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Abstract Although many adaptive sampling and re-

construction techniques have been proposed in the last

few years, the case for which one should be used for

a specific scene is still to be made. Moreover, develop-

ing a new technique has required selecting a particular

rendering system, which makes the technique tightly
coupled to the chosen renderer and limits the amount

of scenes it can be tested on. In this paper, we propose

a renderer-agnostic framework for testing and bench-

marking sampling and denoising techniques for Monte

Carlo rendering. It decouples techniques from render-

ing systems by hiding the renderer details behind an

API. This improves productivity and allows for direct

comparisons among techniques originally developed for

different rendering systems. We demonstrate its effec-

tiveness by using our API to instrument four rendering

systems, most state-of-the-art Monte Carlo denoising

techniques and three sampling strategies, and by per-

forming a benchmark across rendering systems.
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1 Introduction

Rendering is one of the most important problems in

computer graphics and has been the subject of over

half a century of research. In particular, there has been

a tremendous amount of exploration on Monte Carlo

(MC) physically-based rendering systems [8] such as

path-tracing [15] and its various extensions [38]. To

address shortcomings in Monte Carlo rendering, more

than three decades of research has explored a wide

variety of different ideas, including adaptive sampling

and reconstruction algorithms [12], faster acceleration

structures and intersection algorithms [33], improved

sampling patterns [13], and Monte Carlo denoisers [36,

31, 16], to name a few broad categories.

Although developing a new algorithm that success-

fully improves Monte Carlo rendering in some way is a

challenging task in itself, researchers face two further

challenges. First, they must integrate their algorithm

into an actual rendering system so they can test it on

complex scenes. After all, renderers have several key

components required to produce high-quality images
(e.g., scene I/O, samplers, ray-traversal acceleration

data structures, primitive-ray intersectors, shading sys-

tems, and reconstruction filters), and many of these

components are often orthogonal to the algorithm being

explored. Therefore, rendering researchers often lever-

age the infrastructure provided by existing rendering

systems. However, integrating a new algorithm into a

rendering system is often a time-consuming task, pre-

cluding its deployment on multiple renderers to properly

test the technique.

Second, researchers must find several high-quality

scenes to test their algorithm and demonstrate their

performance. Since most rendering researchers are not

digital artists, constructing complex aesthetically pleas-
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ing scenes is often a non-trivial, time-consuming task,

and “programmer-art” scenes do not tend to be of the

same quality as those constructed by professional artists.

Moreover, rendering systems tend to adopt proprietary

scene-description formats. Thus, researchers tend to

stick to a handful of test scenes available for the se-

lected rendering system.

The consequence of these two challenges is that most

researchers are often only able to demonstrate their algo-

rithm on a single rendering system using a small number

of test scenes. This significantly limits their ability to

thoroughly test and explore the proposed method, and

for reviewers to properly evaluate its performance. Fur-

thermore, it is often difficult to compare against existing

methods, since they often have been implemented in

other rendering systems and tested on different scenes.
Having good “apples-to-apples” comparisons is impor-

tant when trying to gauge the benefits of a new method.

Finally, porting a recently published algorithm to a
new rendering system is not easy, since the developers

performing the port are usually not experts on the new

algorithm, even though they may be very familiar with

the target rendering system. Therefore, they usually

have to translate the available implementation (or the

algorithm described in the paper) to the rendering sys-
tem. This can introduce bugs in the process and may

not produce ideal results, since the algorithmic parame-

ters that worked successfully for one rendering system

might not work for the new one. Trying to determine

the optimal parameters for an algorithm that one did

not develop can be a very time consuming task.

To address these problems, we present a novel frame-

work that allows researchers to develop, test, compare,

and even deploy sampling and denoising algorithms for

Monte Carlo rendering. Specifically, we propose an appli-

cation program interface (API) that allows developers

to easily port their algorithms to different rendering

systems by providing the necessary communication be-

tween such algorithms and the other components of an

existing rendering system. In other words, instead of

having the researchers port their algorithms to multi-

ple rendering systems, we have done the leg work for

them by instrumenting rendering systems to provide the

necessary services through our API.

Therefore, a researcher only needs to implement an

algorithm once, and can immediately use it with all

rendering systems that support our framework. This

allows researchers to rapidly test and deploy their algo-

rithms on a range of rendering systems, and test them

on a wide variety of scenes. This allows for automatic

independent benchmarking of algorithms, which is quite

useful when submitting new techniques for publication.

As a proof of concept, we have initially instrumented

four rendering systems (PBRT-v3, PBRT-v2, Mitsuba,

and a procedural renderer), pretty much all state-of-

the-art MC denoising algorithms, and three sampling

techniques. We plan to open-source our framework so

that other Monte Carlo renderers can support the API

directly themselves. This will also allow third-party

rendering systems to rapidly adopt recently proposed

algorithms that conform to our API.

To demonstrate the effectiveness of our framework,

we conduct a case study involving Monte Carlo (MC) de-

noising algorithms. Such a study illustrates key aspects

of our system: provide easy integration of algorithms

and rendering systems (by means of just a few calls to

the API); provide an independent benchmark for MC

techniques that works across various rendering systems;

and, allow developers to evaluate the performance of ren-

dering systems with various algorithms, and vice versa.

These are desirable features for algorithm and rendering

system developers, as well as for the academic, industry,

and end-user communities, who should be able to make
better informed decisions when choosing a technique

and/or a rendering system to render a given scene.

For our study, we have instrumented essentially all

state-of-the-art MC denoising algorithms (e.g., NFOR [6],

LBF [16], RHF [9], LWR [21], RDFC [31], RPF [36],

SBF [19], NLM [30], and GEM [29]), allowing them to

be used with the four rendering systems, even though

most of these algorithms have originally been developed

for a single renderer. Furthermore, our system’s ability

to automatically generate benchmark reports allows for

the comparison of the different methods on an even

playing field. In our study, we compare the performance

of different MC denoising methods and discuss some of

their identified potential limitations.

Although this paper does not propose a new MC

rendering algorithm per se, this kind of meta-research

system (i.e., a system designed to aid the research pro-

cess) is not new to the graphics and vision communi-

ties. Successful examples include the Middlebury bench-

mark [34, 35], which has transformed the way two-frame

dense stereo correspondence algorithms are developed

and compared, as well as the benchmarks on Alpha

Matting [28, 27], optical flow [4, 3, 2], and video mat-

ting [11, 10]. More recently, Anderson et al. [1] proposed

a framework to compile PDF sampling patterns for

Monte Carlo.

Inspired by these works, our system provides test

scenes intended to stress the limits of Monte Carlo

techniques and reveal their potential limitations. It is

extensible, allowing for easy support of new rendering

systems, as well as sampling and denoising strategies.

The community should be able to contribute new scenes
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and techniques in a simple way. Our system is publicly

available through our project website, providing valuable

feedback to the research and industry communities.

In summary, the contributions of our work include:

– A framework for developing, testing, and benchmark-

ing sampling and denoising Monte Carlo algorithms

(Section 3). Our framework decouples the algorithms

from rendering systems by means of an API, allowing

researchers to implement their techniques once and

run them on any rendering system supporting our

framework. It easily incorporates new algorithms,

rendering systems, and testing datasets;

– An automatic and independent benchmarking sys-

tem for comparing Monte Carlo algorithms across

multiple rendering systems and supporting a large

number of scenes (Section 3). This should be a useful
tool for assessing the quality of new Monte Carlo

algorithms against established ones, especially for

submission purposes;

– A detailed evaluation of the state-of-the-art Monte

Carlo denoising algorithms using our framework and

a discussion of their performance and limitations

(Section 4).

While the use of an API might reduce the perfor-

mance of an application, a careful design of the API

minimizes such an impact. Nevertheless, the benefits

provided by our framework highly supersede a potential

performance reduction, specially in off-line rendering en-

vironments. Once tested on different rendering systems
and on a variety of scenes, one can decide to provide

native implementations for specific rendering systems.

2 Related Work

We begin by discussing meta-research systems in both

graphics and vision which, like our own framework,

have been developed to facilitate/improve the research

process. Afterwards, we focus on previous work on Monte

Carlo denoising, which is the application that we use in

our case study to illustrate the benefits of our framework.

2.1 Meta-Research in Graphics

Several systems have been proposed over the years to

facilitate research development in graphics. Some of

the most popular ones include Cg [20], Brook [7], and

Halide [25]. Cg is a general-purpose, hardware-oriented,

programming language and supporting system designed

for the development of efficient GPU applications, and

providing easy integration with the two major 3D graph-

ics APIs (OpenGL and Direct 3D). Brook [7] is also

a system for general-purpose computation that allows

developers to use programmable GPUs as streaming co-

processors, while abstracting GPU architectural details.

Halide [25] tries to optimize image-processing algorithms

by decoupling the algorithm’s description from its sched-

ule. This allows for an algorithm to be described once,

while specific schedules are provided for different target

platforms (e.g., CPUs, GPUs, mobile devices, etc.). Au-

tomatic generation of optimized schedules in Halide has

been addressed in a follow-up work [22].

While the primary goal of these systems is to gen-
erate efficient code while abstracting hardware details

from developers, our focus is on decoupling Monte Carlo

algorithms from rendering systems. This greatly simpli-

fies the task of porting algorithms to multiple rendering

systems, freeing developers from the burden of know-

ing implementation details of specific renderers to be

able to perform integration. Our system also makes a

wider range of scenes available for testing, providing a

comprehensive, multi-rendering system benchmark for

Monte Carlo algorithms. Recently, Anderson et al. [1]

proposed an approach to compile sampling BRDFs for

MC applications. Their method complements our work.

2.2 Benchmarking Systems in Computer Vision

Quantitative benchmarks have been proposed for sev-

eral computer visions areas, including optical flow [4, 3],

dense two-frame stereo correspondence [34], and alpha

matting [28]. These initiatives have provided indepen-

dent tools for assessing the quality of the results pro-

duced by existing and new algorithms, and have led to

significant progress in these areas.

Optical Flow – Barron et al. [4] compared accuracy,

reliability, and density of velocity measurements for sev-

eral established optical flow algorithms, and showed

that their performance could vary significantly from one

technique to another. Baker et al. [3] proposed another

benchmark for optical-flow algorithms that considers

aspects not covered by Barron et al. These include se-

quences containing non-rigid motion, realistic synthetic

images, high frame-rate video to study interpolation

errors, and modified stereo sequences of static scenes.

The authors have made their datasets and evaluation

results publicly available, and provide the option for one

to submit his own results for evaluation [2]

Stereo Correspondence – The Middlebury benchmark [34]

provided a taxonomy and evaluation for dense two-frame

stereo correspondence algorithms. The datasets and eval-

uation are publicly available on the web, and anyone

can submit results for evaluation [35].
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Alpha Matting – Rhemann et al. [28] introduced a

benchmark system for alpha matting techniques. The au-

thors provide some training data and use a test dataset

for which the corresponding ground truth has not been

disclosed. Similarly to the optical-flow and dense stereo

correspondence benchmarks mentioned before, the re-

sults are available on-line, and anyone can submit results

for evaluation [27].

Video Matting – Erofeev et al. [11] extended the alpha

matting benchmark to videos, supporting both objective

and subjective evaluations of video matting techniques.

Training and test datasets are provided, with results

and submissions being available through the web [10].

Unlike such systems, ours goes beyond rating submit-
ted results computed off-line. It provides an API that

allows Monte Carlo algorithms to be tested with differ-

ent rendering systems using a variety of scenes. Thus, it

can compare different techniques across multiple render-
ing systems, something that was not previously possible

without requiring the developer to create multiple im-

plementations tailored to individual rendering systems.

2.3 Monte Carlo Denoising Algorithms

Although there has been a significant amount of work on

reducing the variance of MC rendered images through

sampling/reconstruction (see [24, 39]), for brevity we

shall only focus on previous post-processing approaches

that filter general Monte Carlo noise (i.e., noise from

any and all distributed effects, path tracing, and so on).

Soon after the seminal paper by Cook et al. [8]

raised the problem of MC noise, there was some early

work in general MC filtering, including approaches us-

ing nonlinear median and alpha-trimmed mean filters

for edge-aware spike removal [18] and variable-width

filter kernels to preserve energy and salient details [32].

However, in the years that followed, researchers largely

ignored general MC filtering algorithms in favor of other

variance reduction techniques, due to the inability of

these filters to successfully remove the MC noise while

preserving scene detail.

Recently, interest in general MC filtering algorithms

has enjoyed a significant revival. For example, Sen and

Darabi [36] demonstrated that filters could effectively

distinguish between noisy scene detail and MC noise.

To do this, they used mutual information to determine

dependencies between random parameters and scene

features, and combined these dependencies to weight a

cross-bilateral filter at each pixel in the image. Rousselle

et al. [30] proposed to use a non-local means filter to

remove general MC noise. Kalantari and Sen [17] ap-

plied median absolute deviation to estimate the noise

level at every pixel to use any image denoising technique

for filtering the MC noise. Finally, Delbracio et al. [9]

modified the non-local means filter to use the color his-

tograms of patches, rather than the noisy color patches,

in the distance function.

Other approaches have effectively used error estima-

tion for filtering general distributed effects. For exam-

ple, Rousselle et al [29] used error estimates to select
different filter scales for every pixel to minimize recon-

struction error. Furthermore, Li et al. [19] proposed

to use Stein’s unbiased risk estimator (SURE) [37] to

select the best parameter for the spatial term of a cross-

bilateral filter. Rousselle et al. [31] extended this idea

to apply the SURE metric to choose the best of three

candidate filters. Moon et al. [21] estimated the error for

discrete sets of filter parameters using a weighted local

regression. Bauszat et al. [5] posed the filter selection

problem as an optimization and solved it with graph

cuts. More recently, Kalantari et al. [16] introduced a

machine learning approach in which a neural network is

used to drive the MC filter.

All of these techniques have strengths and weak-

nesses in terms of the scene features they can satisfac-

torily handle, memory costs, execution time, etc. All

these variables make a direct comparison of the vari-

ous algorithms difficult. Our framework is intended to

fill-in this gap. Hopefully, it will help developers better
understand the interplay among the various involved

elements and available metrics, shedding some light on

the occasional situations in which publications seem to

disagree about the quality rank of different techniques.

3 System Design

A physically-based rendering system has to perform sev-

eral tasks in order to generate an image. These include,

for instance, read the scene description file, build the in-

ternal scene representation data structure, generate well-

distributed sampling positions in a high-dimensional

space, compute shading, compute global illumination,

reconstruct the final image, and save the result. Several

of those tasks hide a significant amount of complexity.

A good renderer implementation usually employs

design practices that allow some level of extensibility.

For example, it is common practice to facilitate adding

new materials, shapes, cameras, samplers, reconstruc-

tion filters, and integrators, given they obey pre-defined

interfaces. However, although different renderers use sim-

ilar abstractions, implementing a new technique (e.g.,

a new denoising filter) still requires choosing a partic-

ular renderer (e.g., PBRT-v3 or Mitsuba). This makes

it hard to compare techniques implemented in different
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systems, and time consuming to implement a technique

in multiple rendering systems.

Our framework seeks to avoid these limitations by

decoupling the implementation of a new technique from

any specific rendering system. For this, it hides sample

value computation details associated to individual ren-

dering systems behind a general sampling evaluation

interface. Thus, it allows for any technique to be seam-

lessly integrated with different rendering systems, and
provides a direct and simple mechanism for comparing

techniques’ results on multiple (rendering) systems.

Denoising techniques are responsible for reconstruct-

ing images from sample values computed by the renderer.

As such, they are a key component of all Monte Carlo

rendering systems. Thus, we have chosen MC denoising

algorithms to demonstrate the effectiveness of our frame-

work. One should note, however, that our system can

be used to implement/evaluate other MC techniques,

such as general sampling and reconstruction algorithms.

In our case study, we consider both adaptive and non-

adaptive MC denoising techniques. Next, we describe

the main components of our system and discuss how

they are used to support the integration of techniques

and rendering systems, and to perform benchmarks.

3.1 Main Components

The architecture of the proposed system has three main

components (Figure 1): the client process, the benchmark

process, and the renderer process. The client process

implements the technique being integrated. The renderer

process interfaces with the actual rendering system to

evaluate the samples requested by the client process.

The benchmark process controls the overall execution,

and saves the final image along with useful metadata

information, such as reconstruction and rendering times.

 Client Process

BenchmarkClient

Sampling Technique Denoising Technique

Renderer Process

RenderingServer

Renderer

Shared Memory

Benchmark Process

RendererClient BenchmarkServerBenchmarkManager

so
ck

e
t 

co
m

m
u

n
ic

a
ti

o
n

so
ck

e
t 

co
m

m
u

n
ic

a
ti

o
n

Fig. 1 Main components of the system.

Figure 2 shows a sequence diagram of a typical execu-

tion of the system. The benchmark process is executed,

receiving a list of scenes to be rendered, each scene with

a list of different sample budgets. For a given scene, the

renderer process is executed. The benchmark process

forwards the client’s request to the renderer process and

keeps track of the execution time and sample budget

limits. Once the client process receives the requested

samples, it reconstructs the final image and sends it to

the benchmark process. The cycle can start again with

another request (e.g., for a different sample density for

the same scene, a different scene, a different technique,

etc.). Note that we use the expression “benchmark pro-
cess” to refer to this intermediate layer regardless of the

system being used to locally evaluate a single or multi-

ple techniques, or to perform or complement an actual

full benchmark. The system also provides a web-based

graphical user interface (GUI) for visual exploration of

the results.

Benchmark Process

    for each scene

Renderer Process

Client Process

start renderer process
for current scene

start client process

getSceneInfo()

scene info

setSampleLayout()

setSampleLayout()

sendResult()

       for each sample request

evaluateSamples()
evaluateSamples()

save benchmark results

allocate shared buffers

Fig. 2 A typical execution of the system.

The separation between client and renderer processes

allows us to provide a clean API to the client process,

simplifying the task of implementing a new technique.

Once a new technique is implemented using this renderer-

agnostic API, it can be readily tested on a variety of

scenes and compared against other techniques.

On the renderer side, this separation allows us to

provide different renderers as back-ends to the system.

When rendering a scene, the client process does not need

to know the specific renderer being used. This also test

the robustness of the technique to variations in sample

values computed by different renderers.
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3.1.1 Client Process

The system expects techniques to follow the template

shown in Figure 3. Such a flow is general enough to cover

a large variety of techniques, including MC denoising

— adaptive, non-adaptive, a priori and a posteriori [39]

— as well as sampling techniques. If a particular tech-

nique does not provide sampling positions, the renderer

transparently supplies them.

Initial sampling Sample analysis More samples?

Adaptive sampling Final image

Reconstruction

yes

no

Fig. 3 Template for techniques supported by our system.

When the client process starts, it is given a sam-

ple budget. In the initial sampling step (Figure 3), the

technique decides what portion of the sample budget to

spend initially. If the technique is non-adaptive, the en-

tire budget is spent in this step. Otherwise, one or more

iterations of sample analysis and adaptive sampling are

performed, until the sample budget is completely con-

sumed. After the final image is reconstructed, the client

process finishes. Besides the sample budget, the client

has access to more information about the scene through

a scene information querying API. This information

allows the technique to adjust its parameters depending

on the characteristics of the scene.

Our framework is general enough to support ad-

vanced techniques with adaptive sampling, allowing

them to generate sample positions based on informa-

tion from previous iterations. If the technique does not

perform adaptive sampling, the renderer itself generates

the sample positions. The API also allows the tech-
nique to specify which features it needs for each sample.

Some may require only color information, while others

may require geometric features like normals, depth, etc.

The technique also specifies the exact layout of sample

components in memory.

3.1.2 Benchmark Process

The benchmark process manages the system execution

and mediates the communication between client and ren-

derer processes (Figure 2). It is responsible for starting

the renderer process, providing information about the

sample layout and additional rendering parameters, and

later collecting the computed samples to be forwarded

to the client technique. The benchmark process also

keeps track of the current sample budget, client process

execution time, and saves the image reconstructed by

the client process along with an execution log.

3.1.3 Renderer Process

It consists of a common rendering system that has been

instrumented to communicate with the benchmark pro-

cess. It is responsible for computing the samples needed

by the client process, as well as providing information

about the current loaded scene. To help instrumenting

existing rendering systems, we provide a few auxiliary

classes that implement the necessary API and help col-

lecting the sample data throughout the system.

3.2 Scenes

Our system includes two general categories of scenes:

production, and experimental. The first category includes

scenes one would usually find in a production environ-

ment (e.g., most scenes shown in Figure 10). They usu-

ally contain more detailed geometry and textures, a

bigger variety of illumination settings, and aesthetically

pleasing results. The second category includes scenes de-

signed specifically to stress certain aspects of the filters.
Figure 6 shows examples of experimental scenes. By

including a variety of scenes in both categories, we hope

to avoid biases when comparing different techniques.

When evaluating a scene, we consider two main as-

pects: features and noise sources. Features are legitimate

details that denoising techniques must preserve, like

textures and materials, geometric details, shading high-

lights, etc. Noise sources are elements that introduce

undesired noise artifacts, like camera effects (motion
blur and depth-of-field), glossy materials, area lights,

and indirect illumination.

3.3 Implementation Details

Instrumenting additional rendering systems for use with

our framework only requires implementing the endpoints

needed to communicate with the benchmark process.

We provide an auxiliary class called RenderingServer,

which implements the communication protocol and ex-

poses a higher level API using a signal-slot mechanism.

The RenderingServer class and a few other auxiliary

classes make it easy to instrument a renderer.

Synchronization, control messages, and small mes-

sages are implemented using TCP socket messages on a

predefined local port. Large buffers use shared memory,

saving memory and avoiding transfer overhead. They

are used to transfer samples to the client, and the recon-

structed image to the benchmark process (Figure 1).
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4 Results

We have implemented our framework in C++. As a proof

of concept, we have ported three well-known renderers,

PBRT-v2 [23], PBRT-v3 [24], and Mitsuba [14], plus

a procedural renderer to work as back-ends of our sys-

tem. We have also adapted essentially all state-of-the-art
MC denoising methods: LWR [26], NFOR [6], LBF [16],

RPF [36], SBF [19], RHF [9], NLM [30], RDFC [31], and

GEM [29]. For this, we have instrumented the original

source code provided by the rendering systems’ devel-

opers and by the authors of these techniques with calls

to our API. In the case of NFOR, we could not get

the source code and implemented it from scratch. All

results shown in the paper were generated on a 4 GHz

i7-4790K CPU with 32 GB of RAM. This section pro-

vides several examples illustrating the use of the four

rendering systems and eight state-of-the-art MC denois-

ing algorithms. We also demonstrate the support for
sampling techniques by adapting three commonly used

ones: stratified, Sobol, and low discrepancy.

Some techniques use geometric features from the first

intersection point to help them preserve scene details.

This strategy tends to perform poorly on scenes with

transparent glass and mirrors, as shown in Figure 4 (cen-

ter). To make comparisons among techniques fairer, we

implemented modified versions of these techniques using

the first non-specular intersection point instead. We in-

dicate the modified versions by a suffix “-mf” (modified

features) — Figure 4 (right).

Reference LBF LBF-mf

Fig. 4 Rendering using geometric features. Reference image
(left). Overblurring on transmitted scene details caused by
relying on features at the first intersection point (center).
Using features from the first non-specular intersection allows
the denoiser to preserve those details (right).

Figure 10 shows results of a benchmark created with

seven MC denoising techniques and nine scenes from

our scene pool. The scenes were selected as to form

a representative set of situations that can challenge a

denoiser. Measure One contains several glossy highlights,

and Measure One Moving adds motion blur on top of

that. Crown in Glass contains intricate bumpy textures

with sources of caustics, all behind a layer of glass. Furry

Bunny and Curly Hair contain fine geometric features

that can easily be overblurred. Bathroom is a typical

interior scene with several fine textures reflected by

mirrors. Country Kitchen Night is a challenging global

illumination scene with hidden light sources, being prone

to fireflies (artifacts consisting of bright single pixels

scattered over the image). Finally, Glass of Water is a

mostly specular scene with many specular highlights.

The first row of Figure 10 shows thumbnails of the

ground truth images for the selected scenes. Although

the image resolutions vary, their typical size is about

1,024×1,024 pixels. A small square highlights a challeng-

ing region in each scene. The corresponding regions for
the noisy result, for the outputs generated by the various

denoising techniques, and for the reference images are

shown in the subsequent rows. From the scenes shown

in Figure 10, Bathroom, Glass of Water, and Country

Kitchen Night were rendered using Mitsuba; the remain-

ing six were rendered using PBRT-v3. Figures 5 and 6

show examples of images generated with our framework

using PBRT-v2 and a procedural renderer, respectively.

Our system can be used with and provides support

for testing and comparing different sampling strategies.

Figure 7 shows a scene rendered using our framework

with three sampling techniques: stratified, Sobol, and low

discrepancy. The images were generated using PBRT-

v2, with 64 samples per pixel. The reference image was

rendered using 811,008 spp.

NFOR RHF GEM

Fig. 5 Images generated with our system using PBRT-v2
and the techniques NFOR, RHF, and GEM, respectively.

RDFC Sinusoidal bands (reference)Mandelbrot (reference) LBF-mf

Fig. 6 Examples of experimental scenes rendered with our
system using a procedural renderer. (left) Mandelbrot set.
(right) Increasing sinusoidal bands (sin(x2)).

The results in Figure 10 show that all techniques

have some degree of trouble with glossy highlights, as

shown in the scene Measure One. The glossy highlights

are often overblurred or contain patchy artifacts. Glossy
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Reference Stratified Sobol Low discrepancy

Fig. 7 Examples of images produced by different sampling
techniques using our system with the PBRT-v2 (top). The
reference image was generated with 811,008 spp, while the
stratified, Sobol, and low-discrepancy images used 64 spp. For
comparison, the bottom row shows zoomed-in versions of the
highlighted regions shown on top.

highlights are troublesome because the extra features

used by the denoisers to tell legitimate scene details

from noise do not help detecting the highlights. Another

instance of this problem can be seen in Figure 8. The

subtle checker patterns seen on the reference image

(Figure 8 (bottom right)) come from a texture applied

to the specular component of the material. This specular

component is not part of the albedo feature used by

denoisers, causing them the remove the detail.

Back to Figure 10, scene Measure One Moving is a

motion blur version of the previous scene. The strong

motion blur effect makes the overblurring of the glossy

highlights less visible, but it may also lend to other

situations that may cause denoisers to produce overblur.

All techniques have trouble preserving the fine motion
blur details over the noisy glossy background.

The Crown in Glass scene contains bump-mapping

details behind a layer of glass. Some techniques do a

good job at preserving these details on the less noisy

areas (e.g., NLM and RDFC). In darker, noisier regions,

all techniques introduce some degree of overblurring.

Very fine geometry details, as commonly found in

hair (Curly Hair) and fur (Furry Bunny) is also a fre-

quent source of problems. Notice that even denoisers

that rely on geometric features, as in the case with

LBF, can overblur these details — although hair and

fur are being captured by the geometric features, the
sub-pixel-level detail in the presence of noise constitutes

a challenge.

Scenes with very challenging illumination conditions

— which translates to high levels of noise — are also

problematic. High-energy spikes (fireflies) are very diffi-

cult to spread out while preserving energy, causing blob

artifacts. As the Country Kitchen Night scene example

shows, some techniques like RDFC do a good job at

spreading fireflies, but small variations in the geometry

of the scene can cause artifacts.

Reference

Input

LBF-mf LWR-mf NFOR

NLM

Fig. 8 Texture details in the specular component of some
materials (see the checker pattern on the light gray rectangle
in the reference image) are not part of the “albedo” feature,
making the denoisers to remove such details.

The results shown in Figure 10 and the previous

discussion illustrate the potential of our framework to

provide qualitative assessments of MC denoising tech-

niques, as well as to identify potential limitations of

current approaches. As such, our system provides rel-

evant information for guiding future research in the

area. Our framework also contains a GUI for interactive

exploration of benchmark results, which include quan-

titative assessments based on several metrics (MSE,

rMSE, PSNR, SSIM, and execution time – Figure 9).

Table 1 shows the values of rMSE, PSNR, and SSIM for

all examples in Figure 10.

The proposed system is available for download in

our project website1. The interactive version of the

benchmark results corresponding to Figure 10, using

our web-based GUI, is also available. We would like to
encourage the reader to explore such material. A video

providing a brief tutorial on how to interactively explore

the benchmark results can be found in the project web-

site. Our GUI can be used with the results obtained

for any technique that uses our framework. Figure 9

shows a snapshot of some of the quantitative informa-

tion obtained when using our framework to render the

Bathroom scene using the seven denoising techniques

shown in Figure 10. The graphs compare the perfor-

mance of the techniques according to PSNR, rMSE,

SSIM, and execution time for 16, 32, 64, and 128 spp.

4.1 Discussion

Communication Overhead – It can be significant de-

pending on how a technique requests samples. If the

1 http://www.inf.ufrgs.br/~oliveira/projects/FBKSD/

FBKSD_page.html

http://www.inf.ufrgs.br/~oliveira/projects/FBKSD/FBKSD_page.html
http://www.inf.ufrgs.br/~oliveira/projects/FBKSD/FBKSD_page.html
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Fig. 9 Use of our system’s GUI for interative exploration of the quantitative results generated by a benchmark.

Table 1 Quantitative results for the images shown in Figure 10 according to the rMSE, PSNR, and SSIM metrics.

NLM LBF-mf RHF NFOR LWR-mf RDFC SBF-mf
SSP rMSE PSNR SSIM rMSE PSNR SSIM rMSE PSNR SSIM rMSE PSNR SSIM rMSE PSNR SSIM rMSE PSNR SSIM rMSE PSNR SSIM

16 0.0068 33.4182 0.8559 0.0088 32.3764 0.8240 0.0097 32.0924 0.8249 0.0055 34.0426 0.8894 0.0096 32.1409 0.8138 0.0076 32.8546 0.8428 0.0094 32.0692 0.8239
32 0.0048 34.8156 0.8879 0.0067 33.3657 0.8527 0.0071 33.3176 0.8558 0.0041 35.2452 0.9114 0.0083 32.7106 0.8265 0.0058 33.9093 0.8700 0.0072 33.1470 0.8457
64 0.0032 36.6072 0.9200 0.0051 34.3698 0.8843 0.0050 34.8007 0.8892 0.0031 36.4066 0.9294 0.0066 33.6052 0.8502 0.0043 35.1458 0.8985 0.0057 34.1826 0.8676
128 0.0021 38.4619 0.9451 0.0043 35.0522 0.9076 0.0032 36.5669 0.9207 0.0024 37.5243 0.9442 0.0048 34.8144 0.8817 0.0031 36.5432 0.9248 0.0045 35.1782 0.8877
16 0.0114 29.9136 0.8230 0.0145 29.0600 0.8061 0.0111 30.1186 0.8066 0.0095 30.2342 0.8614 0.0150 28.3846 0.8136 0.0104 30.5375 0.8602 0.0113 29.8422 0.8251
32 0.0087 31.0691 0.8501 0.0112 30.0560 0.8267 0.0076 31.7795 0.8569 0.0068 31.6495 0.8882 0.0097 30.1050 0.8497 0.0071 31.9288 0.8865 0.0085 30.9448 0.8530
64 0.0065 32.3305 0.8737 0.0082 31.3141 0.8555 0.0054 33.2394 0.8899 0.0050 33.0332 0.9089 0.0064 31.8815 0.8806 0.0052 33.2241 0.9070 0.0063 32.0505 0.8744
128 0.0046 33.7154 0.8971 0.0057 32.7334 0.8851 0.0038 34.7063 0.9138 0.0037 34.3675 0.9246 0.0044 33.5219 0.9053 0.0037 34.5333 0.9239 0.0047 33.1541 0.8814
16 0.0065 32.6101 0.8931 0.0117 30.5025 0.8228 0.0077 31.8505 0.8472 0.0073 31.9393 0.8967 0.0103 30.4283 0.8831 0.0061 32.8040 0.9096 0.0082 31.4845 0.8365
32 0.0048 33.8975 0.9093 0.0082 31.9737 0.8444 0.0049 33.9239 0.8940 0.0046 33.8510 0.9220 0.0069 32.2812 0.9021 0.0041 34.4503 0.9275 0.0057 33.0608 0.8808
64 0.0034 35.3087 0.9226 0.0057 33.3805 0.8671 0.0032 35.8296 0.9225 0.0031 35.5887 0.9382 0.0049 33.9451 0.9180 0.0029 36.0028 0.9404 0.0041 34.5003 0.9069
128 0.0024 36.9161 0.9363 0.0039 34.9353 0.8939 0.0021 37.6765 0.9406 0.0020 37.5113 0.9509 0.0034 35.6560 0.9319 0.0020 37.7502 0.9511 0.0029 36.0110 0.9122

Bathroom

16 0.0318 26.8069 0.8119 0.1184 25.1307 0.8826 0.0882 24.0379 0.7900 0.0367 26.0398 0.8831 0.0557 22.4632 0.7759 0.0269 27.1138 0.9148 0.0318 25.0894 0.8702
32 0.0189 28.6246 0.8522 0.0656 25.2398 0.8981 0.0358 25.8946 0.8418 0.0261 26.2783 0.9098 0.0342 24.3322 0.8333 0.0225 27.1502 0.9305 0.0291 25.3261 0.8809
64 0.0115 30.4638 0.8910 0.0404 25.4054 0.9108 0.0223 26.9899 0.8778 0.0214 26.3141 0.9267 0.0253 25.3100 0.8848 0.0198 26.9017 0.9381 0.0267 25.5323 0.8938
128 0.0062 33.1411 0.9275 0.0274 25.7599 0.9246 0.0165 27.8578 0.9071 0.0197 26.2213 0.9380 0.0205 25.9545 0.9180 0.0189 26.6566 0.9441 0.0247 25.7199 0.9045
16 0.0388 25.4848 0.7975 0.0716 22.3721 0.7458 0.0879 23.2257 0.7316 0.0508 24.5644 0.7813 0.0514 24.5724 0.7831 0.0383 25.8028 0.8292 0.1046 23.0870 0.6812
32 0.0233 27.6083 0.8460 0.0496 23.7700 0.7866 0.0473 25.3741 0.7976 0.0393 25.6622 0.8131 0.0325 26.4063 0.8281 0.0278 27.1110 0.8571 0.0707 24.6677 0.7401
64 0.0152 29.3789 0.8776 0.0325 25.7598 0.8290 0.0246 27.7020 0.8483 0.0276 26.9539 0.8413 0.0217 27.9946 0.8586 0.0198 28.4026 0.8780 0.0473 25.9973 0.7846
128 0.0105 31.0564 0.9022 0.0223 27.7330 0.8632 0.0140 29.9011 0.8854 0.0178 28.6235 0.8705 0.0145 29.5715 0.8813 0.0138 29.8623 0.8959 0.0288 27.4464 0.8259
16 0.0125 30.7409 0.8577 0.0298 27.9409 0.8093 0.0175 29.7712 0.8426 0.0079 32.2501 0.9131 0.0211 29.0407 0.8246 0.0177 29.7484 0.8461 0.0190 29.3658 0.8348
32 0.0082 32.3536 0.8948 0.0218 29.0784 0.8344 0.0116 31.3199 0.8791 0.0058 33.5862 0.9313 0.0185 29.6635 0.8395 0.0132 30.8930 0.8715 0.0125 30.9737 0.8718
64 0.0057 33.8900 0.9216 0.0134 30.8606 0.8704 0.0076 32.9388 0.9088 0.0043 34.8727 0.9457 0.0157 30.3354 0.8532 0.0090 32.3368 0.8991 0.0092 32.2647 0.8978
128 0.0040 35.3538 0.9422 0.0073 33.1554 0.9103 0.0050 34.5940 0.9328 0.0031 36.2011 0.9579 0.0126 31.1616 0.8685 0.0059 34.0126 0.9256 0.0067 33.4865 0.9173

Smoke

16 0.0005 44.1372 0.9807 0.0009 42.0877 0.9791 0.0007 43.0729 0.9784 0.0005 44.0520 0.9795 0.0006 43.3547 0.9761 0.0006 43.4443 0.9800 0.0006 43.5586 0.9786
32 0.0004 44.9731 0.9818 0.0007 42.8350 0.9803 0.0006 43.9832 0.9801 0.0004 45.1488 0.9812 0.0005 44.2466 0.9782 0.0005 44.1988 0.9811 0.0004 45.0087 0.9809
64 0.0004 45.4864 0.9825 0.0005 43.9138 0.9812 0.0005 44.8552 0.9813 0.0004 45.9017 0.9822 0.0004 45.0737 0.9799 0.0004 45.0065 0.9819 0.0004 45.8805 0.9822
128 0.0004 45.8068 0.9829 0.0005 44.4741 0.9817 0.0004 45.4951 0.9821 0.0003 46.3656 0.9827 0.0004 45.6013 0.9808 0.0004 45.6926 0.9825 0.0003 46.3678 0.9828
16 0.0138 27.8739 0.8140 0.0133 28.5459 0.8743 0.0115 29.8702 0.8368 0.0146 28.1630 0.8335 0.0250 24.2337 0.7679 0.0112 30.4661 0.8835 0.0104 28.8515 0.8689
32 0.0098 29.2396 0.8340 0.0090 30.2983 0.8920 0.0068 31.8874 0.8766 0.0088 30.1918 0.8689 0.0185 25.3280 0.7845 0.0066 32.4528 0.9055 0.0083 29.3832 0.8827
64 0.0069 30.7094 0.8546 0.0060 31.8616 0.9046 0.0045 33.4613 0.9028 0.0056 31.9737 0.8964 0.0121 26.9291 0.8139 0.0039 34.1304 0.9220 0.0075 29.6946 0.8841
128 0.0047 32.4360 0.8775 0.0039 33.4580 0.9179 0.0029 35.1759 0.9226 0.0033 34.1158 0.9192 0.0076 28.8330 0.8464 0.0023 35.9318 0.9367 0.1017 30.4582 0.8927
16 0.0171 28.7763 0.9273 0.0755 25.0842 0.8977 0.0439 26.5674 0.9106 0.0435 26.1671 0.9067 0.0278 26.5721 0.9128 0.0349 27.0671 0.9206 0.0352 26.2145 0.8984
32 0.0115 30.5121 0.9457 0.0643 25.6950 0.9065 0.0324 27.3999 0.9271 0.0305 27.0536 0.9167 0.0209 27.8729 0.9265 0.0265 27.6904 0.9287 0.0272 27.2131 0.9124
64 0.0078 32.2051 0.9586 0.0587 25.9437 0.9128 0.0220 28.5058 0.9404 0.0247 27.6811 0.9266 0.0147 29.0346 0.9415 0.0215 28.4385 0.9381 0.0198 28.2481 0.9264
128 0.0052 33.8967 0.9691 0.0537 26.1498 0.9168 0.0156 29.7450 0.9536 0.0182 28.5106 0.9394 0.0105 30.0555 0.9537 0.0156 29.2368 0.9480 0.0180 28.6043 0.9313

Averages:

16 0.0155 31.0847 0.8623 0.0383 29.2334 0.8491 0.0309 30.0674 0.8410 0.0196 30.8281 0.8827 0.0241 29.0212 0.8390 0.0171 31.0932 0.8874 0.0256 29.9514 0.8464
32 0.0100 32.5659 0.8891 0.0263 30.2569 0.8691 0.0171 31.6533 0.8788 0.0140 32.0741 0.9047 0.0167 30.3274 0.8632 0.0127 32.1983 0.9065 0.0188 31.0806 0.8720
64 0.0067 34.0422 0.9114 0.0189 31.4233 0.8906 0.0106 33.1470 0.9068 0.0106 33.1917 0.9217 0.0120 31.5677 0.8867 0.0096 33.2877 0.9226 0.0141 32.0390 0.8909
128 0.0045 35.6427 0.9311 0.0143 32.6057 0.9112 0.0071 34.6354 0.9287 0.0078 34.3823 0.9364 0.0087 32.7966 0.9075 0.0073 34.4688 0.9370 0.0264 32.4659 0.9060

Curly Hair

Measure
One

Measure
One
Moving

Crown in
Glass

Furry
Bunny

Country
Kitchen
Night

Glass of
Water

entire budget is requested in a single call, the overhead

is negligible. It increases with the number of calls. If,

for instance, each call requests a single sample, as in the

case of MDAS [12], the overhead becomes prohibitive

for anything but a very small number of samples and

image sizes.

Memory Overhead – The current implementation of our

system requires that all samples be kept in memory at

once, which imposes a limit on the maximum sample

budget. We plan on avoiding this restriction by making

blocks of samples available to the client process as soon

as they are produced by the renderer.

Scene File Format – Rendering systems adopt propri-

etary scene file formats. In addition, certain features

(e.g., materials) supported by one renderer might not

be available for others. Thus, currently, in order to use

a scene file with a different renderer, one has to convert

it to the format used by the desired renderer.
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5 Conclusion and Future Work

We have presented a novel framework for easy evalua-

tion and development of sampling and denoising MC

algorithms on multiple rendering systems. Conversely,

it also allows for rendering systems to quickly incor-

porate new algorithm that conform to our API. This

makes it straightforward to perform benchmarks in-

volving various algorithms across different renderers.

We have demonstrated the effectiveness of our system

by instrumenting four rendering systems (PBRT-v3,

PBRT-v2, Mitsuba, and a procedural renderer), eight

state-of-the-art MC denoising algorithms, three sam-

pling techniques, and by benchmarking these denoising

algorithms on multiple renderers.

We have provided a qualitative assessment of the

evaluated MC denoising techniques, identifying poten-

tial limitations of existing approaches. This information

might guide future research in the area. The visual

exploration of the quantitative data collected during

the benchmark also provides valuable feedback for re-

searchers and users, helping them to address the practi-
cal question of identifying the most effective techniques

for rendering scenes with a given set of features.

5.1 Future Work

We plan on releasing an on-line benchmarking service

to allow researchers to submit their techniques for eval-

uation and ranking. This would be similar to other

benchmark services, such as the Middlebury [34].

To solve the current memory overhead problem, we

plan to group samples into smaller-sized chunks and

send them to the client process as soon as they are

computed by the renderer. This should increase the

communication overhead but will make the memory

complexity independent of the amount of requested

samples, which is a fair tradeoff. We will make such an

implementation available at the project website.

Finally, we intend to provide automatic conversion of

scene file formats among renderers. This would complete

our vision of making the choices of technique, rendering

system, and scene all orthogonal to each other.
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Fig. 10 Results from a benchmark including seven MC denoising techniques and nine scenes (from our scene pool) that pose
challenges to denoising methods. All results were generated with 128 samples per pixel.
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