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Abstract—Bone age is a reliable metric for determining the
level of biological maturity of children and adolescents. Its
assessment is a crucial part of the diagnosis of a variety of
pediatric syndromes that affect growth, such as endocrine disor-
ders. The most commonly used method for bone age assessment
(BAA) is still based on the comparison of the patient’s hand
and wrist radiograph to a bone age atlas. Such a method,
however, takes considerable time, requires an expert rater, and
suffers from high inter-rater variability. We present a deep-
learning-based approach to estimate bone age from radiographs.
It provides a fast, deterministic solution for bone-age assessment.
We demonstrate the effectiveness of our method by using it to
rate a set of 200 radiographs as part of a contest organized by
the Radiological Society of North America. The results of this
experiment have shown that our method’s performance is similar
to the one of a trained physician. Our system is available on-
line, providing a free global service for doctors working in remote
areas or in institutions with no BAA experts.

I. INTRODUCTION

A child’s bone age, or skeletal age, is an indicator of

her/his level of biological and structural maturity, which may

not agree with the child’s chronological age. Both delayed

and increased bone age can be symptoms of more serious

pediatric disorders, hence the importance of bone age assess-

ment (BAA). However, making good estimates of skeletal

maturity is a complex and specialized task, requiring detailed

examination of many related factors and an understanding of

the processes associated with bone development [1]. Simply

put, one has to analyze the growth and deposition of calcium

in regions undergoing ossification [1], which is done through

the inspection of radiographs of the hand and wrist. By

convention, the left hand and wrist are used.

Currently, the most common ways of performing BAA are

the Greulich-Pyle (GP) [2] and Tanner-Whitehouse (TW2)

methods [3]. GP is an atlas-based solution, meaning that bone

age is estimated by comparing the patient’s radiograph with

the most similar standard radiograph on a gender-specific atlas.

Today, digital atlases, such as [1] and [4], make the evalua-

tion process more convenient, but the actual assessment still

depends on the rater’s expertise [5]. TW2 is an improvement

on the original Tanner-Whitehouse (TW1) method [6], and

consists of analyzing twenty regions of interest (ROIs) in the

hand and wrist and assigning a discrete stage of skeletal ma-

turity (e.g., pre-puberty, early-and-mid puberty, late-puberty,

post-puberty) to each ROI. Each stage has an associated score,

Fig. 1. Interface of the free on-line BAA service based on our technique.
(top) Input radiograph and patient’s gender. (bottom) BAA estimate, input
radiograph with an overlayed colored activation map (color scale below), and
most similar reference radiograph from the GP atlas. The interface can be
easily configured for any language.

and a table is used to convert the sum of all scores into a bone

age estimate. There is an inherent uncertainty in the estimates

obtained with both methods. The GP standard radiographs are

from a 1931-1942 study conducted with white upper-middle

class American boys and girls, and does not take into account

ethnic variability. Both GP and TW2 are time-consuming

methods, require expert raters, and suffer from high inter-

rater variability. Such variability may be critical when making

decisions about the most appropriate therapy for each case [7].

BAA stands as a natural application for machine-learning

techniques. Deep Convolutional Neural Networks (CNNs)

have matched or even surpassed human performance on sev-

eral image-related tasks, and have quickly become the state-of-

the-art for several medical image analysis tasks [8], including
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classification [9], segmentation [10], and enhancement [11].

We present an automated approach for bone age assessment

based on CNNs. We train and validate the performance of our

solution on a partially-public dataset containing over 12,500

radiographs from the Pediatric Bone Age Challenge [12], a

competition for automating BAA, organized by the Radiolog-

ical Society of North America (RSNA). We propose a deep,

end-to-end solution using residual learning. To help doctors

understand the decision process that led our CNN to each

of its results, we overlay colored gradient-weighted activa-
tion maps [13] (Grad-CAMs) on the evaluated radiographs

(see Figure 1). The accuracy obtained with our solution is

comparable to the one produced by a trained radiologist, and

superior or equal to state-of-the-art automated methods, while

being easier to apply to different datasets and requiring less

training time. Our system is available on-line, providing a free

global service that is particularly relevant for doctors working

in remote areas or in institutions with no BAA experts.

Figure 1 illustrates the interface of our on-line system,

which can be configured for different languages. The input

radiograph is shown on the top, where the user also informs

the patient’s gender. The bottom shows the BAA estimate, the

input radiograph with an overlayed colored activation map,

and the most similar reference radiograph from the GP atlas.

The contributions of our work include:

• An end-to-end solution for bone age assessment whose

accuracy is similar to the one of expert radiologists

(Section IV). Our approach uses a convolution neural

network based on residual learning, and can be easily

extended with new data;

• An analysis of the most important hand and wrist struc-

tures for bone age assessment performed by a CNN that

handles BAA as a regression task (Section VI). The

results of the analysis are presented for each evaluated

radiograph as overlayed color maps indicating the weight

of each structure for the bone age assessment;

• A free global on-line bone age assessment service for

doctors working in remote areas or in institutions with

no BAA experts.

II. RELATED WORK

Several researchers have attempted to develop automatic

image processing solutions for estimating skeletal maturity

[14]–[16]. These techniques try to detect and measure features

from the radiographs, but were unable to handle the high-

variability observed in the development of the hand and wrist

bones [1].

BoneXpert [17] is an automated BAA solution which has

been approved for clinical use in Europe. It segments 15 bones

in hand and wrist radiographs and uses the extracted shapes,

intensities, and textural features to infer bone age using either

GP or TW2 method. BoneXpert does not take carpal bones

into account, which may negatively impact the BAA for young

patients, for whom these bones have distinguished features.

Somkantha et al. [15] detect boundaries of carpal bones

and extract 5 features from them. These features are used

for regression using support vector machine (SVM). However,

they use a small dataset consisting of 180 images of carpal

bones extracted from a digital hand atlas. The used radiographs

only cover children from 0 to 6 years old, which is a major

limitation to their work.

The work of Spampinato et al. [18] is among the first deep-

learning-based approaches to automate BAA. The authors

report an average error of about 9.6 months. This is bigger

than the error of other solutions, including ours (6.44 months).

Recently, an automated system for BAA using deep learning

was proposed by Lee et al. [7]. Their approach consists of fine-

tuning GoogLeNet [19] pre-trained on the ImageNet dataset.

They use a pre-processing pipeline to segment ROIs and

standardize the input radiographs. Unlike previous approaches,

this one uses a bigger dataset that contains 8,325 radiographs.

The technique casts BAA as a classification task, thus rounding

all bone ages down. This limits their assessments to a 1-

year granularity. The approach achieves a 57.32% and 61.40%

accuracy for female and male patients, respectively.

Iglovikov et al. [20] proposed an automated system using

deep learning developed concurrently with ours for the RSNA

Bone Age Challenge, and used the same dataset as we did. The

authors achieved a Mean Absolute Distance (MAD) of 4.97

months on the test dataset of the RSNA Bone Age Challenge.

Although the accuracy of their solution is slightly higher

than ours (6.44 months), their approach performs several pre-

processing steps using additional CCNs and requires manual

intervention at some point of the training process. Firstly, they

segment the hand and wrist from the input radiographs using

a U-Net [10]. Training such U-Net requires manual generation

of segmentation masks, even though it is possible to automate

this process to a certain level. They also translate and rotate

the radiographs so that the hand bones have a desired position

and orientation. This is done by identifying key points on

the hand bones using an additional CNN based on the VGG

architecture [21] with a regression output. This CNN also

requires manual label generation.

Using three different CNNs and the need for manual in-

tervention to create training sets, the average BAA estimates

obtained by Iglovikov et al.’s solution was 45 days closer to

the ground truth than ours. Given the inherent imprecision of

the GP and TW2 methods, the accuracy of our solution can

be considered comparable to Iglovikov et al.’s. Our end-to-end

solution, however, can be easily applied to different datasets

(e.g., different ethnic groups) and requires less training time.

III. DATASET AND RSNA CHALLENGE

For training our CNN, we used a dataset of png images pro-

vided by the Radiological Society of North America (RSNA)

as part of RSNA’s Pediatric Bone Age Challenge [12]. The

dataset consists of hand and wrist radiographs with their

respective bone ages. It presents a high variability when

it comes to the radiographs, including different acquisition

methods, and variations in brightness, contrast, resolution,

and even aspect ratio. Figure 2 show 8 radiographs extracted

from the training dataset. The top row shows images acquired
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Fig. 2. 8 sample radiographs available on the RSNA training dataset. (top)
Images acquired trough Computed Radiography (CR) or Digital Radiography
(DR). (bottom) Images digitized from traditional film.

Fig. 3. Age and gender distribution in the RSNA training dataset

trough processes such as Computed Radiography (CR) or

Digital Radiography (DR) [22], which usually result in clean

images. The bottom row shows radiographs digitized from

traditional film, which may not always result in proper images.

Since BAA is performed to identify growth disorders, there

is a natural unbalance in the age and gender distributions of

patients, which is illustrated in Figure 3. Ideally, datasets used

for training machine-learning solutions should be balanced.

Thus, this might negatively impact the performance of our

CNN for groups (i.e., age and gender pairs) for which just a

few samples were available for training.

In accordance with the challenge’s rules, we used the mean
absolute distance (MAD) [23] and concordance correlation
coefficient (CCC) [24] metrics to evaluate the performance of

our solution. Given a sample i, its corresponding ground truth

value xi, and the predicted bone age for that sample yi, the

MAD is obtained as:

MAD =

∑n
i=1 |xi − yi|

n
. (1)

CCC is used to measure the agreement between two con-

tinuous variables, in our case, the predicted bone age and the

Fig. 4. Definition of a generic building block. Source: [25]

ground truth. Given x̄ and ȳ, respectively, the mean for the

ground truth and for the predicted bone age, the variances s2x
and s2y , and covariance sxy for a dataset of size N , CCC is

defined as:

CCC =
2sxy

s2x + s2y + (x̄− ȳ)2
, (2)

where

x̄ =
1

N

N∑

i=1

xi and ȳ =
1

N

N∑

i=1

yi, (3)

s2x =
1

N

N∑

i=1

(xi − x̄)2 and s2y =
1

N

N∑

i=1

(yi − ȳ)2, (4)

and

sxy =
1

N

N∑

i=1

(xi − x̄)(yi − ȳ). (5)

IV. AUTOMATED BAA WITH RESIDUAL LEARNING

Automated BAA comes as a solution to the rater variability

in traditional methods. It can also increase productivity and

assist less experienced radiologists. We use deep CNNs to

automate BAA. One major problem with training deep neural

networks is that by increasing the network depth, its accuracy

tends to saturate, quickly degrading. Surprisingly, this is not

due to over-fitting. Simply adding layers leads to higher

training error [25]. Residual networks address this problem

using skip connections, which allow a network to learn from

input/output of previous layers. This is illustrated in Figure 4,

where the identity connection x causes the resulting mapping

to become F (x)+x. This is desirable since the previous layers

might have degraded the value of F (x).
Residual networks can go deeper and learn to represent

more complex models without saturating accuracy. We have

proposed several custom residual network architectures that

consist, partly, of an ensemble of custom blocks. Custom

blocks are composed of a convolutional layer followed by

an activation layer, which is then followed by a number of

building blocks ranging from 1 to 3 (Figure 5 - top). Each

building block has 2 convolutional layers, with an activation

layer in-between them, followed by an addition operator

and another activation layer. Finally, our custom block has

a pooling step. Each custom block can be followed by a

similar wider block. By progressively increasing the number

of kernels used in deeper layers (see Table I), our network can

learn more from its deeper layers than from its earlier ones.

Then, we flatten the output of our custom block ensemble, and

concatenate to it the patient’s gender, a one-hot encoded vector
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Fig. 5. Representation of our candidate architectures (Table I): A to D use 3
custom blocks with a single building block each, while architectures E to H
use 5 custom blocks with 3 building blocks each.

where each gender is treated as a different category. Finally,

we append dense layers with activations in-between to obtain

the bone age (Figure 5). Since radiographs from patients with

the same age, but different genders, are largely different, we

chose to provide the gender as input to the dense part of our

neural network.

We have implemented our solution using Keras [26] on top

of Tensorflow [27]. Defining complex architectures in Keras

is as simple as “stacking” layers. Tensorflow is open-source,

has great performance, and is constantly improved by Google.

A. Candidate Architectures

We have compared a total of 8 custom architectures, from

A to H, as seen on Table I. We have also compared the perfor-

mance of the Inception-V3 architecture [28] when fine-tuned

on our data. Our custom architectures are progressively more

complex (from A to H). For all architectures, we normalize the

input images in the training dataset so that the intensities of

each such image have (approximately) zero mean and variance

one. This is a standard process for training neural networks.

We also pre-process the training and test datasets by resizing

the images and performing feature scaling. Feature scaling

transforms the original pixel values, represented as 8-bit inte-

gers, to float values in the [0.0,1.0] interval, where 0.0 and 1.0

correspond to the minimum and maximum values, respectively.

Both steps are necessary due to the high variability in the

dataset. We resize the images to 256× 256 pixels, so that we

can fit a batch with 32 images on the GPU memory. Although

image downscaling implies discarding some information, it

also reduces the amount of weights to be learned, thus accel-

erating convergence. We trained our CNN using an NVIDIA

GeForce GTX 1080 Ti GPU, with 11 GB of memory. Radio-

graphs have different dimensions (height and width), and the

aspect ratio of each radiograph should be preserved to avoid

feature distortion (e.g., the relative size of the epiphyses of the

phalanges with respect to the size of adjacent metaphyses).

Therefore, we downscale the radiographs so that its largest

dimension contains 256 pixels. The smaller dimension is then

padded with zeros to 256 pixels. Alternatives to resizing the

images include:

• Dividing the input image in ROIs, and training on each

ROI individually. BAA could then be performed by using

the ensemble of individual evaluations. However, this is

a complex approach that may not outperform the use of

image downscaling;

• Using a Bulk Synchronization Parallel (BSP) model [29].

This approach consists in splitting the image into smaller

patches that are fed to the CNN separately. Then, a

padding and normalization technique merges the patches

into a single image. This is also a more complex ap-

proach, which can be explored as future work.

We experimented with several techniques and hyper-

parameters (see Table I) that have a direct impact on our

network’s performance:

Regularization consists in trading-off flexibility with model

complexity to avoid overfitting. We used two regularization

methods: Dropout and L2 Regularization. Dropout consists

in randomly disregarding the output of some neurons during

the training phase. This gives neurons that were dependent

on their neighbors the ability to learn new features and helps

generalize the learning process [30]. L2 regularization applies

a penalty that is progressively higher as our neural network

gets deeper. Deeper convolutional layers learn more complex

features, which may not generalize well and should have a

penalty applied to their weights [31].

Normalization standardizes the inputs to hidden layers.

We use either batch normalization [32] or instance normal-
ization [33]. Batch normalization consists in subtracting the

batch’s mean from the input of a hidden layer, and then

dividing the resulting value by the batch’s standard deviation.

Instead of performing normalization within a batch, instance

normalization does it within a single sample. Both processes

have several benefits, such as accelerating convergence and

adding regularization to our network.

Data Augmentation makes the model more robust to

variations in the input data, as well as virtually increase the

size of our dataset. We perform data augmentation on our

training dataset by randomly applying transformations that

cause no impact on the assessment of the bone age. These

include rotations, uniform scaling, horizontal and vertical jitter,

and horizontal flip.

B. Training and Evaluating the Proposed Architectures

We trained all architectures described in Table I, and the

fine-tuned Inception-V3 for at least 50 epochs. The progression

of the validation MAD for the trainings of the 4 best perform-

ing architectures (B, D, F, and H) and for Inception-V3 are

shown in Figure 6. Furthermore, we trained architectures G, H,

and Inception-V3 for additional 100 epochs, for we believed

that they, due to their complexity, would be able to learn more

if trained longer. The final validation MAD values as well as

the corresponding numbers of trained epochs for architectures

A to H are shown at the bottom of Table I.
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TABLE I
CANDIDATE ARCHITECTURES

Experiment

A B C D E F G H

Conv Layers (CL) 9 9 9 9 35 35 35 35

Custom Blocks (CB) 3 3 3 3 5 5 5 5

Building Blocks per
CB

1 1 1 1 3 3 3 3

CL per CB 3 3 3 3 7 7 7 7

Filters per CB 16, 32, 64 16, 32, 64 16, 32, 64 16, 32, 64
16, 32, 64,
128, 256

16, 32, 64,
128, 256

16, 32, 64,
128, 256

16, 32, 64,
128, 256

Filter size 3× 3 3× 3 3× 3 3× 3 3× 3 5× 5 5× 5 5× 5

L2 regularization – – – – – – – 0.0001

Dropout – – – – – – 0.15 0.15

Normalization – – batch instance instance instance instance instance

Data augmentation – yes yes yes yes yes yes yes

Final validation MAD 20.47 10.47 16.61 12 16.98 10.73 20.33 9.74

# of trained epochs 50 50 50 50 50 50 150 150

Fig. 6. MAD evolution by epoch for the best architectures and Inception-V3.

For all proposed architectures, as well as for Inception-

V3, we used the Adaptive Moment Estimation (Adam) op-

timizer [34]. Adam is able to adapt the learning rate to

the parameters, granting faster and better convergence. We

randomly split the training dataset, leaving 80% of the images

for training and 20% for validation. During training, the

batches were reshuffled at each epoch. After analyzing the

results of the eight architectures shown in Table I, we selected
architecture H for deployment of our system.

V. RESULTS AND DICUSSION

We evaluated the accuracy of our network by performing

BAA for the 200 radiographs that constitute the test dataset

of the RSNA challenge. Some of these images are shown in

Figure 7. Note the variability in brightness, contrast, orienta-

tion, scale, and even the presence of a flipped radiograph that

appears like a right hand (top row, third image from left to

right). The ground-truth bone age for these radiographs was

only known by the organizers of the challenge.

The average time for estimating the bone age for each

radiograph was approximately 35 ms. The complete set of

estimates was submitted on-line to the RSNA contest, and our

results achieved a MAD of 6.44 months and a CCC of 0.97.

Such CCC value demonstrates a substantial level of agreement
between our predictions and the ground-truth [35].

The Digital Hand Atlas [36], prepared by researchers from

the University of Southern California, is the most compre-

hensive dataset of hand radiographs with bone age estimates

produced by two raters. For this dataset, the inter-rater vari-

ability can be summarized by an overall RMSE of 0.59 years

(0.57 years for males, and 0.54 years for females), and 0.66

years for children between 5 and 18 years old. A more recent

study [37] reports an inter-rater variability of 0.51 ± 0.44

years with the use of the GP method. Our results obtained a

MAD of 0.536 years (6.44 months), which is in accordance

with results produced by expert radiologists.

For comparison, the average error in the estimates obtained

with the recent deep-learning-based system described in [7]

is 0.82 years for males and 0.93 years for females. The

commercial software BoneXpert has an average error of 0.72

years [38]. Our results surpasses these systems.

The best results for the RSNA challenge were obtained by

the system described by Iglovikov et al. [20], which obtained a

MAD of 4.97 months (0.414 years), a difference of only about

45 days with respect to our estimates. As already mentioned,

unlike Iglovikov et al.’s system, ours is an end-to-end solution.
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Fig. 7. 8 samples of radiographs available on the test dataset. Source: RSNA

We developed a website [39] where users can upload ra-

diographs and receive the corresponding bone age assessment

computed by our network (Figure 1). This website’s front-end

was developed using Angular – an open-source front-end web

application framework – and its back-end was implemented

with Django – a high-level Python web framework. Our server

handles the uploading of images, the serving of static content,

and the actual BAA.

VI. HIGHLIGHTING THE RELEVANT FEATURES

CNNs, particularly end-to-end systems as ours, may excel in

accuracy, but often lack in terms of explaining how their results

were obtained. In order to better understand the behaviour

of our CNN and its results, we use a technique known

as Gradient-weighted Class Activation Mapping [13] (Grad-

CAM), available in the Keras Visualization Toolkit [40].

We use Grad-CAM with the gradients relative to the upper

convolutional layers of our network to produce a map high-

lighting the structures that most influenced the BAA estimate.

The toolkit underwent a series of changes to accept our input,

since our network expects both the gender and the radiograph

of the patient, and KerasVIS only takes images. We also had to

adapt it to work with single-channel images. Our Grad-CAM

uses a color map to represent the importance of a region to

the BAA, with warmer colors representing stronger influence.

Figure 9 show Grad-CAM for radiographs of different

stages of skeletal maturity: pre-puberty, early and mid-puberty,

late-puberty, and post-puberty – toddlers were left out on

purpose, for there are few images for this age group in the

training dataset, as seen in Figure 3. We compared the regions

highlighted by our Grad-CAMs to the regions taken into

account by radiologists while performing BAA and noticed

that they are not necessarily similar. Here are the observed

differences for each stage of skeletal maturity:

• Pre-puberty: In this stage, radiologists primarily compare

the size of the epiphyses of the phalanges to the size of

adjacent metaphyses (see Figure 8). Our CNN takes a

different approach, deeming the ulna, radius, carpal and

metacarpal bones as the most important structures for

BAA during this stage;

• Early and mid-puberty: radiologists primarily analyze the

size of the epiphyses in the distal and middle phalanges.

Our CNN, again, takes a different approach, treating the

Fig. 8. Diagram of hand and wrist bones. Adapted from [41].

(b) Pre-puberty (c) Early and Mid-
puberty

(d) Late-puberty (e) Post-puberty

Fig. 9. Importance of bone structures for estimating skeletal maturity
according to our CNN.

metacarpal bones and proximal phalanges as the most

distinctive structures;

• Late-puberty: radiologists primarily consider the degree

of epiphyseal fusion of the distal phalanges. Our CNN

finds the distal phalanges to be the most relevant struc-

tures for BAA during this stage, but also finds the middle

and proximal phalanges, and metacarpal bones to be

important;

• Post-puberty: radiologists primarily analyze the degree of

epiphyseal fusion of the ulna and radius bones. Our CNN

takes a different approach, deeming the phalanges alone

to be the most important structures for BAA in this stage.

The fact that the regions considered most relevant by our

CNN do not match the regions analyzed by radiologists might

suggest ways for improving our understanding about the bone

maturing process, as well as for improving traditional BAA

methods.

VII. CONCLUSION AND FUTURE WORK

We presented an automated approach for bone age assess-

ment based on residual learning. We trained and validated

our CNN on a partially-public dataset containing over 12,500

radiographs from the Pediatric Bone Age Challenge [12], orga-

nized by the Radiological Society of North America (RSNA).

We evaluated the accuracy of our network by performing

BAA for 200 radiographs from the test dataset of the RSNA

challenge. Our results achieved a MAD of 6.44 months and

a CCC of 0.97, indicating a substantial level of agreement

between our predictions and the ground-truth.

The accuracy of our solution is similar to the one obtained

by expert radiologists and superior to previous automated
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systems. For the RSNA challenge dataset, our system obtained

a MAD of only 45 days bigger than the winner system [20].

Note, however, that among radiologists the inter-rater vari-

ability corresponds to 0.51 ± 0.44 years [37], making the

performance of both systems comparable.

We have discussed the most relevant hand and wrist struc-

tures identified by our CNN for BAA, and have compared

them to the features observed by expert radiologists. A free

bone age assessment service based on our system is available

on-line and can be a valuable resource for doctors working in

remote areas or in institutions with no BAA experts.

We would like to evaluate the performance of our algorithm

by integrating it to a Picture Archiving and Communication

System (PACS), a technology used for storing, retrieving,

visualizing, and sharing medical images. Such systems are

commonly used in hospitals, and would allow us to integrate

our algorithm to the radiologists’ work-flow.
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