

- i. Duas provas, P1, na metade do semestre, e P2, prova final. P1 corresponderá a 12% da nota final; P2, a 23% da nota final;
- ii. Pelo menos três trabalhos de implementação (TIs). A soma de todos os TIs corresponderá a 30% da nota final;
- iii. Pelo menos três trabalhos complementares (TCs). A soma de todos os TCs corresponderá a 10% da nota final;
- iv. Um projeto final (PF) da disciplina, a ser realizado em grupos de até dois estudantes, representando 20% da nota final.

Além disso, será atribuída nota pela participação (NP) em sala de aula, o que representerá 5% da nota final.

A realização dos trabalhos é obrigatória, mesmo que o aluno obtenha bons resultados nas provas.

A média geral (MG) será obtida por meio da seguinte fórmula:

$$MG = 0.12 * P1 + 0.23 * P2 + 0.30 * TI + 0.1 * TC + 0.2 * PF + 0.05 * NP$$

A conversão da MG para conceitos é feita por meio da seguinte tabela:

```
9.0 < MG \le 10.0: conceito A (aprovado). 7,5 < MG \le 9.0: conceito B (aprovado). 6,0 < MG \le 7.5: conceito C (aprovado). 4,0 < MG \le 6.0: sem conceito (recuperação). 0.0 \le MG \le 4.0: conceito D (reprovado).
```

Observações

- 1 Somente serão calculadas as médias gerais daqueles alunos que tiverem, ao longo do semestre, obtido um índice de freqüência às aulas igual ou superior a 75 % das aulas previstas. Aos que não satisfizerem este requisito, será atribuido o conceito FF (Falta de Freqüência).
- 2 Para poder realizar a prova de recuperação, o(a) estudante deve ter realizado as duas provas (P1 e P2), ter entregue pelo menos dois dos três trabalhos práticos (TPs), pelo menos dois trabalhos complementares (TCs) e o projeto final (PF), e ter obtido nota não inferior a 6.0 (seis) em pelo menos uma das duas provas. Os que não se enquadrarem nesta situação receberão conceito D.

RECUPERAÇÃO

Os alunos cujas médias gerais forem inferiores a 6,0 (seis) e maiores ou iguais a 4,0 (quatro) e que satisfizerem as condições 1 e 2 acima, poderão prestar prova de recuperação, a qual versará sobre toda a matéria da disciplina.

Serão considerados aprovados na recuperação os alunos que obtiverem um aproveitamento de no mínimo 60 % da prova. A estes será atribuido o conceito C. Aos demais, o conceito D.

Não há recuperação das provas P1 e P2 por não comparecimento, exceto nos casos previstos na legislação (saúde, parto, serviço militar, convocação judicial, luto etc, devidamente comprovados).

BIBLIOGRAFIA

- 1 Shirley, P. Fundamentals of Computer Graphics. 2nd Edition. AK Peters, 2005.
- 2 HILL, Jr. F. S. Computer Graphics Using OpenGL, 2nd Edition. Prentice Hall, 2001.
- 3 WOO, M. et. al. The OpenGL Programming Guide, Third Edition: The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley, 1999.
- 4 FOLEY, J. et. al. Computer Graphics Principles and Practice. Addison-Wesley, 1990.
- 5 Artigos selecionados dos anais da conferência ACM SIGGRAPH e da revista IEEE Computer Graphics and Applications.