SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA DEPARTAMENTO DE INFORMÁTICA APLICADA

DISCIPLINA: Fundamentos de Processamento de Imagens

CÓDIGO: INF01046 – Turma A

CARGA HORÁRIA: 04 h/sem.

CRÉDITOS: 04

PRÉ-REQUISITOS: MAT01354 e MAT02219

NATUREZA DAS AULAS: TEÓRICAS e PRÁTICAS (4 h/sem.)

PROFESSOR: MANUEL MENEZES DE OLIVEIRA NETO

SÚMULA

Introdução, transformações, realce, segmentação, representação e descrição de imagens, princípios de processamento de vídeo, compressão de imagens e vídeo.

OBJETIVOS

Esta disciplina tem como objetivos introduzir os conceitos fundamentais e técnicas de processamento, codificação e compressão de imagens e vídeos (monocromáticos e multi-espectrais), e treinar o aluno a abordar eficientemente problemas desta área. No decorrer das aulas, os alunos terão a oportunidade de implementar e testar os conceitos teóricos apresentados, e aplicá-los a problemas práticos.

CONTEÚDO PROGRAMÁTICO

- 1. FUNDAMENTOS
 - 1.1 Introdução
 - 1.2 Percepção Visual e Formação de Imagens
 - 1.3 Sensores e Aquisição de Imagens
 - 1.4 Anatomia de Câmeras Digitais
 - 1.5 Amostragem e Quantização
- 2. TEORIA DE SINAIS
 - 2.1 Modelos Matemáticos de Sinais
 - 2.2 Domínios Espaço e Fregüência
 - 2.3 Teorema da Amostragem
 - 2.4 Reconstrução Ideal
 - 2.5 Operações no Domínio Discreto

- 3. PRINCÍPIOS DE REALCE DE IMAGENS NO DOMÍNIO ESPACIAL
 - 3.1 Operações Pontuais
 - 3.2 Transformações do Histograma
 - 3.3 Operações Aritméticas e Lógicas com Imagens
 - 3.4 Filtragem no Domínio Espaço
 - 3.1.1 Convolução
 - 3.1.2 Supressão de Ruído
 - 3.1.3 Realce de Detalhes
- 4. PRINCÍPIOS DE REALCE DE IMAGENS NO DOMÍNIO FREQUÊNCIA
 - 4.1 Introdução à Transformada de Fourier e suas Propriedades
 - 4.2 Filtragem no Domínio Frequência
 - 4.2.1 Filtros Passa-Baixas
 - 4.2.2 Filtros Passa-Altas
 - 4.3 Outras Transformações
- 5. ESPAÇOS DE CORES
 - 5.1 CIE XYZ
 - 5.2 Iluminantes e Adaptação Cromática
 - 5.3 Espaços de Cores Oponentes
 - 5.4 Espaços de Cores RGB
- 6. IMAGENS EM ALTA FAIXA DINÂMICA (HDRI)
 - 6.1 LDR versus HDR
 - 6.2 Codificação de Imagens HDR
 - 6.3 Captura de Imagens e Vídeos HDR
 - 6.4 Dispositivos para Visualização de Imagens e Vídeos HDR
 - 6.5 Algoritmos de Tone Mapping e Tone Mapping Reverso
- 7. RESTAURAÇÃO DE IMAGENS
 - 7.1 Degradação de Imagens Digitais
 - 7.2 Técnicas de Restauração
- 8. PRINCÍPIOS DE ANÁLISE DE IMAGENS
 - 8.1 Segmentação de Imagens
 - 8.2 Representação de Formas
 - 8.3 Representação de Regiões
 - 8.4 Texturas
- 9. COMPRESSÃO DE IMAGENS E VÍDEO
 - 9.1 Sistemas de Codificação e Compressão
 - 9.2 Padrões de Compressão de Imagens e Vídeos

PROCEDIMENTOS DIDÁTICOS

Aulas expositivas acompanhadas de trabalhos práticos relacionados aos conteúdos apresentados em sala e de um projeto final. Paralelamente, serão desenvolvidas atividades

em laboratório. Ao final da disciplina, os estudantes terão implementado um subconjunto considerável de procedimentos fundamentais em Processamento de Imagens.

SISTEMA DE AVALIAÇÃO

Os alunos serão avaliados com base no desempenho nas provas, trabalhos de implementação, atividades de laboratório e no projeto final, bem como por sua participação em aula. As provas, trabalhos e projeto final serão avaliados com nota entre 0.0 e 10.0. Conforme regulamento da Universidade, a freqüência às aulas é obrigatória.

Ao longo do semestre, serão realizados:

- i. Duas provas, P1, na metade do semestre, e P2, ao final do semestre;
- ii. Dois trabalhos Práticos, T1 e T2;
- iii. T1 será realizado em 3 etapas, de modo incremental. Cada uma destas etapas corresponde a 1/3 da nota do T1;
- iv. T2 corresponde a um projeto final (PF) da disciplina, a ser realizado em grupos de até dois estudantes. O tema do projeto final será acertado entre o professor e cada grupo individualmente;
- v. Atividades de laboratório (AL) utilizando MATLAB. A soma de todas as atividades de todas as AL corresponderá a 5% da nota final. Além disso, será atribuída nota pela participação nas aulas teóricas (AT), o que também representerá 5% da nota final. Juntas, AL e AT constituem a nota de participação em aula (PA).

A média geral (MG) será obtida por meio da seguinte fórmula:

$$MG = 0.9 \times ((P1 + P2 + T1 + T2)/4) + 0.1 * PA$$

Assim, a soma das notas das provas e trabalhos práticos correspondem a 90% da nota fina da disciplina. A conversão da MG para conceitos é feita por meio da seguinte tabela:

```
9.0 \le MG = 10.0: conceito A (aprovado).
```

 $7.5 \le MG < 9.0$: conceito B (aprovado).

 $6.0 \le MG < 7.5$: conceito C (aprovado).

 $4.0 \le MG < 6.0$: sem conceito (recuperação).

 $0.0 \le MG < 4.0$: conceito D (reprovado).

Observações

- 1 Somente serão calculadas as médias gerais daqueles alunos que tiverem, ao longo do semestre, obtido um índice de freqüência às aulas igual ou superior a 75 % das aulas previstas. Aos que não satisfizerem este requisito, será atribuido o conceito FF (Falta de Freqüência).
- 2 Para poder realizar a prova de recuperação, o aluno deve ter realizado as duas provas (P1 e P2), ter entregue pelo menos dois dos três trabalhos práticos (TPs) e o projeto final (PF). Além disso, o(a) aluno(a) deverá ter nota igual ou superior a 6,0 em pelo menos uma

das duas provas. Os que não se enquadrarem nesta situação receberão conceito D.

RECUPERAÇÃO

Os alunos cujas médias gerais forem inferiores a 6,0 (seis) e maiores ou iguais a 4,0 (quatro) e que satisfizerem as condições 1 e 2 acima, poderão prestar prova de recuperação, a qual versará sobre toda a matéria da disciplina.

Serão considerados aprovados na recuperação os alunos que obtiverem um aproveitamento de no mínimo 60 % da prova. A estes será atribuido o conceito C. Aos demais, o conceito D.

Não há recuperação das provas P1 e P2 por não comparecimento, exceto nos casos previstos na legislação (saúde, parto, serviço militar, convocação judicial, luto etc, devidamente comprovados).

Observações

- 1 Somente serão calculadas as médias gerais daqueles alunos que tiverem, ao longo do semestre, obtido um índice de freqüência às aulas igual ou superior a 75 % das aulas previstas. Aos que não satisfizerem este requisito, será atribuido o conceito FF (Falta de Freqüência).
- 2 Para poder realizar a prova de recuperação, o aluno deve ter realizado as duas provas (P1 e P2), ter entregue pelo menos duas das três etapas do trabalho prático T1 e o projeto final (T2). Além disso, o aluno deverá ter nota igual ou superior a 6.0 em pelo menos uma das duas provas. Aqueles que não se enquadrarem nesta situação receberão conceito D.

RECUPERAÇÃO

Os alunos cujas médias gerais forem inferiores a 6,0 (seis) e maiores ou iguais a 4,0 (quatro) e que satisfizerem as condições 1 e 2 acima, poderão prestar prova de recuperação, a qual versará sobre toda a matéria da disciplina.

Serão considerados aprovados na recuperação os alunos que obtiverem um aproveitamento de no mínimo 60% da prova. A estes será atribuido o conceito C. Aos demais, o conceito D.

Não há recuperação das provas P1 e P2 por não comparecimento, exceto nos casos previstos na legislação (saúde, parto, serviço militar, convocação judicial, luto etc, devidamente comprovados).

BIBLIOGRAFIA

Livro Texto Principal:

Gonzalez, R. & Woods, R. <u>Processamento Digital de Imagens</u>. Editora Edgar Blücher (ISBN: 8521202644).

Livros Complementares:

Jain, Anil. <u>Fundamentals of Digital Image Processing.</u> Editora Prentice-Hall (ISBN: 0133361659).

Pittas, I. <u>Digital Image Processing Algorithms and Applications</u>. Editora John Willey (ISBN: 0471377392).

Wang, Yao. Video Processing and Communications. Editora Prentice Hall (ISBN: 9780130175472).

Bibliografia Suplementar:

Baxes, Gregory. <u>Digital Image Processing: Principles and Aplications</u>, John Wiley & Sons, 1994. Glassner, Andrew. Principles of Digital Image Synthesis. Morgan Kaufmann, 1995.

Gomes, Jonas and Velho, Luiz. <u>Image Processing for Computer Graphics</u>. Springer Verlag, 1997.

Sonka, M., Hlavac, V. & Boyle, R. <u>Image Processing, Analysis and Machine Vision</u>. PWS Publishing, 1999. 2nd ed.

Tekalp, A. Murat. <u>Digital Video Processing</u>. Prentice Hall, 1995.

Artigos e notas técnicas anunciados ao longo da disciplina.