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Abstract

Cylinder detection is an important step in reverse engineering of industrial sites,

as such environments often contain a large number of cylindrical pipes and tanks.

However, existing techniques for cylinder detection require the specification of

several parameters which are difficult to adjust because their values depend on

the noise level of the input point cloud. Also, these solutions often expect the

cylinders to be either parallel or perpendicular to the ground. We present a

cylinder-detection technique that is robust to noise, contains parameters which

require little to no fine-tuning, and can handle cylinders with arbitrary orienta-

tions. Our approach is based on a robust linear-time circle-detection algorithm

that naturally discards outliers, allowing our technique to handle datasets with

various density and noise levels while using a set of default parameter values. It

works by projecting the point cloud onto a set of directions over the unit hemi-

sphere and detecting circular projections formed by samples defining connected

components in 3D. The extracted cylindrical surfaces are obtained by fitting a

cylinder to each connected component. We compared our technique against the

state-of-the-art methods on both synthetic and real datasets containing various

densities and noise levels, and show that it outperforms existing techniques in

terms of accuracy and robustness to noise, while still maintaining a competitive

running time.
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1. Introduction

CAD models of industrial sites are extremely important assets, as they pro-

vide documentation and simplify inspection, planning, modification, as well as

a variety of physical and logistics simulations of the corresponding installations.

Despite these clear advantages, many industrial sites do not have CAD models,5

or have trouble keeping them up-to-date. This is often due to the amount of

effort required to create and maintain CAD models updated. Hopefully, the

recent popularization of 3D scanning devices is promoting the development of

reverse engineering, allowing the creation of 3D representations of real environ-

ments from point clouds. This is a key step towards obtaining CAD models for10

existing installations.

In industrial sites, cylinders are used as pipes, ducts, and tanks, which are

key elements of these environments. Thus, the ability to detect cylinders is

essential to reverse engineering of these sites [1, 2, 3]. Besides Reverse Engi-

neering, cylinder detection is also a key step in many other applications, such15

as segmentation [4], hand and human pose estimation [5, 6, 7], robotic manip-

ulation [8] and urban scene reconstruction [9]. However, detecting cylinders in

unorganized point clouds is a challenging task. Cylinders may appear with var-

ious radii, lengths, textures, and materials. Moreover, unorganized point clouds

introduce additional challenges such as noise, non-uniform sampling density,20

incomplete models due to occlusions, and lack of semantic relationship among

samples.

Previous techniques for cylinder detection are mostly based on Hough trans-

form or RANSAC. They often contain several parameters which depend on the

noise level of the point cloud, thus being cumbersome to adjust, and requiring25

in-depth knowledge of both the environment and the device used to sample it.

This problem is accentuated if plane detection is required as an intermediate
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step for the actual cylinder detection, as this increases the number of parameters

involved. To simplify the detection process, many techniques make assumptions

about expected cylinder radii and orientations [10, 11, 12], which significantly30

restricts their applicability.

We present a fast cylinder-detection technique that is robust to noise, uses

parameters which require little to no fine-tuning, and can handle cylinders

with arbitrary orientations. It is based on a robust linear-time (O(N)) circle-

detection algorithm that naturally discards outliers, allowing our technique to35

handle datasets with various density and noise levels while using a set of de-

fault parameter values. It works by projecting the point cloud onto a set of

uniformly-distributed directions defined over the unit hemisphere. Only sam-

ples whose normals are approximately perpendicular to a given direction are

projected along such direction. It then refines these directions and detects cir-40

cular projections formed by samples defining connected components in 3D. The

extracted cylindrical surfaces are obtained by fitting a cylinder to each connected

component that passes a validity test.

We demonstrate the effectiveness of our approach by comparing its per-

formance against the state-of-the-art techniques for cylinder detection on five45

datasets, three of which were acquired from real industrial sites. In these ex-

periments, our method achieved the best overall accuracy using the same set of

(default) parameter values for all evaluated datasets. This is in contrast to the

other techniques, for which their parameter values were individually adjusted for

each combination of technique and dataset to achieve their best results in each50

case. This demonstrates the robustness of our approach, which does not require

fine tuning to perform well on arbitrary point clouds. Figure 1 illustrates the

use of our technique applied to a point cloud of a petrochemical plant containing

cylinders with various orientations, lengths, diameters, and positions.

The contributions of this paper include:55

• A fast technique for cylinder detection in unorganized point clouds that

is robust to noise and can handle cylinders with arbitrary orientations
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Figure 1: Example of automatic cylinder detection using our technique. (left) Point cloud
of an actual petrochemical plant. (right) Detected cylinders shown as highlighted polygonal
meshes.

(Section 3). Its parameter values require little to no fine-tuning to work

well with general point clouds;

• A deterministic circle-recognition technique capable of filtering noisy sam-60

ples (Section 3.4 and 3.5). It is faster than traditional alternatives such

as Hough transform and RANSAC.

2. Related Work

Existing cylinder detection techniques can be classified in three broad cate-

gories: (i) Hough transform, (ii) RANSAC, and (iii) Region growing. The Hough65

transform (HT) [13] is a popular technique to detect patterns in images and

point clouds. It consists of mapping the input data to some feature space accu-

mulator, through a voting process. Typically, each input element votes for all

possible patterns that may contain it. Detection then corresponds to identifying

peaks of votes in the accumulator, from whose parameter values the detected70

patterns are recovered.

Cylinders can be minimally characterized by five parameters: axis (θ,φ),

radius (r), and center (Cx, Cy), this last one corresponding to the projection of

the axis on a plane perpendicular to it. Such parameters spawn a 5D feature
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space which is both memory- and computationally-prohibitive. As a result,75

direct application of the Hough transform for cylinder detection is not practical.

Rabbani et al. proposed a two-step Hough transform to mitigate this re-

striction [14]. First, they map the sample normals to a Gauss map. Since the

normals of a cylinder form a great circle on the Gauss map, the authors proceed

by detecting the planes containing these circles, followed by the projection of80

the associated samples onto the corresponding detected planes. For each plane,

its normal is used as an estimate of a cylinder axis, while the projected circle

is used to estimate the cylinder’s radius and center. The detections of both

planes and circles use Hough transforms. A downside of this technique is that

errors during the plane detection step are propagated to the circle detection.85

Moreover, one needs to adjust parameters for two distinct Hough transforms to

achieve good results, which is cumbersome.

Ahmed et al. re-sample the point cloud by slicing it using pre-determined

intervals along the X, Y and Z directions, and on each slice they use a Hough

transform to detect circles using the projections of the samples falling inside90

each interval [12]. Circles with similar centers along the same slicing direction

are merged to obtain a cylinder. The advantage of this technique is that it

removes the need of a plane detection technique on the Gauss map. However,

it is restricted to cylinders aligned with the X, Y, or Z directions.

Patil et. al [15] proposed an improvement over the technique described95

in [14]. Instead of creating a spherical accumulator with a fixed number of

cells in the Gauss map used to detect planes, the number of cells is adjusted

according to the density of the samples in the map. Thus, regions with higher

densities in the Gauss map cover more cells in the spherical accumulator.

Figueiredo et. al [16] proposed a framework to detect cylinders placed on100

top of flat surfaces. Given an RGBD image representing a flat surface with

some objects on top, the planar surface depth values are used to segment the

objects. An image containing the RGB pixel values of each segmented object

is then presented to a CNN classifier trained on a set of images to determine

if it is cylinder, in which case a Hough transform is used to obtain the cylin-105
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der parameters (axis, radius, and center). This technique is not applicable to

unorganized point clouds.

Another category of cylinder detection techniques is based on the Random

Sample Consensus (RANSAC). RANSAC is an iterative stochastic technique

that works in two steps: first, it collects a minimal sample set necessary to110

estimate a model (e.g., a cylinder), and then evaluates the fitness of this model,

measuring the number of samples that satisfy an inlier criterion (e.g., minimum

distance to the cylindrical surface). It then chooses the model with best fit after

a predefined number iterations.

Bolles et al. used RANSAC to detect cylinders with known radius and115

orientation in range data [10]. For each scanline, the technique tries to detect

an ellipse and its center. A second RANSAC is used to detect lines in 3D passing

through the centers of the detected ellipses, thus obtaining a cylindrical volume.

Chaperon and Goulette [17] used a two-step RANSAC to detect cylinders in

unorganized point clouds. First, they detect planes on a Gauss map and then120

detect circles on the projection of the point cloud onto the planes found in the

first step. This is conceptually similar to and suffers from the same limitations

as Rabbani et al.’s [14], but was proposed earlier.

Schnabel et al. proposed a RANSAC technique to detect cylinders, among

other geometric primitives [18]. To estimate a cylinder, given two samples, the125

vector resulting from the cross product of these samples’ normals is used as

the cylinder axis estimate. They then project these samples and their normals

onto the plane perpendicular to the cylinder axis. The projected samples are

used to estimate the cylinder’s radius, whose center is obtained by extending

the projected normals positioned at the projected samples. Albeit presenting130

good results, the technique suffers from limitations inherent to RANSAC. Thus,

it may require many iterations to converge, is non-deterministic, and it may be

difficult to detect underrepresented shapes. This later problem is accentuated

in point clouds with non-uniform distributions, which is the case of most point

clouds obtained from real environments.135

Liu et al. [11] proposed a RANSAC technique to detect cylinders in pipeline
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plants which is similar to the work of Chaperon and Goulette [17]. It, however,

assumes that every cylinder is either orthogonal or parallel to the ground.

Jin et. al [19] proposed a RANSAC-based technique to detect cylinders.

The authors fit spheres to different regions of the point cloud, and a RANSAC140

technique is applied to determine straight lines passing through the centers of

the spheres, with the assumption that this will result in the axes of existing

cylinders. This technique does not work well in the presence of occlusions.

Qiu et. al [1] proposed a technique focused on the detection of pipes.

It is based on the observation that pipes often present some locally similar145

properties (orientations, radii, etc.). First, the point cloud is partitioned into

cells using an octree, and for each cell a random set of pairs of samples is chosen

to estimate a space of possible cylinder orientation candidates. This is done by

calculating the cross product between the normals of each sample pair. The most

frequent orientations are determined using a clustering technique, and for each150

such cluster another random set of sample pairs is chosen to span the space of

circle center candidates. Although faster than RANSAC-based techniques, the

assumption of local similarity of the cylinders may not always hold, especially

in regions cluttered with other objects.

Region growing techniques try to grow surfaces from some seed samples.155

Tran et al. [20] use curvature information to select potential seed sample candi-

dates. For each candidate, the technique selects a neighborhood around it and

performs an iterative fitting step. This consists of using principal component

analysis (PCA) to detect the cylinder axis, and a circle fitting procedure to

detect the cylinder’s center and radius on the projection of the samples. Sam-160

ples with good fitting to the estimated parameters are used as seed samples in

the next iteration. This process stops after a pre-determined number of itera-

tions. This technique relies on good curvature estimation, which is not trivial

to obtain. Moreover, since the iterative fitting procedure is performed for each

sample found in high-curvature regions, it is computationally expensive.165

Nurunnabi et. al [21] presented a technique based on Robust PCA (RPCA)

and robust regression that is applicable to scenes containing a single cylinder.
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RPCA is used to determine the cylinder axis and center from a set of samples.

The samples are then projected onto the plane determined by the cylinder axis

and a technique based on robust regression is used to detect the resulting circle,170

which is used to estimate the cylinder radius. It is not clear how this technique

could be extended to detect multiple cylinders in a scene.

Unlike previous methods, our technique does not rely on detecting planes

before the actual cylinder detection, does not make any assumptions about

cylinder radius or orientation, and can handle multiple cylinders in the same175

scene.

3. Connectivity-based Cylinder Detection

In order to detect cylinders with arbitrary orientations, our technique projects

the point cloud onto a set of uniformly-distributed directions on a unit hemi-

sphere (Section 3.1). Each direction defines a tangent plane onto which we180

orthographically project the samples whose normals are approximately perpen-

dicular to the plane normal (Figure 2). We then refine the orientations of these

projection planes and re-project the samples onto them (Section 3.3). For this,

for each group gi of projected samples that form a connected component in

3D, we compute a new plane orientation applying PCA to the normals of these185

samples in 3D. Such samples are then re-projected onto the new plane. Then, a

novel circle-recognition technique is applied to elements of gi to detect circular

projections (Section 3.4). Delimited cylindrical surfaces are finally obtained by

merging related connected components in 3D and fitting cylinders to the merged

components (Sections 3.6 to 3.8). Samples belonging to detected cylinders are190

removed from the point cloud, and the remaining connected components are

evaluated. This process is illustrated in Figure 3 and on Algorithm 1. Its

details are presented in Sections 3.1 to 3.8.

3.1. Projection directions

Given a circular cylinder, the projection of its samples onto a plane per-195

pendicular to the cylinder’s axis defines a circle. Thus, finding circular patterns
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Figure 2: Uniform sampling of a hemisphere defining the initial projection orientations.
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Figure 3: Our cylinder detection pipeline. Given an input point cloud, it is projected along
a set of directions on the unit hemisphere. These directions are further refined. Projected
circles are detected and outliers removed. Cylindrical surfaces are then obtained by fitting
cylinders to connected components in 3D corresponding to detected circles. The samples of
detected cylinders are removed from the point cloud, and related components are merged into
single cylinders.
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Algorithm 1 Cylinder Detection

Require: PC {point cloud with estimated normals and neighborhood informa-
tion} Ns {number of sampling directions}

1: procedure DetectCylinders(PC,Ns)
2: cylinders← ∅
3: components← ∅
4: directions← Fibonacci(Ns) . sampling directions: Fibonacci mapping
5: for all D ∈ directions do
6: P ′ ← Project(PC,D)
7: c← FindConnectedComponents(P ′)
8: components.insert(c)

9: for all c ∈ components do
10: P ′ ← Reproject(c)
11: if ContainsCircle(P ′) then
12: Cylinder ← FitCylinder(c)
13: if IsV alid(Cylinder) then
14: cylinders.insert(Cylinder)
15: RemoveSamples(c)
16: components← FindNewConnectedComponents(components)

17: return cylinders

resulting from projected samples can be used to greatly simplify the detection of

cylinders in point clouds. Unfortunately, plane detection techniques applied on

the Gauss map and used for cylinder detection [11, 17, 14] are error prone and

computationally expensive. Thus, in order to select the projection directions,200

we perform an initial uniform sampling of the unit hemisphere, which is fur-

ther refined to adjust them to the point cloud content. Any uniform sampling

technique can be used, but we opt for the spherical Fibonacci mapping [22]

(due to its simplicity), with 100 sampling directions (Figure 2). Algorithm 2

implements the Fibonacci mapping.205

3.2. Detecting connected components

Given the projection directions defined by the Fibonacci mapping, we project

the point cloud along each direction d(θ,φ), considering only the samples whose

normals are approximately perpendicular to d(θ,φ) (i.e., d(θ,φ) ± τ). For all

results shown in the paper, we used an angular tolerance τ = 10◦.210

Naively detecting circles on each projection can be, not only computationally
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Algorithm 2 Hemispherical Fibonacci Mapping

Require: Ns {number of sampling directions}
1: procedure Fibonacci(Ns)
2: directions← ∅
3: offset← 2/Ns
4: increment← π(3−

√
5)

5: for i← 1 to 2Ns do
6: y ← i× offset+ offset/2− 1

7: r ←
√

1− y2

8: α←Modulo(i+ 1, Ns)× increment
9: x← rcos(α)

10: z ← rsin(α)
11: if z > 0 then
12: directions.insert([x, y, z])

13: return directions

Figure 4: The projections of cylinders A and B overlap. The projection of cylinder C produces
an ellipse.

expensive, but also error prone, for two reasons: (i) real scenes may contain

cylinders whose projections may exactly overlap, causing two (or more) cylinders

to be detected as a single one; and (ii) none of the projection planes may be

perpendicular to a given cylinder axis, resulting in projected ellipses, which215

may not be detectable by standard approaches. Both situations are illustrated

in Figure 4.

To avoid having two (or more) cylinders detected as a single one, we split

each projection into groups of samples (gi’s), where each group forms a con-

nected component in 3D. To obtain the connected components, we compute220

a neighborhood graph G for the point cloud performing a k-nearest neighbors

search in 3D from each sample (we use k = 50). Then, for each projected sam-
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ple, we perform a breadth-first search (BFS) on G considering only the set of

projected samples. This search will naturally return a connected component.

We perform searches until all projected samples have been visited.225

3.3. Refine projection plane orientations and samples

In order to avoid elliptical projections, the projection directions need to be

refined for some cylinders. These will correspond to the new cylinder axes.

Thus, let ci be a connected component in 3D belonging to a cylinder Cj in the

point cloud, and corresponding to the projected samples in gi. Since ci’s samples230

should have normals perpendicular to Cj ’s axis, we estimate the cylinder axis

by applying principal component analysis (PCA) to the set of normals of ci’s

samples. The direction with least variance corresponds to Cj ’s axis. We can

then project ci’s samples onto the plane perpendicular to newly estimated Cj ’s

axis using the procedure described in Section 3.2. Both cylinder axis refinement235

and sample reprojection are shown in Algorithm 3.

Algorithm 3 Refine cylinder axis and samples

Require: c {connected component} G {neighborhood graph}
1: procedure ReadjustComponent(c,G)
2: pca← PCA(c.normals)
3: axis← pca[1] . eigenvector with smallest eigenvalue: |λ1| ≤ |λ2| ≤ |λ3|
4: q ← ∅ . initialize sample queue
5: for all s ∈ c.samples do
6: q.enqueue(s)

7: while q 6= ∅ do
8: front← q.dequeue()
9: for all n ∈ G.neighbors(front) do

10: if n /∈ c ∧ acos(dot(n.normal, axis)) > α then
11: c.insert(n)

12: return Project(c, axis)

3.4. Circle recognition

Once each connected component has been refined (Sections 3.2 and 3.3), our

technique checks if its projection fits a circle (see pipeline in Figure 3). For

this, we introduce a fast and robust circle recognition technique by exploring240
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Figure 5: The subdivision strategy used to find a circle. At first, rays are traced from each
sample position (small circles) along its reversed normal direction (a) (b), then the quadtree
cell most intersected by these rays is chosen (c), and the samples which intersected it are
evaluated using a histogram (Figure 6). If the histogram is uniform, then cell is subdvided
(d). This process is performed recursively (e), until the quadtree reaches a pre-defined depth.

the fact that extended normals from each sample of a circle should intersect at

the circle’s center. One can then classify a set of samples as being on a circle

or not depending on the existence of such point of intersection, which can be

quickly checked using a subdivision strategy. It works as following: consider a

quadtree, initialized with the bounding box of the set of projected samples, and245

containing four child nodes (Figure 5 (a)). For each projected sample in gi, we

check if the (reverse) ray formed by its position and (reverse) projected normal

intersects the bounding box of each quadtree’s child, as shown in Figures 5 (a)

and (b), in which case the sample is added to the child’s list of intersections.

Algorithm 5 summarizes this procedure.250

Algorithm 4 Check 2D Ray-AABB Intersection

Require: R {Ray} BB {Bounding Box}
1: procedure Intersect(R,BB)
2: tx1 ← (BB.xleft −R.Ox)/R.Nx . R.O = Origin
3: tx2 ← (BB.xright −R.Ox)/R.Nx . R.N = Direction(normalized)
4: tmin = min(tx1, tx2)
5: tmax = max(tx1, tx2)
6: ty1 ← (BB.yup −R.Oy)/R.Ny
7: ty2 ← (BB.ydown −R.Oy)/R.Ny
8: tmin = max(tmin,min(ty1, ty2))
9: tmax = min(tmax,max(ty1, ty2))

10: return tmax ≥ tmin

After checking intersections for all samples in gi, the quadtree child node

with most intersections (Figure 5 (c)) is chosen and checked to determine if
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Figure 6: Histogram for different shapes after mapping the range of the arctan2 function from
[−π, π) to [0◦, 360◦). Circular shapes have their bins more uniformly distributed (a) and (b),
while the bins of other shapes are either too sparse (c), or non-uniformly distributed (d). Each
light red rectangle is the range of bin heights that would cause the histogram to be considered
uniform. Such a range is computed using only the nonempty bin heights: it is centered on
the mean, covering two standard deviations above and below the mean.

the projected samples whose (reverse) rays intersect it form a circular shape.

This is done by first computing a histogram of the angles measured between the

projected normal directions and the horizontal axis, according to Equation 1.255

If a shape is circular, this histogram must be uniformly distributed (Figure 6

(a)). However, this would only happen in case the shape is a full circle. Since

point clouds are susceptible to occlusion, it is desirable to also consider arcs

of varying lengths. Thus, we check if a percentage of the angular bins are

uniformly distributed (i.e., if the number of elements in each nonempty bin is260

approximately equal to the ratio between the number of projected samples and

the number of nonempty bins). This is illustrated in Figure 6 (b). Figures 6 (c)

and (d) show examples of histograms associated with non-circular projections.

θN = arctan2(Ny, Nx) (1)

A bin element is considered part of a uniform bin distribution if its value

falls in the interval built around the mean (i.e., number of projected samples in265

gi divided by the number of bins), µbins, using three standard deviations of the

bin values, σbins: [µbins − 2σbins, µbins + 2σbins], since for a normal distribution
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2 σ represents 95% of the area under the curve. For the examples shown in the

paper, we subdivided the histogram into 72 bins, and considered the minimum

acceptable number of uniformly-distributed bins to be 18 (one quarter of the270

total number of bins, or equivalent to 90 degrees).

If the quadtree child node with most intersections does not meet the above

condition, the connected component is immediately rejected as a circle can-

didate. Otherwise, we subdivide the child node and call the same procedure

recursively up to five times, considering only the set of samples in gi whose275

associated reverse rays intersect the child node. This process is illustrated in

Figure 5 (c) and (d).

Algorithm 5 Find a circle in a set of samples

Require: Q {Quadtree} h Minimum quadtree height
1: procedure FindCircle(Q, h)
2: if Q.height > h then
3: FilterNoise(Qsamples)
4: return Qsamples

5: if IsNotCircular(Q) then
6: return NULL
7: for all p ∈ Qsamples do
8: for all q ∈ Qchildren do
9: if Intersect(p, q) then

10: qsamples.insert(p)
. Q’s child node with maximum number of intersections

11: qwithMaxInters ←MaxIntersection(Qchildren)
12: return FindCircle(qwithMaxInters, h)

The main advantage of our circle-detection algorithm over classical approaches,

such as Hough transform and RANSAC, is its lower computational cost. Being

significantly faster than previous techniques, our solution enables testing the280

projection of the point cloud along a larger number of directions in the same

amount of time, ultimately improving the accuracy of cylinder detection.

Given N samples, the computational cost of our circle-detection technique

is O(D×N), where D is the maximum depth of the quadtree. Since D is small

(D = 5 for all examples shown in the paper), the cost is O(N). The Hough285

transform for circle detection has cost O(binsx× binsy× binsradius×N), where
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binsx, binsy, and binsradius are the number of bins in each dimension of the

accumulator. RANSAC, in turn, has cost O(I ×N), where I is the number of

iterations required to detect a circle, which can be arbitrarily high, depending

on the noise level and the specified thresholds.290

Another advantage of our technique is its independence of noise-level thresh-

olds. For RANSAC, in particular, it is difficult to set a good distance threshold

which works well for all projected samples from a point cloud. This happens

because such threshold depends on the noise level, which is not uniform in most

unorganized point clouds (the further a sample is from the sensor, the stronger295

the noise level).

3.5. Robust outlier removal

Once a circle has been detected by the technique described in Section 3.4,

we perform an outlier-removal procedure before fitting a cylinder to the set of

samples whose projections were used to detect the circle. For each gi, its samples300

are used to obtain robust estimates for a circle center and radius.

In Robust Statistics, each estimator has a breakdown-point, a percentage of

supported outliers beyond which the estimate is no longer reliable. The mean

estimator has 0% breakdown-point, since a single outlier impacts its result. The

median, on the other hand, is a much more robust estimator, with a breakdown-

point of 50%. Like the median, there is a robust alternative to the standard

deviation called median absolute deviation (MAD):

MAD(X) = k ×median(|xi −median(X)|), (2)

where xi represents all individual samples in the set X, while k is required to

make MAD consistent with the standard deviation estimator. For a normal

distribution, k = 1.4826 [23].

To estimate the circle center, we take n groups of three projected samples305

(we set n equal to the number of samples in gi) and from the j-th triple we

estimate a circle and its center at (Cjx, Cjy), creating two new sets of observations:
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Figure 7: Outlier removal. Red circle obtained using robust estimates for its center (green X,
MCi) and radius MRi. The pink disk represents the interval defined by Equation 3. Samples
(black dots) outside this interval are discarded as outliers.

Cix = [C1
x, C

2
x, ..., C

n
x ] and Ciy = [C1

y , C
2
y , ..., C

n
y ]. The circle center is estimated

as the median of each set, i.e., MCi = (median(Cix),median(Ciy)).

The radius MRi of the circle is obtained as the median of the set ∆i =

{δi1, δi2, ..., δin} of distances from the projection of each sample sgij ∈ gi to MCi.

In order to robustly detect outliers with 99.7% of confidence, we define an

interval Ii centered at MRi with 3 MADs of extent to each side (Equation 3).

Any sample whose distance to MCi = median(∆i) falls outside this interval is

discarded as an outlier. This process is illustrated in Figure 7.

Ii = [median(∆i)− 3×MAD(∆i);median(∆i) + 3×MAD(∆i)]. (3)

3.6. Detecting false positives310

The detection of a projected circle does not guarantee that the corresponding

connected component forms a cylinder. Projections of other 3D shapes, such

as spheres and cones, also produces circles (Figure 8). Thus, a mechanism for

detecting false positives is required.

After removing outliers from gi, our technique uses a least-squares procedure315

to fit a cylindrical surface to the set of corresponding samples in the associated

connected component ci in 3D. It is based on Equation 4, which computes the
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Figure 8: Samples from objects with different shapes may produce circular projections.

distance from a given sample sj ∈ ci to the cylindrical surface:

dj =

(
||(sj − Cc)× (sj − (Cc +A))||

||(Cc +A)− Cc||
− r
)2

= (||(sj − Cc)× (sj − Cc −A)|| − r)2
,

(4)

where sj is a sample position in 3D, Cc is the cylinder center, A is the cylin-

der axis and r is the cylinder radius. And since the cross product is a linear

transformation,

dj = (||(sj − Cc)× (sj − Cc)− (sj − Cc)×A|| − r)2

= (||(Cc − sj)×A|| − r)2.
(5)

After the fitting, a cylinder is considered valid if it meets three conditions:

(i) at least 50% of the normals from the samples used to fit the cylinder are320

perpendicular to the fitted cylinder axis (with tolerance τ = 10◦); (ii) at least

one quarter of the bins of the angular histogram (i.e., at least 90◦) are uni-

formly distributed; (iii) the ratio between the fitted cylinder radius and its

height must be below a threshold γ (conservatively set to 5). Conditions (i) and

(ii) evaluate the quality of the fitting. Condition (iii) prevents cones, spheres,325

and related geometric shapes from being detected as cylinders (Figure 8). For

a non-cylindrical geometric shape whose projection produces a circle, only a

small section of it will be actually projected. Such a section can be bigger or

smaller depending on the angular threshold τ allowed between the sample and

plane normals. Regardless, it is expected that the height/radius ratio for false330
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positive cylinders be small and much smaller than γ = 5.

3.7. Recomputing connected components

The samples associated with detected cylinders are removed from the point

cloud. This may affect connected components that may not have been analyzed

yet, as a sample may belong to more than one connected component (e.g.,335

consider a sample at the intersection of two cylinders). Thus, after removing

samples, the connectivity of all components that have not been evaluated yet

need to be re-checked. If a connected component has been split, the original

component is removed and its subcomponents are added to the list of connected

components.340

In order to speed up this process, the largest components are analyzed first,

as we want to remove the largest number of samples as soon as possible, pre-

venting them from being projected and analyzed multiple times unnecessarily.

After recalculating the connected components, they are sorted based on their

number of samples.345

3.8. Merging connected components belonging to the same cylinders

A cylinder may be fragmented into multiple connected components. Since

our technique treats each connected component separately, a cylinder may be

detected multiple times, once per fragment, and these components need to be

merged. This situation is illustrated in Figure 9.350

To identify the cylinders whose components should be merged, we iterate

over each pair of detected cylinders Ci and Cj , which should satisfy three simi-

larity tests: (i) they must have similar orientations (i.e., similar axis directions);

(ii) they must have similar radii values; and (iii) they must have similar center

positions. The connected components that satisfy such criteria are merged us-355

ing union-find operations. After all merge operations have been performed, a

resulting cylinder is obtained from each union through least-squares fitting of

its samples (Figure 9 (right)).
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Figure 9: Merging multiple connected components belonging to a cylinder. (left) Due to
partial occlusion, two connected components from the same cylinder in the Petrochemical
plant dataset, marked in blue and red, are detected as possibly belonging to separate cylinders.
(right) The resulting detected cylinder after the merging process.

Test (i) checks if the angle between the axes of Ci and Cj is below a cer-

tain threshold α (experimentally set to 10◦). Test (ii) checks if the ratio360

max(ri, rj)/min(ri, rj) between the radii ri and rj of the two cylinders is below

a certain threshold β (experimentally set to 2). For test (iii), let li and lj be the

line segments corresponding to the limits of the projections of the samples in

the connected components ci and cj on the axes of Ci and Cj , respectively (Fig-

ure 11). li and lj approximate the medial axes of the surfaces defined by ci and365

cj , respectively. For the connected components of Ci and Cj to be merged, the

distance between li and lj should be below a certain threshold (experimentally

set as max(ri, rj)/10).

We opted for a large threshold β for the cylinders’ radii ratio because the

radius value estimated by least squares is not as reliable as the estimated axis,370

especially when just a small section of a cylinder is available (i.e., a 90◦ arch).

This situation is illustrated in Figure 10.

3.9. Complexity analysis

The cost of our cylinder detection technique is O(PN3), where P is the

number of projection directions on the uniform sampling of the hemisphere375

(Figure 2), and N is the number of samples in the point cloud. Next, we

analyze the cost of the individual steps of the algorithm.

For each projection direction, we analyze each sample and project it if its

normal is approximately perpendicular to the given direction. This has cost
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Figure 10: Radius estimation uncertainty. Four cylinders (top view) with different radii
estimated from the samples shown in black (solid arch). Although the differences in radii are
big, the actual fitting errors are small in all four cases.

Figure 11: Evaluating multiple conditions to merge the connected components from two
cylinders. Cylinders A and B will be merged because they have similar orientations, radii,
and distance from their medial axes (dotted line segments) is sufficiently small. Cylinder C
will not be merged with A or B because its radius is much bigger than the other two. Cylinder
D, despite having same orientation and radius, will not be merged with cylinder A because
the distance between their medial axes is too big. The same applies to cylinder E with respect
to cylinders A and B.
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O(PN). For each projection, we compute the connected components using a380

neighborhood graph G. We compute G using k-nearest neighbors, which for

an individual sample has cost O(klog(N)) = O(log(N)) (using a kd-tree as

auxiliary data-structure, where k is the number of neighbors, and assuming

k << N). For all N samples, the cost of computing G is O(Nlog(N)). Since

we perform a breadth-first search on G to compute the connected components,385

this step has cost O(E + N), where E is the number of edges (neighbors) and

N is the number of vertices (samples) in G. Since, for G, E << N , this has

cost O(N).

The projection directions are refined, with more samples being included in

the connected component, if necessary. Such refinement is performed only once390

using PCA [24], whose cost is O(N3). Thus, this whole refinement process has

cost O(PN3).

For each connected component, we perform a circle recognition using a

quadtree to check the intersection of the sample normals with the quadtree

node cells (Algorithm 4). For each level, only one cell is subdivided, and in395

the worst case this cell will be intersected by rays from all samples. This has

cost O(DN), where D is the maximum number of quadtree subdivisions for a

circle to be recognized. Therefore, this step has cost O(PDN). However, since

D ≤ 5, this step has cost O(PN).

For the robust outlier removal, we calculate mean and MAD of a set of400

samples to obtain the inlier interval. Calculating the median of a set of distances

can be performed in O(N), and thus this step has cost O(N).

In the false-positive test, the most expensive operation is the least-squares

fitting of a set of samples, whose cost is O(N3). Since one sample can be

projected at most P times, this test has cost O(PN3).405

For merging connected components from multiple cylinders, each cylinder is

compared to all the others. Since the minimal theoretical number of samples

required to represent a cylinder is five [17], in the worst case we have N/5

cylinders. Thus, this step has cost O(N2). Therefore, the total cost of our

technique is O(PN3).410
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3.10. Complexity analysis of compared techniques

For completeness, this section provides the time complexity of the methods

compared against our technique in Section 4. The cost of the standard version

of RANSAC is O(IN), where I is the number of iterations used to detect one

instance of the queried model. The technique proposed by Liu et. al [11] is415

composed by two main steps: (i) detection of the planes in the scene, and (ii)

detection of circles in the projections on each plane. For the detection of the

planes, all samples are mapped to a Gauss map, where it is partitioned into cells

and one of them will be chosen according to a maximal connected component

criterion. This step can be performed in linear time. The second step uses a420

standard RANSAC. Hence, the technique has a total cost of O(INL), where L

is the number of planes in the scene. The technique proposed by Tran et. al [20]

is a region growing algorithm consisting of the selection of seed samples followed

by an iterative fitting step for each seed. Each such step consists of applying

PCA to a neighborhood around the seed sample. The cost of PCA is O(N3)425

and the number of iterations is constant. Since each sample in the point cloud

can potentially be a seed sample, the total cost of this technique is O(N4). The

technique proposed by Ahmed et al. [12] consists of partitioning the point cloud

into regular intervals along the three main axes (X, Y, Z) and then applying

a Hough transform to the projections of the samples within each such interval430

to detect circles. The cost of the standard Hough transform to detect circles is

O(N3) (since it requires a three-dimensional feature space), and therefore this

technique has cost O(TN3), where T is the number of intervals used to sample

the X, Y, and Z directions. The technique proposed by Schnabel et. al [18]

presents many improvements to the standard RANSAC, but its asymptotic cost435

is still the same, i.e., O(IN). From this analysis, one can sort the compared

techniques according to computational efficiency (from fastest to slowest) as:

Schnabel et al. [18], Liu et al. [11], ours, Ahmed et al. [12] and finally Tran et

al. [20]. This is consistent with the results in Table 2.

23



4. Results440

In order to evaluate our technique, we used five datasets consisting of two

synthetic (including a complex one that models an oil refinery) and three ob-

tained from real scenes (Figure 12). Such models were chosen to stress the ability

of cylinder-detection techniques to handle different features and configurations

found in actual installations. The datasets are: (i) Synthetic scene: a scene445

containing one cube and two cylinders on top of a plane. The positions of these

samples were corrupted using a uniform distribution of noise values ranging

from 0 to 1% of the side of the point cloud’s cubic bounding box. (ii) Synthetic

oil refinery : an oil refinery scene modeled using 3D software and converted

to point cloud by uniformly sampling the polygonal mesh; (iii) Pump room: a450

sewer treatment plant pump room; (iv) Petrochemical plant : a frontal scan from

a petrochemical site; and (v) Boiler room: a set of integrated scans from the

complex environment of a boiler room consisting of almost six million samples.

The real datasets were obtained from Leica’s public sample repository [25]. The

ground truth for each dataset was obtained by manually selecting the samples455

of each cylinder and using them to least-squares fit a cylindrical surface. Ta-

ble 1 shows the number of cylinders, the percentage of the scene area covered by

cylindrical surfaces, the density level, and the capture method of each dataset.

Table 1: Dataset Information: Number of Cylinders, Percentage of Cylindrical Scene Cover-
age, Density and Source (sensor).

#samples #cylinders

% cylinder

regions density
source

(sensor)
Synthetic scene 138,000 2 34 high synthetic
Synthetic oil refinery 499,976 3 22 high synthetic

Pump room 166,976 13 13 low
LiDAR

(single view)

Petrochemical plant 358,116 8 13 high
LiDAR

(single view)

Boiler room 5,990,481 21 7 non-uniform
LiDAR

(multiple views)
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Synthetic scene Synthetic scene ground truth

Synthetic oil refinery Synthetic oil refinery ground truth

Pump room Pump room ground truth

Petrochemical plant Petrochemical plant ground truth

Boiler room Boiler room ground truth

Figure 12: Ground-truth for each dataset.
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4.1. Evaluation metrics

In order to objectively compare our technique to previous ones, we adapted

three well-known metrics from Information Retrieval to our context: precision,

recall, and F1-score. Precision is the percentage of correctly retrieved instances

(i.e., true positive) among all retrieved ones (i.e., true positive + false positive).

Recall is the percentage of correctly retrieved instances among all correct in-

stances (i.e., true positive + false negative). Finally, F-1 Score is the harmonic

mean of precision and recall. These measures are summarized by Equations 6

to 8.

Precision =
true positive

true positive+ false positive
(6)

Recall =
true positive

true positive+ false negative
(7)

F1 = 2× precision× recall
precision+ recall

(8)

We say that a detected cylinder corresponds to a true positive if its orienta-460

tion differs by no more than 20◦ from the ground truth’s orientation, and they

share at least 50% of their samples. The first condition ensures that the cylin-

ders have similar orientations, while the second ensures that they are centered

at approximately the same position in space.

4.2. Experiments465

We implemented our technique in C++ using Eigen[26] as our linear algebra

library. We compared it against the most popular as well as the most recent

approaches for cylinder detection using the five datasets shown in Figure 12.

These methods are based on RANSAC, Hough transform, and region growing.

All experiments were executed on a Intel R© CoreTM i7-7700K 4.20GHz CPU470

with 32GB RAM. Next, we describe the compared techniques and present the

reasons for their choices.

In the Hough transform category, the work of Ahmed et al. [12] was chosen

because it corresponds to a state-of-art technique for cylinder detection. In
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terms of RANSAC, the work of Schnabel et al. [18] was chosen since it is a475

popular and traditional RANSAC approach. Liu et al. [11] was chosen because

it is a recent approach to detect pipes, which is also the main intent of our work.

Finally the work of Tran et al. [20] was chosen since, to our knowledge, it is

the most recent work on cylinder detection. It is based on region growing.

With the exception of Schnabel et al. [18], we could not find implementations480

of the other techniques. Thus, we implemented them ourselves, as faithfully as

possible, also in C++. In order to prevent bias, for techniques that require

normals, we used the same normal estimation approach used for our technique.

The normals were estimated using FAST-MCD [27], in a neighborhood of size

50. Table 2 summarizes the results of our experiments, including values for485

precision, recall, F1-score, and execution time in seconds. The average and

standard deviation of the elapsed time were calculated upon 10 executions. Note

that our technique achieved the best F-1 score for four out of the five evaluated

datasets, while still maintaining a competitive running time. The ground truths

and the cylinders detected by each technique are shown in Figure 13. High-490

resolution versions of these results are available in the supplementary materials,

which we encourage the readers to inspect.

For the Synthetic scene dataset, our technique achieved the best results.

RANSAC-based techniques such as Schnabel et al.’s tend to detect planar sur-

faces as spurious incomplete cylinders with very large radius. Thus, for this495

dataset, Schnabel et al.’s detected the base plane as a spurious cylinder. Liu

et al.’s was unable to detect one of the cylinders. Ahmed et al.’s detected the

cylinders, but with some missing slices. Tran et al.’s detected spurious cylinders

in regions with high curvature, such as the edges of the cube.

For the Synthetic oil refinery dataset, our technique was able to detect two500

out of the three cylinders. For one of the cylinders, it overextended its height, as

some close-by samples from the ground plane, whose normals are perpendicular

to the axes of these cylinder, were mistaken as belonging to these cylinders.

Schnabel et al.’s again detected planes as spurious cylinders. Liu et al.’s was

able to obtain a clean detection of the two horizontal cylinders. However, for505
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Table 2: Performance of the evaluated techniques on each dataset. Number of detected
cylinders over total number of cylinders (#), Precision (P), Recall (R), F1-Score (F1), Elapsed
time Average (Tµ) and Standard deviation (Tσ) both in seconds. Best results in bold.

# P R F1 Tµ Tσ
Synthetic scene

Schnabel et al. [18] 2/2 0.41 0.94 0.58 0.29 0.04
Liu et al. [11] 1/2 0.99 0.41 0.58 0.44 0.002
Tran et al. [20] 2/2 0.91 0.33 0.49 4.33 4.37
Ahmed et al. [12] 2/2 1.0 0.29 0.45 7.78 1.78
Our technique 2/2 0.98 0.88 0.93 1.61 0.17
Synthetic oil refinery
Schnabel et al. [18] 3/3 0.43 0.93 0.59 0.29 0.07
Liu et al. [11] 3/3 0.99 0.33 0.50 2.06 0.02
Tran et al. [20] 3/3 0.86 0.57 0.68 65.33 49.86
Ahmed et al. [12] 3/3 0.99 0.35 0.52 27.71 8.11
Our technique 2/3 0.68 0.64 0.66 7.18 0.13

Pump room
Schnabel et al. [18] 2/13 0.08 0.33 0.14 0.20 0.05
Liu et al. [11] 1/13 0.17 0.08 0.11 0.74 0.01
Tran et al. [20] 3/13 0.65 0.31 0.42 11.87 6.45
Ahmed et al. [12] 1/13 0.39 0.12 0.19 20.59 1.81
Our technique 3/13 0.77 0.38 0.51 0.95 0.04
Petrochemical plant
Schnabel et al. [18] 6/8 0.14 0.70 0.24 0.46 0.04
Liu et al. [11] 4/8 0.27 0.31 0.29 1.31 0.01
Tran et al. [20] 3/8 0.85 0.30 0.45 12.21 9.10
Ahmed et al. [12] 5/8 0.86 0.42 0.56 5.23 0.58
Our technique 5/8 0.53 0.62 0.57 2.27 0.11

Boiler room
Schnabel et al. [18] 1/21 0.04 0.23 0.07 7.83 1.51
Liu et al. [11] 1/21 0.02 0.08 0.03 29.45 2.17
Tran et al. [20] 2/21 0.50 0.13 0.20 1,150.73 30.27
Ahmed et al. [12] 0/21 0 0 - 197.42 38.14
Our technique 12/21 0.73 0.56 0.63 47.23 1.01

28



the vertical cylinder, the circle detection did not obtain a good fit, reducing its

recall. Ahmed et al.’s detected all cylinders but for the horizontal ones it only

detected small sections of them. Tran et al.’s detected spurious cylinders on the

edges.

The Pump room dataset proved to be quite hard because it only contains510

partial views of all cylinders. Despite only detecting 3 of the 13 cylinders in

the scene, our technique still obtained the best results. Since this scene is not

perfectly aligned with the X-Z axis (it is slightly rotated around the Y axis),

Ahmed et al.’s performed badly on this dataset, only being able to detect one

cylinder along the Y axis. Both RANSAC based techniques - Schnabel et al.’s515

and Liu et al.’s - detected spurious cylinders.

For the Petrochemical plant dataset, our technique was able to detect 5

out of the 8 cylinders. An occlusion split one cylinder into two sufficiently

far apart from each other, and each part had an arc lesser than 90◦ during the

circle detection procedure. Nevertheless, our technique still obtained the highest520

F1-score. Once again, RANSAC-based techniques detected planar surfaces as

spurious cylinders. Ahmed et al’s technique achieved the highest precision, but

also detected a large spurious cylinder. Tran et al’s detected 3 out of the 8

cylinders, and had the lowest recall.

The Boiler room is the most complex dataset and proved to be the hardest525

among all five. For such dataset, our technique achieved the best precision,

recall, and F1-score. It was able to detect 12 out of 21 cylinders. For compar-

ison, Ahmed’s, Schnabel, Liu’s, and Tran’s techniques detected 0, 1, 1, and 2

cylinders, respectively.

For four out of five datasets, our technique obtained the best F-1 score,530

demonstrating its superior accuracy. We should emphasize that for the experi-

ments reported in Table 2, we have fine-tuned the parameters of each competing

technique for the individual datasets in order for them to obtain their best re-

sults in each case. For our technique, on the other hand, we used the same

set of default parameter values for all datasets, demonstrating its robustness535

and independence of parameter tuning. The accuracy of our technique results

29



S
y
n
.

sc
e
n
e

O
il

re
fi
n
e
ry

P
u
m

p
R

o
o
m

P
e
tr

o
ch

e
m

ic
a
l

B
o
il
e
r

R
o
o
m
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Figure 13: Cylinders detected by the compared techniques for all datasets. Ground truth is
shown in the rightmost column. For each pair of technique and dataset, the detected cylinders
have been highlighted using different colors. Black dots represent samples treated as outliers
by each technique. Left-click on the images to zoom in and inspect the details. Larger versions
of these images are also available in the supplemental material.

from the ability of our circle-detection algorithm to automatically filter outliers

(both in terms of positions and normal directions), making it more robust to

noise and, consequently, more independent of parameter tuning. Although our

technique is not the fastest (Schnabel et al.’s being first), it is much faster than540

Tran et al.’s and Ahmed et al.’s. Another point to be stressed is that our tech-

nique is deterministic, unliked RANSAC-based solutions such as Schnabel et

al.’s and Liu et al.’s, whose results may very among multiple executions on the

same dataset.

4.3. Noise-Handling Evaluation545

In order to evaluate the techniques’ robustness to noise, we performed an

experiment that consisted of processing versions of the original datasets con-

taining increasing amounts of noise. For each dataset, we perturbed the po-
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Figure 14: Part of the petrochemical plant dataset shown with increasing levels of noise.

sition of each sample using Gaussian distributions with standard deviations of

σ = 0.1%, σ = 0.125%, and σ = 0.25%, respectively, relative to the size of the550

(cubic) bounding box of the dataset. All sample normals were re-estimated, re-

sulting in datasets containing not only noisy positions but also noisier normals.

Figure 14 illustrates a portion of one of the datasets after the perturbations.

We evaluated all techniques on these noisier datasets. For each combination

of technique and dataset, we used the same parameter values used for producing555

Table 2, i.e., for each technique, with the exception of our own, we fine-tuned

the parameter values to each original dataset and used them for that dataset

with all noise levels. For our technique, on the other hand, we used the same

default parameter values regardless of dataset or noise level. For these noisier

datasets, we calculated the ratio of detection, i.e., the number of correctly560

detected cylinders over the total number of cylinders in the scene. The results

of our technique for each dataset can be found in Table 3. A weighted average

ratio of detection was calculated for all techniques, as:

Wσ =
∑

i∈datasetσ

Cidetected
Citotal

× Citotal∑
j∈datasetσ

Cjtotal
, (9)

whereWσ is the weighted average ratio of detection for the noise level σ, Ckdetected

and Cktotal are, repectively, the number of detected cylinders and the total num-565

ber of cylinders in dataset k. These weighted averages are shown in Figure 15.

Although all techniques experienced a performance drop, ours maintained

the best performance at all noise levels being able to detect, on average, at least

32% more cylinders than the second-best ranked technique, despite of using the
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Figure 15: Weighted average performance of each technique considering all datasets with in-
creasing amount of added Gaussian noise. Standard deviation corresponding to 0.1%, 0.125%,
and 0.25% of the size of each dataset’s bounding box.

same set of default parameters for all evaluated datasets.570

Table 3: Ratio of detected cylinders of our technique in each one of the evaluated datasets
containing increasing amount of noise.

σ = 0% σ = 0.1% σ = 0.125% σ = 0.25%
Synthetic scene 2/2 2/2 2/2 2/2
Synthetic oil refinery 2/3 2/3 1/3 2/3
Pump room 3/13 3/13 3/13 2/13
Petrochemical plant 5/8 4/8 4/8 3/8
Boiler room 12/21 13/21 13/21 11/21

4.4. Limitations

Currently, during the analysis of the connected components, we only check

if the normal of each sample is perpendicular to the normal of the projection

plane. This can add undesired samples to the connected component, as shown

in the Oil Refinery dataset, where the cylinders were overextended using some575

near-by samples from the plane (whose normals are also perpendicular to the

axes of the two cylinders). A further verification would need to be done in order

to disassociate such samples from the cylinder.

One disadvantage of our technique with respect to RANSAC- and Hough-

transform-based solutions is that, if a cylinder is fragmented into disconnected580
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sections whose projections form arcs smaller than 90◦ each, the cylinder will not

be detected, as each arc does pass the circle recognition test, demonstrated in

the Petrochemical plant dataset. Addressing this issue requires obtaining new

samples covering the missing regions. Also, the number k used to build the con-

nectivity graph G may impact the performance of our technique. If k is chosen585

too small, regions which are visually connected might be disconnected in the

graph, making some cylinders to go undetected, due to the reasons just men-

tioned. If, on the other hand, k is chosen too big, G may connect regions which

are visually disconnected, causing their projections to fail the circle recognition

test. According to our experience, k = 50 works well for all tested point cloud590

configurations.

5. Conclusion

We presented a fast and robust technique for automatic detection of cylin-

ders with arbitrary orientations in unorganized point clouds. It consists of

orthographically projecting the point cloud along multiple directions and re-595

fining them, detecting circular projections, removing outliers, fitting cylinders

to connected components in 3D, and merging them when appropriate. We also

presented a circle-detection technique that is faster than RANSAC- and Hough-

transform-based solutions, and does not require the specification of noise-level

thresholds.600

We demonstrated the effectiveness of our approach by performing a detailed

comparison with the most popular as well as with the most recent approaches

for cylinder detection. Such techniques were evaluated on five datasets chosen

to stress different aspects and configurations found in real environments. Our

technique achieved the best F1-score on all datasets. For these experiments, the605

parameters used by the competing techniques were individually tuned for each

dataset in order to produce their best results in each case. For our technique,

on the other hand, we used the same set of default parameter values for all

datasets, showing its robustness and independence to parameter tunning, and
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ability to handle point clouds in general.610
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