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Abstract—Bone age is a reliable metric for determining the
level of biological maturity of children and adolescents. Its
assessment is a crucial part of the diagnosis of a variety of
pediatric syndromes that affect growth, such as endocrine disor-
ders. The most commonly used method for bone age assessment
(BAA) is still based on the comparison of the patient’s hand
and wrist radiograph to a bone age atlas. Such a method,
however, takes considerable time, requires an expert rater, and
suffers from high inter-rater variability. We present a deep-
learning-based approach to estimate bone age from radiographs.
It provides a fast, deterministic solution for bone-age assessment.
We demonstrate the effectiveness of our method by using it to
rate a set of 200 radiographs as part of a contest organized by
the Radiological Society of North America. The results of this
experiment have shown that our method’s performance is similar
to the one of a trained physician. Qur system is available on-
line, providing a free global service for doctors working in remote
areas or in institutions with no BAA experts.

I. INTRODUCTION

A child’s bone age, or skeletal age, is an indicator of
her/his level of biological and structural maturity, which may
not agree with the child’s chronological age. Both delayed
and increased bone age can be symptoms of more serious
pediatric disorders, hence the importance of bone age assess-
ment (BAA). However, making good estimates of skeletal
maturity is a complex and specialized task, requiring detailed
examination of many related factors and an understanding of
the processes associated with bone development [1]. Simply
put, one has to analyze the growth and deposition of calcium
in regions undergoing ossification [1], which is done through
the inspection of radiographs of the hand and wrist. By
convention, the left hand and wrist are used.

Currently, the most common ways of performing BAA are
the Greulich-Pyle (GP) [2] and Tanner-Whitehouse (TW2)
methods [3]. GP is an atlas-based solution, meaning that bone
age is estimated by comparing the patient’s radiograph with
the most similar standard radiograph on a gender-specific atlas.
Today, digital atlases, such as [1] and [4], make the evalua-
tion process more convenient, but the actual assessment still
depends on the rater’s expertise [5]. TW2 is an improvement
on the original Tanner-Whitehouse (TW1) method [6], and
consists of analyzing twenty regions of interest (ROIs) in the
hand and wrist and assigning a discrete stage of skeletal ma-
turity (e.g., pre-puberty, early-and-mid puberty, late-puberty,
post-puberty) to each ROIL. Each stage has an associated score,
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Fig. 1. Interface of the free on-line BAA service based on our technique.
(top) Input radiograph and patient’s gender. (bottom) BAA estimate, input
radiograph with an overlayed colored activation map (color scale below), and
most similar reference radiograph from the GP atlas. The interface can be
easily configured for any language.

and a table is used to convert the sum of all scores into a bone
age estimate. There is an inherent uncertainty in the estimates
obtained with both methods. The GP standard radiographs are
from a 1931-1942 study conducted with white upper-middle
class American boys and girls, and does not take into account
ethnic variability. Both GP and TW2 are time-consuming
methods, require expert raters, and suffer from high inter-
rater variability. Such variability may be critical when making
decisions about the most appropriate therapy for each case [7].

BAA stands as a natural application for machine-learning
techniques. Deep Convolutional Neural Networks (CNNs)
have matched or even surpassed human performance on sev-
eral image-related tasks, and have quickly become the state-of-
the-art for several medical image analysis tasks [8], including



classification [9], segmentation [10], and enhancement [11].
We present an automated approach for bone age assessment
based on CNNs. We train and validate the performance of our
solution on a partially-public dataset containing over 12,500
radiographs from the Pediatric Bone Age Challenge [12], a
competition for automating BAA, organized by the Radiolog-
ical Society of North America (RSNA). We propose a deep,
end-to-end solution using residual learning. To help doctors
understand the decision process that led our CNN to each
of its results, we overlay colored gradient-weighted activa-
tion maps [13] (Grad-CAMs) on the evaluated radiographs
(see Figure 1). The accuracy obtained with our solution is
comparable to the one produced by a trained radiologist, and
superior or equal to state-of-the-art automated methods, while
being easier to apply to different datasets and requiring less
training time. Our system is available on-line, providing a free
global service that is particularly relevant for doctors working
in remote areas or in institutions with no BAA experts.
Figure 1 illustrates the interface of our on-line system,
which can be configured for different languages. The input
radiograph is shown on the top, where the user also informs
the patient’s gender. The bottom shows the BAA estimate, the
input radiograph with an overlayed colored activation map,
and the most similar reference radiograph from the GP atlas.
The contributions of our work include:

« An end-to-end solution for bone age assessment whose
accuracy is similar to the one of expert radiologists
(Section IV). Our approach uses a convolution neural
network based on residual learning, and can be easily
extended with new data;

An analysis of the most important hand and wrist struc-
tures for bone age assessment performed by a CNN that
handles BAA as a regression task (Section VI). The
results of the analysis are presented for each evaluated
radiograph as overlayed color maps indicating the weight
of each structure for the bone age assessment;

A free global on-line bone age assessment service for
doctors working in remote areas or in institutions with
no BAA experts.

II. RELATED WORK

Several researchers have attempted to develop automatic
image processing solutions for estimating skeletal maturity
[14]-[16]. These techniques try to detect and measure features
from the radiographs, but were unable to handle the high-
variability observed in the development of the hand and wrist
bones [1].

BoneXpert [17] is an automated BAA solution which has
been approved for clinical use in Europe. It segments 15 bones
in hand and wrist radiographs and uses the extracted shapes,
intensities, and textural features to infer bone age using either
GP or TW2 method. BoneXpert does not take carpal bones
into account, which may negatively impact the BAA for young
patients, for whom these bones have distinguished features.

Somkantha et al. [15] detect boundaries of carpal bones
and extract 5 features from them. These features are used

198

for regression using support vector machine (SVM). However,
they use a small dataset consisting of 180 images of carpal
bones extracted from a digital hand atlas. The used radiographs
only cover children from O to 6 years old, which is a major
limitation to their work.

The work of Spampinato et al. [18] is among the first deep-
learning-based approaches to automate BAA. The authors
report an average error of about 9.6 months. This is bigger
than the error of other solutions, including ours (6.44 months).

Recently, an automated system for BAA using deep learning
was proposed by Lee et al. [7]. Their approach consists of fine-
tuning GoogLeNet [19] pre-trained on the ImageNet dataset.
They use a pre-processing pipeline to segment ROIs and
standardize the input radiographs. Unlike previous approaches,
this one uses a bigger dataset that contains 8,325 radiographs.
The technique casts BAA as a classification task, thus rounding
all bone ages down. This limits their assessments to a 1-
year granularity. The approach achieves a 57.32% and 61.40%
accuracy for female and male patients, respectively.

Iglovikov et al. [20] proposed an automated system using
deep learning developed concurrently with ours for the RSNA
Bone Age Challenge, and used the same dataset as we did. The
authors achieved a Mean Absolute Distance (MAD) of 4.97
months on the test dataset of the RSNA Bone Age Challenge.
Although the accuracy of their solution is slightly higher
than ours (6.44 months), their approach performs several pre-
processing steps using additional CCNs and requires manual
intervention at some point of the training process. Firstly, they
segment the hand and wrist from the input radiographs using
a U-Net [10]. Training such U-Net requires manual generation
of segmentation masks, even though it is possible to automate
this process to a certain level. They also translate and rotate
the radiographs so that the hand bones have a desired position
and orientation. This is done by identifying key points on
the hand bones using an additional CNN based on the VGG
architecture [21] with a regression output. This CNN also
requires manual label generation.

Using three different CNNs and the need for manual in-
tervention to create training sets, the average BAA estimates
obtained by Iglovikov et al.’s solution was 45 days closer to
the ground truth than ours. Given the inherent imprecision of
the GP and TW2 methods, the accuracy of our solution can
be considered comparable to Iglovikov et al.’s. Our end-to-end
solution, however, can be easily applied to different datasets
(e.g., different ethnic groups) and requires less training time.

III. DATASET AND RSNA CHALLENGE

For training our CNN, we used a dataset of png images pro-
vided by the Radiological Society of North America (RSNA)
as part of RSNA’s Pediatric Bone Age Challenge [12]. The
dataset consists of hand and wrist radiographs with their
respective bone ages. It presents a high variability when
it comes to the radiographs, including different acquisition
methods, and variations in brightness, contrast, resolution,
and even aspect ratio. Figure 2 show 8 radiographs extracted
from the training dataset. The top row shows images acquired
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Fig. 2. 8 sample radiographs available on the RSNA training dataset. (top)
Images acquired trough Computed Radiography (CR) or Digital Radiography
(DR). (bottom) Images digitized from traditional film.
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Fig. 3. Age and gender distribution in the RSNA training dataset

trough processes such as Computed Radiography (CR) or
Digital Radiography (DR) [22], which usually result in clean
images. The bottom row shows radiographs digitized from
traditional film, which may not always result in proper images.
Since BAA is performed to identify growth disorders, there
is a natural unbalance in the age and gender distributions of
patients, which is illustrated in Figure 3. Ideally, datasets used
for training machine-learning solutions should be balanced.
Thus, this might negatively impact the performance of our
CNN for groups (i.e., age and gender pairs) for which just a
few samples were available for training.

In accordance with the challenge’s rules, we used the mean
absolute distance (MAD) [23] and concordance correlation
coefficient (CCC) [24] metrics to evaluate the performance of
our solution. Given a sample %, its corresponding ground truth
value z;, and the predicted bone age for that sample y;, the
MAD is obtained as:
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CCC is used to measure the agreement between two con-
tinuous variables, in our case, the predicted bone age and the
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Fig. 4. Definition of a generic building block. Source: [25]

ground truth. Given Z and ¥, respectively, the mean for the
ground truth and for the predicted bone age, the variances s2
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IV. AUTOMATED BAA WITH RESIDUAL LEARNING

Automated BAA comes as a solution to the rater variability
in traditional methods. It can also increase productivity and
assist less experienced radiologists. We use deep CNNs to
automate BAA. One major problem with training deep neural
networks is that by increasing the network depth, its accuracy
tends to saturate, quickly degrading. Surprisingly, this is not
due to over-fitting. Simply adding layers leads to higher
training error [25]. Residual networks address this problem
using skip connections, which allow a network to learn from
input/output of previous layers. This is illustrated in Figure 4,
where the identity connection z causes the resulting mapping
to become F'(z)+x. This is desirable since the previous layers
might have degraded the value of F(x).

Residual networks can go deeper and learn to represent
more complex models without saturating accuracy. We have
proposed several custom residual network architectures that
consist, partly, of an ensemble of custom blocks. Custom
blocks are composed of a convolutional layer followed by
an activation layer, which is then followed by a number of
building blocks ranging from 1 to 3 (Figure 5 - top). Each
building block has 2 convolutional layers, with an activation
layer in-between them, followed by an addition operator
and another activation layer. Finally, our custom block has
a pooling step. Each custom block can be followed by a
similar wider block. By progressively increasing the number
of kernels used in deeper layers (see Table I), our network can
learn more from its deeper layers than from its earlier ones.
Then, we flatten the output of our custom block ensemble, and
concatenate to it the patient’s gender, a one-hot encoded vector
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Fig. 5. Representation of our candidate architectures (Table I): A to D use 3
custom blocks with a single building block each, while architectures E to H
use 5 custom blocks with 3 building blocks each.

where each gender is treated as a different category. Finally,
we append dense layers with activations in-between to obtain
the bone age (Figure 5). Since radiographs from patients with
the same age, but different genders, are largely different, we
chose to provide the gender as input to the dense part of our
neural network.

We have implemented our solution using Keras [26] on top
of Tensorflow [27]. Defining complex architectures in Keras
is as simple as “stacking” layers. Tensorflow is open-source,
has great performance, and is constantly improved by Google.

A. Candidate Architectures

We have compared a total of 8 custom architectures, from
A to H, as seen on Table I. We have also compared the perfor-
mance of the Inception-V3 architecture [28] when fine-tuned
on our data. Our custom architectures are progressively more
complex (from A to H). For all architectures, we normalize the
input images in the training dataset so that the intensities of
each such image have (approximately) zero mean and variance
one. This is a standard process for training neural networks.

We also pre-process the training and test datasets by resizing
the images and performing feature scaling. Feature scaling
transforms the original pixel values, represented as 8-bit inte-
gers, to float values in the [0.0,1.0] interval, where 0.0 and 1.0
correspond to the minimum and maximum values, respectively.
Both steps are necessary due to the high variability in the
dataset. We resize the images to 256 x 256 pixels, so that we
can fit a batch with 32 images on the GPU memory. Although
image downscaling implies discarding some information, it
also reduces the amount of weights to be learned, thus accel-
erating convergence. We trained our CNN using an NVIDIA
GeForce GTX 1080 Ti GPU, with 11 GB of memory. Radio-
graphs have different dimensions (height and width), and the
aspect ratio of each radiograph should be preserved to avoid
feature distortion (e.g., the relative size of the epiphyses of the
phalanges with respect to the size of adjacent metaphyses).
Therefore, we downscale the radiographs so that its largest
dimension contains 256 pixels. The smaller dimension is then
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padded with zeros to 256 pixels. Alternatives to resizing the
images include:

« Dividing the input image in ROIs, and training on each
ROI individually. BAA could then be performed by using
the ensemble of individual evaluations. However, this is
a complex approach that may not outperform the use of
image downscaling;

Using a Bulk Synchronization Parallel (BSP) model [29].
This approach consists in splitting the image into smaller
patches that are fed to the CNN separately. Then, a
padding and normalization technique merges the patches
into a single image. This is also a more complex ap-
proach, which can be explored as future work.

We experimented with several techniques and hyper-
parameters (see Table I) that have a direct impact on our
network’s performance:

Regularization consists in trading-off flexibility with model
complexity to avoid overfitting. We used two regularization
methods: Dropout and L2 Regularization. Dropout consists
in randomly disregarding the output of some neurons during
the training phase. This gives neurons that were dependent
on their neighbors the ability to learn new features and helps
generalize the learning process [30]. L2 regularization applies
a penalty that is progressively higher as our neural network
gets deeper. Deeper convolutional layers learn more complex
features, which may not generalize well and should have a
penalty applied to their weights [31].

Normalization standardizes the inputs to hidden layers.
We use either batch normalization [32] or instance normal-
ization [33]. Batch normalization consists in subtracting the
batch’s mean from the input of a hidden layer, and then
dividing the resulting value by the batch’s standard deviation.
Instead of performing normalization within a batch, instance
normalization does it within a single sample. Both processes
have several benefits, such as accelerating convergence and
adding regularization to our network.

Data Augmentation makes the model more robust to
variations in the input data, as well as virtually increase the
size of our dataset. We perform data augmentation on our
training dataset by randomly applying transformations that
cause no impact on the assessment of the bone age. These
include rotations, uniform scaling, horizontal and vertical jitter,
and horizontal flip.

B. Training and Evaluating the Proposed Architectures

We trained all architectures described in Table I, and the
fine-tuned Inception-V3 for at least 50 epochs. The progression
of the validation MAD for the trainings of the 4 best perform-
ing architectures (B, D, F, and H) and for Inception-V3 are
shown in Figure 6. Furthermore, we trained architectures G, H,
and Inception-V3 for additional 100 epochs, for we believed
that they, due to their complexity, would be able to learn more
if trained longer. The final validation MAD values as well as
the corresponding numbers of trained epochs for architectures
A to H are shown at the bottom of Table I.



TABLE I
CANDIDATE ARCHITECTURES

Experiment

A B C D E F G H
Conv Layers (CL) 9 9 35 35 35 35
Custom Blocks (CB) 3 3 3 3 5 5 5 5
(légilding Blocks per 1 1 1 1 3 3 3 3
CL per CB 3 3 3 3 7 7 7 7
Filters per CB 16, 32, 64 16, 32, 64 16, 32, 64 16, 32, 64 1?’2832’256;’ 1?’2832’256;’ lf’zsz’zség’ lf’zsz’zség’
Filter size 3x3 3x3 3x3 3x3 3x3 5x5 5x5 5x5
L2 regularization - - - - - - - 0.0001
Dropout - - - - - - 0.15 0.15
Normalization - - batch instance instance instance instance instance
Data augmentation - yes yes yes yes yes yes yes
Final validation MAD 20.47 10.47 16.61 12 16.98 10.73 20.33 9.74
# of trained epochs 50 50 50 50 50 50 150 150
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Fig. 6. MAD evolution by epoch for the best architectures and Inception-V3.

For all proposed architectures, as well as for Inception-
V3, we used the Adaptive Moment Estimation (Adam) op-
timizer [34]. Adam is able to adapt the learning rate to
the parameters, granting faster and better convergence. We
randomly split the training dataset, leaving 80% of the images
for training and 20% for validation. During training, the
batches were reshuffled at each epoch. After analyzing the
results of the eight architectures shown in Table I, we selected
architecture H for deployment of our system.

V. RESULTS AND DICUSSION

We evaluated the accuracy of our network by performing
BAA for the 200 radiographs that constitute the test dataset
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of the RSNA challenge. Some of these images are shown in
Figure 7. Note the variability in brightness, contrast, orienta-
tion, scale, and even the presence of a flipped radiograph that
appears like a right hand (top row, third image from left to
right). The ground-truth bone age for these radiographs was
only known by the organizers of the challenge.

The average time for estimating the bone age for each
radiograph was approximately 35 ms. The complete set of
estimates was submitted on-line to the RSNA contest, and our
results achieved a MAD of 6.44 months and a CCC of 0.97.
Such CCC value demonstrates a substantial level of agreement
between our predictions and the ground-truth [35].

The Digital Hand Atlas [36], prepared by researchers from
the University of Southern California, is the most compre-
hensive dataset of hand radiographs with bone age estimates
produced by two raters. For this dataset, the inter-rater vari-
ability can be summarized by an overall RMSE of 0.59 years
(0.57 years for males, and 0.54 years for females), and 0.66
years for children between 5 and 18 years old. A more recent
study [37] reports an inter-rater variability of 0.51 + 0.44
years with the use of the GP method. Our results obtained a
MAD of 0.536 years (6.44 months), which is in accordance
with results produced by expert radiologists.

For comparison, the average error in the estimates obtained
with the recent deep-learning-based system described in [7]
is 0.82 years for males and 0.93 years for females. The
commercial software BoneXpert has an average error of 0.72
years [38]. Our results surpasses these systems.

The best results for the RSNA challenge were obtained by
the system described by Iglovikov et al. [20], which obtained a
MAD of 4.97 months (0.414 years), a difference of only about
45 days with respect to our estimates. As already mentioned,
unlike Iglovikov et al.’s system, ours is an end-to-end solution.



Fig. 7. 8 samples of radiographs available on the test dataset. Source: RSNA

We developed a website [39] where users can upload ra-
diographs and receive the corresponding bone age assessment
computed by our network (Figure 1). This website’s front-end
was developed using Angular — an open-source front-end web
application framework — and its back-end was implemented
with Django — a high-level Python web framework. Our server
handles the uploading of images, the serving of static content,
and the actual BAA.

VI. HIGHLIGHTING THE RELEVANT FEATURES

CNNe, particularly end-to-end systems as ours, may excel in
accuracy, but often lack in terms of explaining how their results
were obtained. In order to better understand the behaviour
of our CNN and its results, we use a technique known
as Gradient-weighted Class Activation Mapping [13] (Grad-
CAM), available in the Keras Visualization Toolkit [40].

We use Grad-CAM with the gradients relative to the upper
convolutional layers of our network to produce a map high-
lighting the structures that most influenced the BAA estimate.
The toolkit underwent a series of changes to accept our input,
since our network expects both the gender and the radiograph
of the patient, and KerasVIS only takes images. We also had to
adapt it to work with single-channel images. Our Grad-CAM
uses a color map to represent the importance of a region to
the BAA, with warmer colors representing stronger influence.

Figure 9 show Grad-CAM for radiographs of different
stages of skeletal maturity: pre-puberty, early and mid-puberty,
late-puberty, and post-puberty — toddlers were left out on
purpose, for there are few images for this age group in the
training dataset, as seen in Figure 3. We compared the regions
highlighted by our Grad-CAMs to the regions taken into
account by radiologists while performing BAA and noticed
that they are not necessarily similar. Here are the observed
differences for each stage of skeletal maturity:

o Pre-puberty: In this stage, radiologists primarily compare
the size of the epiphyses of the phalanges to the size of
adjacent metaphyses (see Figure 8). Our CNN takes a
different approach, deeming the ulna, radius, carpal and
metacarpal bones as the most important structures for
BAA during this stage;

o Early and mid-puberty: radiologists primarily analyze the
size of the epiphyses in the distal and middle phalanges.
Our CNN, again, takes a different approach, treating the
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Fig. 9. Importance of bone structures for estimating skeletal maturity
according to our CNN.

metacarpal bones and proximal phalanges as the most
distinctive structures;

Late-puberty: radiologists primarily consider the degree
of epiphyseal fusion of the distal phalanges. Our CNN
finds the distal phalanges to be the most relevant struc-
tures for BAA during this stage, but also finds the middle
and proximal phalanges, and metacarpal bones to be
important;

Post-puberty: radiologists primarily analyze the degree of
epiphyseal fusion of the ulna and radius bones. Our CNN
takes a different approach, deeming the phalanges alone
to be the most important structures for BAA in this stage.

The fact that the regions considered most relevant by our
CNN do not match the regions analyzed by radiologists might
suggest ways for improving our understanding about the bone
maturing process, as well as for improving traditional BAA
methods.

VII. CONCLUSION AND FUTURE WORK

We presented an automated approach for bone age assess-
ment based on residual learning. We trained and validated
our CNN on a partially-public dataset containing over 12,500
radiographs from the Pediatric Bone Age Challenge [12], orga-
nized by the Radiological Society of North America (RSNA).
We evaluated the accuracy of our network by performing
BAA for 200 radiographs from the test dataset of the RSNA
challenge. Our results achieved a MAD of 6.44 months and
a CCC of 0.97, indicating a substantial level of agreement
between our predictions and the ground-truth.

The accuracy of our solution is similar to the one obtained
by expert radiologists and superior to previous automated



systems. For the RSNA challenge dataset, our system obtained
a MAD of only 45 days bigger than the winner system [20].
Note, however, that among radiologists the inter-rater vari-
ability corresponds to 0.51 + 0.44 years [37], making the
performance of both systems comparable.

We have discussed the most relevant hand and wrist struc-
tures identified by our CNN for BAA, and have compared
them to the features observed by expert radiologists. A free
bone age assessment service based on our system is available
on-line and can be a valuable resource for doctors working in
remote areas or in institutions with no BAA experts.

We would like to evaluate the performance of our algorithm
by integrating it to a Picture Archiving and Communication
System (PACS), a technology used for storing, retrieving,
visualizing, and sharing medical images. Such systems are
commonly used in hospitals, and would allow us to integrate
our algorithm to the radiologists’ work-flow.
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