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Abstract Although many adaptive sampling and re-
construction techniques have been proposed in the last
few years, the case for which one should be used for
a specific scene is still to be made. Moreover, develop-
ing a new technique has required selecting a particular
rendering system, which makes the technique tightly
coupled to the chosen renderer and limits the amount
of scenes it can be tested on. In this paper, we propose
a renderer-agnostic framework for testing and bench-
marking sampling and denoising techniques for Monte
Carlo rendering. It decouples techniques from render-
ing systems by hiding the renderer details behind an
API. This improves productivity and allows for direct
comparisons among techniques originally developed for
different rendering systems. We demonstrate its effec-
tiveness by using our API to instrument four rendering
systems, most state-of-the-art Monte Carlo denoising
techniques and three sampling strategies, and by per-
forming a benchmark across rendering systems.
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1 Introduction

Rendering is one of the most important problems in
computer graphics and has been the subject of over
half a century of research. In particular, there has been
a tremendous amount of exploration on Monte Carlo
(MC) physically-based rendering systems [8] such as
path-tracing [15] and its various extensions [38]. To
address shortcomings in Monte Carlo rendering, more
than three decades of research has explored a wide
variety of different ideas, including adaptive sampling
and reconstruction algorithms [12], faster acceleration
structures and intersection algorithms [33], improved
sampling patterns [13], and Monte Carlo denoisers [36,
31, 16], to name a few broad categories.

Although developing a new algorithm that success-
fully improves Monte Carlo rendering in some way is a
challenging task in itself, researchers face two further
challenges. First, they must integrate their algorithm
into an actual rendering system so they can test it on
complex scenes. After all, renderers have several key
components required to produce high-quality images
(e.g., scene 1/0, samplers, ray-traversal acceleration
data structures, primitive-ray intersectors, shading sys-
tems, and reconstruction filters), and many of these
components are often orthogonal to the algorithm being
explored. Therefore, rendering researchers often lever-
age the infrastructure provided by existing rendering
systems. However, integrating a new algorithm into a
rendering system is often a time-consuming task, pre-
cluding its deployment on multiple renderers to properly
test the technique.

Second, researchers must find several high-quality
scenes to test their algorithm and demonstrate their
performance. Since most rendering researchers are not
digital artists, constructing complex aesthetically pleas-
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ing scenes is often a non-trivial, time-consuming task,
and “programmer-art” scenes do not tend to be of the
same quality as those constructed by professional artists.
Moreover, rendering systems tend to adopt proprietary
scene-description formats. Thus, researchers tend to
stick to a handful of test scenes available for the se-
lected rendering system.

The consequence of these two challenges is that most
researchers are often only able to demonstrate their algo-
rithm on a single rendering system using a small number
of test scenes. This significantly limits their ability to
thoroughly test and explore the proposed method, and
for reviewers to properly evaluate its performance. Fur-
thermore, it is often difficult to compare against existing
methods, since they often have been implemented in
other rendering systems and tested on different scenes.
Having good “apples-to-apples” comparisons is impor-
tant when trying to gauge the benefits of a new method.

Finally, porting a recently published algorithm to a
new rendering system is not easy, since the developers
performing the port are usually not experts on the new
algorithm, even though they may be very familiar with
the target rendering system. Therefore, they usually
have to translate the available implementation (or the
algorithm described in the paper) to the rendering sys-
tem. This can introduce bugs in the process and may
not produce ideal results, since the algorithmic parame-
ters that worked successfully for one rendering system
might not work for the new one. Trying to determine
the optimal parameters for an algorithm that one did
not develop can be a very time consuming task.

To address these problems, we present a novel frame-
work that allows researchers to develop, test, compare,
and even deploy sampling and denoising algorithms for
Monte Carlo rendering. Specifically, we propose an appli-
cation program interface (API) that allows developers
to easily port their algorithms to different rendering
systems by providing the necessary communication be-
tween such algorithms and the other components of an
existing rendering system. In other words, instead of
having the researchers port their algorithms to multi-
ple rendering systems, we have done the leg work for
them by instrumenting rendering systems to provide the
necessary services through our API.

Therefore, a researcher only needs to implement an
algorithm once, and can immediately use it with all
rendering systems that support our framework. This
allows researchers to rapidly test and deploy their algo-
rithms on a range of rendering systems, and test them
on a wide variety of scenes. This allows for automatic
independent benchmarking of algorithms, which is quite
useful when submitting new techniques for publication.

As a proof of concept, we have initially instrumented
four rendering systems (PBRT-v3, PBRT-v2, Mitsuba,
and a procedural renderer), pretty much all state-of-
the-art MC denoising algorithms, and three sampling
techniques. We plan to open-source our framework so
that other Monte Carlo renderers can support the API
directly themselves. This will also allow third-party
rendering systems to rapidly adopt recently proposed
algorithms that conform to our API.

To demonstrate the effectiveness of our framework,
we conduct a case study involving Monte Carlo (MC) de-
noising algorithms. Such a study illustrates key aspects
of our system: provide easy integration of algorithms
and rendering systems (by means of just a few calls to
the API); provide an independent benchmark for MC
techniques that works across various rendering systems;
and, allow developers to evaluate the performance of ren-
dering systems with various algorithms, and vice versa.
These are desirable features for algorithm and rendering
system developers, as well as for the academic, industry,
and end-user communities, who should be able to make
better informed decisions when choosing a technique
and/or a rendering system to render a given scene.

For our study, we have instrumented essentially all
state-of-the-art MC denoising algorithms (e.g., NFOR [6],
LBF [16], RHF [9], LWR [21], RDFC [31], RPF [36],
SBF [19], NLM [30], and GEM [29)]), allowing them to
be used with the four rendering systems, even though
most of these algorithms have originally been developed
for a single renderer. Furthermore, our system’s ability
to automatically generate benchmark reports allows for
the comparison of the different methods on an even
playing field. In our study, we compare the performance
of different MC denoising methods and discuss some of
their identified potential limitations.

Although this paper does not propose a new MC
rendering algorithm per se, this kind of meta-research
system (i.e., a system designed to aid the research pro-
cess) is not new to the graphics and vision communi-
ties. Successful examples include the Middlebury bench-
mark [34, 35], which has transformed the way two-frame
dense stereo correspondence algorithms are developed
and compared, as well as the benchmarks on Alpha
Matting [28, 27], optical flow [4, 3, 2], and video mat-
ting [11, 10]. More recently, Anderson et al. [1] proposed
a framework to compile PDF sampling patterns for
Monte Carlo.

Inspired by these works, our system provides test
scenes intended to stress the limits of Monte Carlo
techniques and reveal their potential limitations. It is
extensible, allowing for easy support of new rendering
systems, as well as sampling and denoising strategies.
The community should be able to contribute new scenes
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and techniques in a simple way. Our system is publicly
available through our project website, providing valuable
feedback to the research and industry communities.

In summary, the contributions of our work include:

— A framework for developing, testing, and benchmark-
ing sampling and denoising Monte Carlo algorithms
(Section 3). Our framework decouples the algorithms
from rendering systems by means of an API, allowing
researchers to implement their techniques once and
run them on any rendering system supporting our
framework. It easily incorporates new algorithms,
rendering systems, and testing datasets;

— An automatic and independent benchmarking sys-
tem for comparing Monte Carlo algorithms across
multiple rendering systems and supporting a large
number of scenes (Section 3). This should be a useful
tool for assessing the quality of new Monte Carlo
algorithms against established ones, especially for
submission purposes;

— A detailed evaluation of the state-of-the-art Monte
Carlo denoising algorithms using our framework and
a discussion of their performance and limitations
(Section 4).

While the use of an API might reduce the perfor-
mance of an application, a careful design of the API
minimizes such an impact. Nevertheless, the benefits
provided by our framework highly supersede a potential
performance reduction, specially in off-line rendering en-
vironments. Once tested on different rendering systems
and on a variety of scenes, one can decide to provide
native implementations for specific rendering systems.

2 Related Work

We begin by discussing meta-research systems in both
graphics and vision which, like our own framework,
have been developed to facilitate/improve the research
process. Afterwards, we focus on previous work on Monte
Carlo denoising, which is the application that we use in
our case study to illustrate the benefits of our framework.

2.1 Meta-Research in Graphics

Several systems have been proposed over the years to
facilitate research development in graphics. Some of
the most popular ones include Cg [20], Brook [7], and
Halide [25]. Cg is a general-purpose, hardware-oriented,
programming language and supporting system designed
for the development of efficient GPU applications, and
providing easy integration with the two major 3D graph-
ics APIs (OpenGL and Direct 3D). Brook [7] is also

a system for general-purpose computation that allows
developers to use programmable GPUs as streaming co-
processors, while abstracting GPU architectural details.
Halide [25] tries to optimize image-processing algorithms
by decoupling the algorithm’s description from its sched-
ule. This allows for an algorithm to be described once,
while specific schedules are provided for different target
platforms (e.g., CPUs, GPUs, mobile devices, etc.). Au-
tomatic generation of optimized schedules in Halide has
been addressed in a follow-up work [22].

While the primary goal of these systems is to gen-
erate efficient code while abstracting hardware details
from developers, our focus is on decoupling Monte Carlo
algorithms from rendering systems. This greatly simpli-
fies the task of porting algorithms to multiple rendering
systems, freeing developers from the burden of know-
ing implementation details of specific renderers to be
able to perform integration. Our system also makes a
wider range of scenes available for testing, providing a
comprehensive, multi-rendering system benchmark for
Monte Carlo algorithms. Recently, Anderson et al. [1]
proposed an approach to compile sampling BRDFs for
MC applications. Their method complements our work.

2.2 Benchmarking Systems in Computer Vision

Quantitative benchmarks have been proposed for sev-
eral computer visions areas, including optical flow [4, 3],
dense two-frame stereo correspondence [34], and alpha
matting [28]. These initiatives have provided indepen-
dent tools for assessing the quality of the results pro-
duced by existing and new algorithms, and have led to
significant progress in these areas.

Optical Flow — Barron et al. [4] compared accuracy,
reliability, and density of velocity measurements for sev-
eral established optical flow algorithms, and showed
that their performance could vary significantly from one
technique to another. Baker et al. [3] proposed another
benchmark for optical-flow algorithms that considers
aspects not covered by Barron et al. These include se-
quences containing non-rigid motion, realistic synthetic
images, high frame-rate video to study interpolation
errors, and modified stereo sequences of static scenes.
The authors have made their datasets and evaluation
results publicly available, and provide the option for one
to submit his own results for evaluation [2]

Stereo Correspondence —The Middlebury benchmark [34]
provided a taxonomy and evaluation for dense two-frame

stereo correspondence algorithms. The datasets and eval-

uation are publicly available on the web, and anyone

can submit results for evaluation [35].
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Alpha Matting — Rhemann et al. [28] introduced a
benchmark system for alpha matting techniques. The au-
thors provide some training data and use a test dataset
for which the corresponding ground truth has not been
disclosed. Similarly to the optical-flow and dense stereo
correspondence benchmarks mentioned before, the re-
sults are available on-line, and anyone can submit results
for evaluation [27].

Video Matting — Erofeev et al. [11] extended the alpha
matting benchmark to videos, supporting both objective
and subjective evaluations of video matting techniques.
Training and test datasets are provided, with results
and submissions being available through the web [10].
Unlike such systems, ours goes beyond rating submit-
ted results computed off-line. It provides an API that
allows Monte Carlo algorithms to be tested with differ-
ent rendering systems using a variety of scenes. Thus, it
can compare different techniques across multiple render-
ing systems, something that was not previously possible
without requiring the developer to create multiple im-
plementations tailored to individual rendering systems.

2.3 Monte Carlo Denoising Algorithms

Although there has been a significant amount of work on
reducing the variance of MC rendered images through
sampling/reconstruction (see [24, 39]), for brevity we
shall only focus on previous post-processing approaches
that filter general Monte Carlo noise (i.e., noise from
any and all distributed effects, path tracing, and so on).

Soon after the seminal paper by Cook et al. [§]
raised the problem of MC noise, there was some early
work in general MC filtering, including approaches us-
ing nonlinear median and alpha-trimmed mean filters
for edge-aware spike removal [18] and variable-width
filter kernels to preserve energy and salient details [32].
However, in the years that followed, researchers largely
ignored general MC filtering algorithms in favor of other
variance reduction techniques, due to the inability of
these filters to successfully remove the MC noise while
preserving scene detail.

Recently, interest in general MC filtering algorithms
has enjoyed a significant revival. For example, Sen and
Darabi [36] demonstrated that filters could effectively
distinguish between noisy scene detail and MC noise.
To do this, they used mutual information to determine
dependencies between random parameters and scene
features, and combined these dependencies to weight a
cross-bilateral filter at each pixel in the image. Rousselle
et al. [30] proposed to use a non-local means filter to
remove general MC noise. Kalantari and Sen [17] ap-
plied median absolute deviation to estimate the noise

level at every pixel to use any image denoising technique
for filtering the MC noise. Finally, Delbracio et al. [9]
modified the non-local means filter to use the color his-
tograms of patches, rather than the noisy color patches,
in the distance function.

Other approaches have effectively used error estima-
tion for filtering general distributed effects. For exam-
ple, Rousselle et al [29] used error estimates to select
different filter scales for every pixel to minimize recon-
struction error. Furthermore, Li et al. [19] proposed
to use Stein’s unbiased risk estimator (SURE) [37] to
select the best parameter for the spatial term of a cross-
bilateral filter. Rousselle et al. [31] extended this idea
to apply the SURE metric to choose the best of three
candidate filters. Moon et al. [21] estimated the error for
discrete sets of filter parameters using a weighted local
regression. Bauszat et al. [5] posed the filter selection
problem as an optimization and solved it with graph
cuts. More recently, Kalantari et al. [16] introduced a
machine learning approach in which a neural network is
used to drive the MC filter.

All of these techniques have strengths and weak-
nesses in terms of the scene features they can satisfac-
torily handle, memory costs, execution time, etc. All
these variables make a direct comparison of the vari-
ous algorithms difficult. Our framework is intended to
fill-in this gap. Hopefully, it will help developers better
understand the interplay among the various involved
elements and available metrics, shedding some light on
the occasional situations in which publications seem to
disagree about the quality rank of different techniques.

3 System Design

A physically-based rendering system has to perform sev-
eral tasks in order to generate an image. These include,
for instance, read the scene description file, build the in-
ternal scene representation data structure, generate well-
distributed sampling positions in a high-dimensional
space, compute shading, compute global illumination,
reconstruct the final image, and save the result. Several
of those tasks hide a significant amount of complexity.

A good renderer implementation usually employs
design practices that allow some level of extensibility.
For example, it is common practice to facilitate adding
new materials, shapes, cameras, samplers, reconstruc-
tion filters, and integrators, given they obey pre-defined
interfaces. However, although different renderers use sim-
ilar abstractions, implementing a new technique (e.g.,
a new denoising filter) still requires choosing a partic-
ular renderer (e.g., PBRT-v3 or Mitsuba). This makes
it hard to compare techniques implemented in different
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systems, and time consuming to implement a technique
in multiple rendering systems.

Our framework seeks to avoid these limitations by
decoupling the implementation of a new technique from
any specific rendering system. For this, it hides sample
value computation details associated to individual ren-
dering systems behind a general sampling evaluation
interface. Thus, it allows for any technique to be seam-
lessly integrated with different rendering systems, and
provides a direct and simple mechanism for comparing
techniques’ results on multiple (rendering) systems.

Denoising techniques are responsible for reconstruct-
ing images from sample values computed by the renderer.
As such, they are a key component of all Monte Carlo
rendering systems. Thus, we have chosen MC denoising
algorithms to demonstrate the effectiveness of our frame-
work. One should note, however, that our system can
be used to implement/evaluate other MC techniques,
such as general sampling and reconstruction algorithms.
In our case study, we consider both adaptive and non-
adaptive MC denoising techniques. Next, we describe
the main components of our system and discuss how
they are used to support the integration of techniques
and rendering systems, and to perform benchmarks.

3.1 Main Components

The architecture of the proposed system has three main
components (Figure 1): the client process, the benchmark
process, and the renderer process. The client process
implements the technique being integrated. The renderer
process interfaces with the actual rendering system to
evaluate the samples requested by the client process.
The benchmark process controls the overall execution,
and saves the final image along with useful metadata
information, such as reconstruction and rendering times.
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Fig. 1 Main components of the system.
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Figure 2 shows a sequence diagram of a typical execu-
tion of the system. The benchmark process is executed,

receiving a list of scenes to be rendered, each scene with
a list of different sample budgets. For a given scene, the
renderer process is executed. The benchmark process
forwards the client’s request to the renderer process and
keeps track of the execution time and sample budget
limits. Once the client process receives the requested
samples, it reconstructs the final image and sends it to
the benchmark process. The cycle can start again with
another request (e.g., for a different sample density for
the same scene, a different scene, a different technique,
etc.). Note that we use the expression “benchmark pro-
cess” to refer to this intermediate layer regardless of the
system being used to locally evaluate a single or multi-
ple techniques, or to perform or complement an actual
full benchmark. The system also provides a web-based
graphical user interface (GUI) for visual exploration of
the results.
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Fig. 2 A typical execution of the system.

The separation between client and renderer processes
allows us to provide a clean API to the client process,
simplifying the task of implementing a new technique.
Once a new technique is implemented using this renderer-
agnostic API, it can be readily tested on a variety of
scenes and compared against other techniques.

On the renderer side, this separation allows us to
provide different renderers as back-ends to the system.
When rendering a scene, the client process does not need
to know the specific renderer being used. This also test
the robustness of the technique to variations in sample
values computed by different renderers.
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3.1.1 Client Process

The system expects techniques to follow the template
shown in Figure 3. Such a flow is general enough to cover
a large variety of techniques, including MC denoising
— adaptive, non-adaptive, a priori and a posteriori [39]
— as well as sampling techniques. If a particular tech-
nique does not provide sampling positions, the renderer
transparently supplies them.

Sample analysis Reconstruction

Initial sampling

no
Y
4{ Adaptive sampling Ginal image)

Fig. 3 Template for techniques supported by our system.

When the client process starts, it is given a sam-
ple budget. In the initial sampling step (Figure 3), the
technique decides what portion of the sample budget to
spend initially. If the technique is non-adaptive, the en-
tire budget is spent in this step. Otherwise, one or more
iterations of sample analysis and adaptive sampling are
performed, until the sample budget is completely con-
sumed. After the final image is reconstructed, the client
process finishes. Besides the sample budget, the client
has access to more information about the scene through
a scene information querying API. This information
allows the technique to adjust its parameters depending
on the characteristics of the scene.

Our framework is general enough to support ad-
vanced techniques with adaptive sampling, allowing
them to generate sample positions based on informa-
tion from previous iterations. If the technique does not
perform adaptive sampling, the renderer itself generates
the sample positions. The API also allows the tech-
nique to specify which features it needs for each sample.
Some may require only color information, while others
may require geometric features like normals, depth, etc.
The technique also specifies the exact layout of sample
components in memory.

3.1.2 Benchmark Process

The benchmark process manages the system execution
and mediates the communication between client and ren-
derer processes (Figure 2). It is responsible for starting
the renderer process, providing information about the
sample layout and additional rendering parameters, and
later collecting the computed samples to be forwarded
to the client technique. The benchmark process also
keeps track of the current sample budget, client process

execution time, and saves the image reconstructed by
the client process along with an execution log.

3.1.8 Renderer Process

It consists of a common rendering system that has been
instrumented to communicate with the benchmark pro-
cess. It is responsible for computing the samples needed
by the client process, as well as providing information
about the current loaded scene. To help instrumenting
existing rendering systems, we provide a few auxiliary
classes that implement the necessary API and help col-
lecting the sample data throughout the system.

3.2 Scenes

Our system includes two general categories of scenes:
production, and experimental. The first category includes
scenes one would usually find in a production environ-
ment (e.g., most scenes shown in Figure 10). They usu-
ally contain more detailed geometry and textures, a
bigger variety of illumination settings, and aesthetically
pleasing results. The second category includes scenes de-
signed specifically to stress certain aspects of the filters.
Figure 6 shows examples of experimental scenes. By
including a variety of scenes in both categories, we hope
to avoid biases when comparing different techniques.

When evaluating a scene, we consider two main as-
pects: features and noise sources. Features are legitimate
details that denoising techniques must preserve, like
textures and materials, geometric details, shading high-
lights, etc. Noise sources are elements that introduce
undesired noise artifacts, like camera effects (motion
blur and depth-of-field), glossy materials, area lights,
and indirect illumination.

3.3 Implementation Details

Instrumenting additional rendering systems for use with
our framework only requires implementing the endpoints
needed to communicate with the benchmark process.
We provide an auxiliary class called RenderingServer,
which implements the communication protocol and ex-
poses a higher level API using a signal-slot mechanism.
The RenderingServer class and a few other auxiliary
classes make it easy to instrument a renderer.
Synchronization, control messages, and small mes-
sages are implemented using TCP socket messages on a
predefined local port. Large buffers use shared memory,
saving memory and avoiding transfer overhead. They
are used to transfer samples to the client, and the recon-
structed image to the benchmark process (Figure 1).
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4 Results

We have implemented our framework in C++. As a proof
of concept, we have ported three well-known renderers,
PBRT-v2 [23], PBRT-v3 [24], and Mitsuba [14], plus
a procedural renderer to work as back-ends of our sys-
tem. We have also adapted essentially all state-of-the-art
MC denoising methods: LWR [26], NFOR [6], LBF [16],
RPF [36], SBF [19], RHF [9], NLM [30], RDFC [31], and
GEM [29]. For this, we have instrumented the original
source code provided by the rendering systems’ devel-
opers and by the authors of these techniques with calls
to our API. In the case of NFOR, we could not get
the source code and implemented it from scratch. All
results shown in the paper were generated on a 4 GHz
i7-4790K CPU with 32 GB of RAM. This section pro-
vides several examples illustrating the use of the four
rendering systems and eight state-of-the-art MC denois-
ing algorithms. We also demonstrate the support for
sampling techniques by adapting three commonly used
ones: stratified, Sobol, and low discrepancy.

Some techniques use geometric features from the first
intersection point to help them preserve scene details.
This strategy tends to perform poorly on scenes with
transparent glass and mirrors, as shown in Figure 4 (cen-
ter). To make comparisons among techniques fairer, we
implemented modified versions of these techniques using
the first non-specular intersection point instead. We in-
dicate the modified versions by a suffix “-mf” (modified
features) — Figure 4 (right).

Reference LBF LBF-mf

Fig. 4 Rendering using geometric features. Reference image
(left). Overblurring on transmitted scene details caused by
relying on features at the first intersection point (center).
Using features from the first non-specular intersection allows
the denoiser to preserve those details (right).

Figure 10 shows results of a benchmark created with
seven MC denoising techniques and nine scenes from
our scene pool. The scenes were selected as to form
a representative set of situations that can challenge a
denoiser. Measure One contains several glossy highlights,
and Measure One Moving adds motion blur on top of
that. Crown in Glass contains intricate bumpy textures
with sources of caustics, all behind a layer of glass. Furry
Bunny and Curly Hair contain fine geometric features
that can easily be overblurred. Bathroom is a typical

interior scene with several fine textures reflected by
mirrors. Country Kitchen Night is a challenging global
illumination scene with hidden light sources, being prone
to fireflies (artifacts consisting of bright single pixels
scattered over the image). Finally, Glass of Water is a
mostly specular scene with many specular highlights.

The first row of Figure 10 shows thumbnails of the
ground truth images for the selected scenes. Although
the image resolutions vary, their typical size is about
1,024 x 1,024 pixels. A small square highlights a challeng-
ing region in each scene. The corresponding regions for
the noisy result, for the outputs generated by the various
denoising techniques, and for the reference images are
shown in the subsequent rows. From the scenes shown
in Figure 10, Bathroom, Glass of Water, and Country
Kitchen Night were rendered using Mitsuba; the remain-
ing six were rendered using PBRT-v3. Figures 5 and 6
show examples of images generated with our framework
using PBRT-v2 and a procedural renderer, respectively.

Our system can be used with and provides support
for testing and comparing different sampling strategies.
Figure 7 shows a scene rendered using our framework
with three sampling techniques: stratified, Sobol, and low
discrepancy. The images were generated using PBRT-
v2, with 64 samples per pixel. The reference image was
rendered using 811,008 spp.

GEM

Fig. 5 Images generated with our system using PBRT-v2
and the techniques NFOR, RHF, and GEM, respectively.
Mandelbrot (reference) RDFC Sinusoidal bands (reference) LBF-mf

il

Fig. 6 Examples of experimental scenes rendered with our
system using a procedural renderer. (left) Mandelbrot set.
(right) Increasing sinusoidal bands (sin(z?)).

The results in Figure 10 show that all techniques
have some degree of trouble with glossy highlights, as
shown in the scene Measure One. The glossy highlights
are often overblurred or contain patchy artifacts. Glossy
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Reference Sobol

Stratified

Low discrepancy

Fig. 7 Examples of images produced by different sampling
techniques using our system with the PBRT-v2 (top). The
reference image was generated with 811,008 spp, while the
stratified, Sobol, and low-discrepancy images used 64 spp. For
comparison, the bottom row shows zoomed-in versions of the
highlighted regions shown on top.

highlights are troublesome because the extra features
used by the denoisers to tell legitimate scene details
from noise do not help detecting the highlights. Another
instance of this problem can be seen in Figure 8. The
subtle checker patterns seen on the reference image
(Figure 8 (bottom right)) come from a texture applied
to the specular component of the material. This specular
component is not part of the albedo feature used by
denoisers, causing them the remove the detail.

Back to Figure 10, scene Measure One Moving is a
motion blur version of the previous scene. The strong
motion blur effect makes the overblurring of the glossy
highlights less visible, but it may also lend to other
situations that may cause denoisers to produce overblur.
All techniques have trouble preserving the fine motion
blur details over the noisy glossy background.

The Crown in Glass scene contains bump-mapping
details behind a layer of glass. Some techniques do a
good job at preserving these details on the less noisy
areas (e.g., NLM and RDFC). In darker, noisier regions,
all techniques introduce some degree of overblurring.

Very fine geometry details, as commonly found in
hair (Curly Hair) and fur (Furry Bunny) is also a fre-
quent source of problems. Notice that even denoisers
that rely on geometric features, as in the case with
LBF, can overblur these details — although hair and
fur are being captured by the geometric features, the
sub-pixel-level detail in the presence of noise constitutes
a challenge.

Scenes with very challenging illumination conditions

— which translates to high levels of noise — are also
problematic. High-energy spikes (fireflies) are very diffi-
cult to spread out while preserving energy, causing blob
artifacts. As the Country Kitchen Night scene example
shows, some techniques like RDFC do a good job at

spreading fireflies, but small variations in the geometry
of the scene can cause artifacts.

Input

Reference

Fig. 8 Texture details in the specular component of some
materials (see the checker pattern on the light gray rectangle
in the reference image) are not part of the “albedo” feature,
making the denoisers to remove such details.

The results shown in Figure 10 and the previous
discussion illustrate the potential of our framework to
provide qualitative assessments of MC denoising tech-
niques, as well as to identify potential limitations of
current approaches. As such, our system provides rel-
evant information for guiding future research in the
area. Our framework also contains a GUI for interactive
exploration of benchmark results, which include quan-
titative assessments based on several metrics (MSE,
rMSE, PSNR, SSIM, and execution time — Figure 9).
Table 1 shows the values of rMSE, PSNR, and SSIM for
all examples in Figure 10.

The proposed system is available for download in
our project website!. The interactive version of the
benchmark results corresponding to Figure 10, using
our web-based GUI, is also available. We would like to
encourage the reader to explore such material. A video
providing a brief tutorial on how to interactively explore
the benchmark results can be found in the project web-
site. Our GUI can be used with the results obtained
for any technique that uses our framework. Figure 9
shows a snapshot of some of the quantitative informa-
tion obtained when using our framework to render the
Bathroom scene using the seven denoising techniques
shown in Figure 10. The graphs compare the perfor-
mance of the techniques according to PSNR, rMSE;,
SSIM, and execution time for 16, 32, 64, and 128 spp.

4.1 Discussion

Communication Overhead — It can be significant de-
pending on how a technique requests samples. If the

! http://www.inf.ufrgs.br/~oliveira/projects/FBKSD/
FBKSD_page.html
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Fig. 9 Use of our system’s GUI for interative exploration of the quantitative results generated by a benchmark.

Table 1 Quantitative results for the images shown in Figure 10 according to the rMSE, PSNR, and SSIM metrics.

NLM LBF-mf RHF NFOR LWR-mf RDFC SBF-mf
SSP rMSE PSNR SSIM rMSE PSNR SSIM rMSE PSNR SSIM rMSE PSNR SSIM rMSE PSNR SSIM rMSE PSNR SSIM rMSE PSNR SSIM
16 0.0068  33.4182 0.8559 0.0088  32.3764 0.8240 0.0097  32.0924 0.8249 0.0055  34.0426 0.8894 0.0096 321409 0.8138 0.0076  32.8546 0.8428 0.0094  32.0692 0.8239
Cu le Hair 32 0.0048 34.8156 0.8879 0.0067 33.3657 0.8527 0.0071 333176 0.8558 0.0041 35.2452 0.9114 0.0083 32.7106 0.8265 0.0058 33.9093 0.8700 0.0072 33.1470 0.8457
64 00032 36.6072 0.9200 0.0051  34.3698 0.8843 0.0050 348007 0.8892 00031 36.4066 0.9294 0.0066 336052 0.8502 0.0043  35.1458 0.8985 0.0057  34.1826 0.8676
128 0.0021 38.4619 0.9451 0.0043 35.0522 0.9076 0.0032 36.5669 0.9207 0.0024 37.5243 0.9442 0.0048 34.8144 0.8817 0.0031 36.5432 0.9248 0.0045 35.1782 0.8877
16 00114 299136 0.8230 0.0145  29.0600 0.8061 00111 30.1186 0.8066 0.0095  30.2342 0.8614 0.0150 283846 0.8136 0.0104  30.5375 0.8602 00113 29.8422 0.8251
Measure 32 0.0087  31.0691 0.8501 00112 30.0560 0.8267 0.0076 317795 0.8569 0.0068  31.6495 0.8882 0.0097  30.1050 0.8497 0.0071  31.9288 0.8865 0.0085  30.9448 0.8530
One 64 0.0065 323305 0.8737 0.0082 313141 0.8555 0.0054 332394 0.8899 0.0050  33.0332 0.9089 0.0064  31.8815 0.8806 0.0052  33.2241 0.9070 0.0063  32.0505 0.8744
128 0.0046  33.7154 0.8971 0.0057  32.7334 0.8851 0.0038 347063 0.9138 0.0037 343675 0.9246 0.0044 335219 0.9053 0.0037  34.5333 0.9239 0.0047  33.1541 0.8814
Measure 16 0.0065 326101 0.8931 00117  30.5025 0.8228 0.0077 318505 0.8472 00073 31.9393 0.8967 00103 30.4283 0.8831 0.0061  32.8040 0.9096 0.0082  31.4845 0.8365
o 32 0.0048  33.8975 0.9093 0.0082  31.9737 0.8444 0.0049  33.9239 0.8940 0.0046  33.8510 0.9220 0.0069 322812 0.9021 0.0041  34.4503 0.9275 0.0057  33.0608 0.8808
ne . 64 0.0034 35.3087 0.9226 0.0057 33.3805 0.8671 0.0032 35.8296 0.9225 0.0031 35.5887 0.9382 0.0049 33.9451 0.9180 0.0029 36.0028 0.9404 0.0041 34.5003 0.9069
Moving 128 0.0024 369161 0.9363 0.0039  34.9353 0.8939 0.0021  37.6765 0.9406 0.0020 375113 0.9509 0.0034 356560 0.9319 0.0020  37.7502 0.9511 0.0029  36.0110 0.9122
16 0.0318 26.8069 0.8119 0.1184 25.1307 0.8826 0.0882 24.0379 0.7900 0.0367 26.0398 0.8831 0.0557 224632 0.7759 0.0269 27.1138 0.9148 0.0318 25.0894 0.8702
32 00189 28.6246 0.8522 0.0656  25.2398 0.8981 0.0358  25.8946 0.8418 0.0261  26.2783 0.9098 00342 243322 0.8333 00225 27.1502 0.9305 0.0291 253261 0.8809
Bathroom 64 00115 304638 0.8910 0.0404  25.4054 0.9108 00223 26.9899 0.8778 0.0214 263141 0.9267 00253 253100 0.8848 0.0198 269017 0.9381 0.0267  25.5323 0.8938
128 0.0062 331411 0.9275 0.0274 257599 0.9246 0.0165  27.8578 0.9071 00197 26.2213 0.9380 0.0205  25.9545 0.9180 0.0189  26.6566 0.9441 0.0247  25.7199 0.9045
16 0.0388 254848 0.7975 0.0716 223721 0.7458 0.0879 232257 0.7316 0.0508  24.5644 0.7813 0.0514  24.5724 0.7831 0.0383  25.8028 0.8292 0.1046  23.0870 0.6812
Crown in 32 00233 27.6083 0.8460 0.0496  23.7700 0.7866 0.0473 253741 0.7976 00393 25.6622 0.8131 0.0325 264063 0.8281 00278 27.1110 0.8571 0.0707  24.6677 0.7401
Glass 64 0.0152 29.3789 0.8776 0.0325 25.7598 0.8290 0.0246 27.7020 0.8483 0.0276 26.9539 0.8413 0.0217 27.9946 0.8586 0.0198 28.4026 0.8780 0.0473 25.9973 0.7846
128 0.0105 310564 0.9022 0.0223  27.7330 0.8632 0.0140  29.9011 0.8854 0.0178  28.6235 0.8705 00145 29.5715 0.8813 0.0138  29.8623 0.8959 0.0288  27.4464 0.8259
16 00125 30.7409 0.8577 0.0298  27.9409 0.8093 00175 297712 0.8426 00079 32.2501 0.9131 00211 29.0407 0.8246 00177 29.7484 0.8461 0.0190  29.3658 0.8348
Furry 32 0.0082 323536 0.8948 0.0218 29.0784 0.8344 0.0116 31.3199 0.8791 0.0058 33.5862 0.9313 0.0185 29.6635 0.8395 0.0132 30.8930 0.8715 0.0125 30.9737 0.8718
Bunny 64 0.0057 338900 0.9216 0.0134  30.8606 0.8704 0.0076 329388 0.9088 0.0043  34.8727 0.9457 00157 30.3354 0.8532 0.0090  32.3368 0.8991 0.0092  32.2647 0.8978
128 0.0040 35.3538 0.9422 0.0073 33.1554 0.9103 0.0050 34.5940 0.9328 0.0031 36.2011 0.9579 0.0126 31.1616 0.8685 0.0059 34.0126 0.9256 0.0067 33.4865 0.9173
16 0.0005  44.1372 0.9807 0.0009  42.0877 0.9791 0.0007 430729 0.9784 0.0005  44.0520 0.9795 0.0006  43.3547 0.9761 0.0006  43.4443 0.9800 0.0006  43.5586 0.9786
K 32 0.0004  44.9731 0.9818 0.0007  42.8350 0.9803 0.0006  43.9832 0.9801 0.0004  45.1488 0.9812 0.0005  44.2466 0.9782 0.0005  44.1988 0.9811 0.0004  45.0087 0.9809
Smoke 64 0.0004 454864 0.9825 0.0005  43.9138 0.9812 0.0005  44.8552 0.9813 0.0004  45.9017 0.9822 0.0004 450737 0.9799 0.0004  45.0065 0.9819 0.0004  45.8805 0.9822
128 0.0004 45.8068 0.9829 0.0005 44.4741 0.9817 0.0004 45.4951 0.9821 0.0003 46.3656 0.9827 0.0004 45.6013 0.9808 0.0004 45.6926 0.9825 0.0003 46.3678 0.9828
Country 16 00138 27.8739 0.8140 00133 28.5459 0.8743 00115 29.8702 0.8368 00146 28.1630 0.8335 0.0250  24.2337 0.7679 00112 30.4661 0.8835 0.0104 288515 0.8689
Kitch 32 0.0098 29.2396 0.8340 0.0090 30.2983 0.8920 0.0068 31.8874 0.8766 0.0088 30.1918 0.8689 0.0185 25.3280 0.7845 0.0066 32.4528 0.9055 0.0083 29.3832 0.8827
I_ chen 64 0.0069 30.7094 0.8546 0.0060 31.8616 0.9046 0.0045 33.4613 0.9028 0.0056 31.9737 0.8964 0.0121 26.9291 0.8139 0.0039 34.1304 0.9220 0.0075 29.6946 0.8841
Night 128 0.0047 324360 0.8775 0.0039  33.4580 0.9179 0.0029 351759 0.9226 0.0033  34.1158 0.9192 0.0076  28.8330 0.8464 0.0023  35.9318 0.9367 0.1017  30.4582 0.8927
16 00171 287763 0.9273 00755 25.0842 0.8977 0.0439 265674 0.9106 0.0435 26,1671 0.9067 0.0278 265721 0.9128 0.0349  27.0671 0.9206 00352 26.2145 0.8984
Glass of 32 00115 305121 0.9457 0.0643  25.6950 0.9065 0.0324  27.3999 0.9271 0.0305  27.0536 0.9167 0.0209  27.8729 0.9265 0.0265  27.6904 0.9287 00272 27.2131 0.9124
Water 64 0.0078 322051 0.9586 0.0587  25.9437 0.9128 0.0220 285058 0.9404 0.0247  27.6811 0.9266 00147 29.0346 0.9415 00215 28.4385 0.9381 0.0198  28.2481 0.9264
128 0.0052  33.8967 0.9691 0.0537  26.1498 0.9168 0.0156 297450 0.9536 00182 28,5106 0.9394 0.0105_ 30.0555 0.9537 0.0156  29.2368 0.9480 0.0180  28.6043 0.9313
16 0.0155 31.0847 0.8623 0.0383 29.2334 0.8491 0.0309 30.0674 0.8410 0.0196 30.8281 0.8827 0.0241 29.0212 0.8390 0.0171 31.0932 0.8874 0.0256 29.9514 0.8464
) 32 00100 325659 0.8891 0.0263  30.2569 0.8691 00171 31.6533 0.8788 0.0140 32,0741 0.9047 00167 30.3274 0.8632 00127 321983 0.9065 0.0188  31.0806 0.8720
Averages: 64 0.0067 340422 0.9114 00189 31.4233 0.8906 0.0106  33.1470 0.9068 00106  33.1917 0.9217 00120 315677 0.8867 0.0096  33.2877 0.9226 00141 32.0390 0.8909
128 0.0045  35.6427 0.9311 0.0143 32,6057 0.9112 0.0071 346354 0.9287 0.0078  34.3823 0.9364 0.0087 327966 0.9075 0.0073  34.4688 0.9370 0.0264  32.4659 0.9060

blocks of samples available to the client process as soon
as they are produced by the renderer.

entire budget is requested in a single call, the overhead
is negligible. It increases with the number of calls. If,
for instance, each call requests a single sample, as in the
case of MDAS [12], the overhead becomes prohibitive
for anything but a very small number of samples and

image sizes.
Scene File Format — Rendering systems adopt propri-

etary scene file formats. In addition, certain features

Memory Overhead — The current implementation of our
system requires that all samples be kept in memory at
once, which imposes a limit on the maximum sample
budget. We plan on avoiding this restriction by making

(e.g., materials) supported by one renderer might not
be available for others. Thus, currently, in order to use
a scene file with a different renderer, one has to convert
it to the format used by the desired renderer.
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5 Conclusion and Future Work

We have presented a novel framework for easy evalua-
tion and development of sampling and denoising MC
algorithms on multiple rendering systems. Conversely,
it also allows for rendering systems to quickly incor-
porate new algorithm that conform to our API. This
makes it straightforward to perform benchmarks in-
volving various algorithms across different renderers.
We have demonstrated the effectiveness of our system
by instrumenting four rendering systems (PBRT-v3,
PBRT-v2, Mitsuba, and a procedural renderer), eight
state-of-the-art MC denoising algorithms, three sam-
pling techniques, and by benchmarking these denoising
algorithms on multiple renderers.

We have provided a qualitative assessment of the
evaluated MC denoising techniques, identifying poten-
tial limitations of existing approaches. This information
might guide future research in the area. The visual
exploration of the quantitative data collected during
the benchmark also provides valuable feedback for re-
searchers and users, helping them to address the practi-
cal question of identifying the most effective techniques
for rendering scenes with a given set of features.

5.1 Future Work

We plan on releasing an on-line benchmarking service
to allow researchers to submit their techniques for eval-
uation and ranking. This would be similar to other
benchmark services, such as the Middlebury [34].

To solve the current memory overhead problem, we
plan to group samples into smaller-sized chunks and
send them to the client process as soon as they are
computed by the renderer. This should increase the
communication overhead but will make the memory
complexity independent of the amount of requested
samples, which is a fair tradeoff. We will make such an
implementation available at the project website.

Finally, we intend to provide automatic conversion of
scene file formats among renderers. This would complete
our vision of making the choices of technique, rendering
system, and scene all orthogonal to each other.
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Measure One Measure One Crown in Glass Furry Bunny Smoke Bathroom Country Kitchen Curly Hair Glass of Water
Moving Night

1

SBF-mf RDFC LWR-mf NFOR RHF LBF-mf NLM Input

Reference

Fig. 10 Results from a benchmark including seven MC denoising techniques and nine scenes (from our scene pool) that pose
challenges to denoising methods. All results were generated with 128 samples per pixel.
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