
A General Framework for Subspace Detection

in Unordered Multidimensional Data

Leandro A. F. Fernandes a, Manuel M. Oliveira b

aInstituto de Computação, Universidade Federal Fluminense (UFF)
CEP 24210-240 Niterói, RJ, Brazil

Tel +55 21 2629-5665, Fax +55 21 2629-5669
bInstituto de Informática, Universidade Federal do Rio Grande do Sul (UFRGS),

CP 15064 CEP 91501-970, Porto Alegre, RS, Brazil

Abstract

The analysis of large volumes of unordered multidimensional data is a problem
confronted by scientists and data analysts every day. Often, it involves searching
for data alignments that emerge as well-defined structures or geometric patterns
in datasets. For example, straight lines, circles, and ellipses represent meaningful
structures in data collected from electron backscatter diffraction, particle acceler-
ators, and clonogenic assays. Also, customers with similar behavior describe linear
correlations in e-commerce databases. We describe a general approach for detecting
data alignments in large unordered noisy multidimensional datasets. In contrast to
classical techniques such as the Hough transforms, which are designed for detecting
a specific type of alignment on a given type of input, our approach is independent of
the geometric properties of the alignments to be detected, as well as independent of
the type of input data. Thus, it allows concurrent detection of multiple kinds of data
alignments, in datasets containing multiple types of data. Given its general nature,
optimizations developed for our technique immediately benefit all its applications,
regardless the type of input data.

Key words: Hough transform, geometric algebra, parameter space, subspace
detection, shape detection, blade, Grassmannian, coordinate chart, line, circle,
plane, sphere, conic section, flat, round, quadric

Email addresses: laffernandes@ic.uff.br (Leandro A. F. Fernandes),
oliveira@inf.ufrgs.br (Manuel M. Oliveira).

URLs: http://www.ic.uff.br/~laffernandes (Leandro A. F. Fernandes),
http://www.inf.ufrgs.br/~oliveira (Manuel M. Oliveira).

Preprint submitted to Elsevier 30 December 2011

1 Introduction

Data analysis is a fundamental element in scientific discovery and data mining.
In many scientific fields, visual inspection of experimental datasets is often per-
formed in order to identify strong local coherence in the data. Such coherence
results from data alignments (in some multidimensional space), and usually
emerges as geometric shapes and patterns. For instance, straight lines and
circles appear as well-defined structures in the analysis of electron backscatter
diffraction (Fig. 1a) and clonogenic essays (Fig. 1c), respectively. However,
when large volumes of data need to be analyzed, visual inspection becomes
impractical. For this reason, automatic detectors for specific types of data
alignments have been broadly applied by scientists in many different areas,
such as particle physics [1,2], astronomy [3,4], microbiology [5,6], crystallog-
raphy [7,8], and medicine [9,10]. Such detectors are also a central component
of many computer vision and image processing applications [11–13]. The goal
of automatic detectors is to identify certain kinds of alignments that best fit
a given unordered dataset, even in presence of noise and discontinuities.

We describe a general approach for detecting data alignments in unordered
noisy multidimensional data. Our approach is based on the observation that
a wide class of alignments, and also input data entries, can be represented
as linear subspaces. Thus, instead of defining a different detector for each
specific case and input data type, it is possible to design a unifying framework
to detect the occurrences of emerging subspaces in multidimensional datasets.
In our framework, these datasets may be heterogeneous and contain entries
with different dimensionalities (Fig. 2).

Our approach has a broad range of applications as a pattern detection tool.
For instance, it can be applied, without any changes, to all kinds of data
alignments that can be represented as linear subspaces in any complete met-
ric spaces (see Section 3). Examples include, but are not limited to, data
alignments decomposed into real- or complex-valued vector spaces, orthogonal
polynomials, wavelets, and spherical harmonics. For the purpose of illustra-
tion, however, we restrict the examples shown in the paper to the important
problem of detecting analytic geometric shapes in real-valued spaces of arbi-
trary dimensionalities. By assuming a model of geometry (MOG), subspaces
can be interpreted as shapes (see Supplementary Material A for examples).
In such a case, the proposed formulation becomes a general analytical shape
detector whose definition does not depend on the shape one wants to detect
nor on the input data type.

2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) 445× 445 pixels
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) 445× 445 pixels

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) 529× 534 pixels
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d) 529× 534 pixels

Fig. 1. (a) Electron backscatter diffraction image taken from a particle of wulfenite.
The detection of straight lines is key for the identification of the particle’s crystalline
phase. (c) Gray image of infection with H1N1 in MDCK-SIAT1 cells. The detection
of circles is important for automated counting process in clonogenic assays. Our
approach was used, without any changes, to automatically detect the straight lines
and circles shown in (a) and (c) from the edge information shown in (b) and (d),
respectively.

1.1 Contributions and Demonstrations

The main contributions of this paper include:

• A general approach for subspace detection in unordered multidimensional
datasets (Section 4);
• A parameterization scheme for subspaces based on the rotation of a canon-

ical subspace with the same dimensionality (Section 4.1); and
• An algorithm that enumerates all instances of subspaces with a given di-

mensionality p that either contain or are contained by an input subspace of
arbitrary dimensionality (Section 4.2).

In addition, the following assertions will be demonstrated:

• The detection can be driven to a data alignment type by changing the as-
sumed MOG where data have been encoded, while the presented formulation
remains unchanged (Section 4);

3

-1

0

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

0

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Fig. 2. Shape detection on heterogeneous synthetic datasets using our approach.
(left) Detection of lines on the input plane that best fit subsets of input points.
(right) Concurrent detection of plane and spheres by a single application of the pro-
posed approach. The input dataset is comprised by points, circles, and straight line.

• The intended p-dimensional subspaces are represented with the smallest
possible number of parameters (Section 4.1.2);
• It allows the detection of subspaces that best fit an input set of sub-

spaces with different dimensionalities and different geometric interpretations
(e.g., the detection of straight lines that best fit points, directions, and/or
planes – Fig. 2, left).
• It allows the concurrent detection of subspaces with different interpretations

but with the same dimensionality in a given MOG (e.g., planes and spheres
in conformal MOG – Fig. 2, right);

When used as an analytic shape detector, our approach presents the following
features:

• It is the generalization of the HTs for analytic shapes representable by linear
subspaces;
• It leads to the most compact parameterization of analytical shapes (e.g.,

straight lines, circles, and general conic sections in the plane are parame-
terized with two, three, and four parameters, respectively); and
• An approximation of the dth-order Voronoi diagram [14] of a set of points

in Rd can be retrieved as a byproduct of the detection of subspaces geomet-
rically interpreted as circles, spheres, and their higher-dimensional counter-
parts.

We formulate our subspace detector using geometric algebra (GA) [15–17].
We use GA notation instead of more conventional formalisms (e.g., matrix
algebra) because GA is a mathematical framework that treats subspaces as
primitives for computation. As such, it is an appropriate tool for modeling
the subspace-detection problem. Moreover, GA naturally generalizes and in-
tegrates useful formalisms such as complex numbers, quaternions, and Plücker
coordinates, among others, into a high-level specification language for geomet-
ric operations. GA defines products with clear geometrical meaning, which lead
to compact and easy to implement formulations.

4

1.2 Related Work

1.2.1 Hough transform

When applied as a shape detector, our approach can be seen as a general-
ization of the class of techniques commonly referred to as Hough trans-
forms (HTs) [18,19]. A standard HT can be defined for simple shapes that
can be represented by a model function

f(x1, x2, · · · , xd; p1, p2, · · · , pm) = 0, (1)

where xxx = (x1, x2, · · · , xd) ∈ Rd is a point from the input dataset, and ppp =
(p1, p2, · · · , pm) ∈ Pm is a vector in a parameter space Pm. Each parameter
vector ppp in Pm characterizes an instance of that shape. By using a mapping
procedure, the HT takes each input point xxx and determines all instances
of the shape potentially passing through xxx. For each such an instance, its
associated parameter vector ppp is used to address a bin in an accumulator
array (i.e., a discrete representation of Pm). The value stored in the bin is
then incremented by some importance value ω (usually one). At the end of
the process, the bins having the largest values correspond to the parameters
of the most likely shapes in the input data.

The mapping procedure is obtained from the model function (1) and consists
in arbitrating a predefined subset of k parameter values from ppp (for k < m)
and computing the remaining (m− k) parameter values using a mapping
function with the form:

{pk+1, pk+2, · · · , pm} = g (x1, · · · , xd; p1, · · · , pk) . (2)

Function (2) is evaluated for all {p1, · · · , pk} ∈ Pk.

Traditionally, each HT handles a specific detection case. As a result, a different
model (1) and mapping function (2) have been designed to detect each specific
geometric shape in a given type of input data. For instance, Duda and Hart [20]
use the normal equation of the line as model function. The circle detection
of Kimme et al. [21], instead, uses the center-radius parameterization. Such
parameterizations are intrinsically different from each other.

Our approach differs from standard HTs [20–24] by defining a single closed-
form solution that parameterizes any subspace as a rotation of a canonical
subspace with the same dimensionality. Such a parameterization is indepen-
dent of the (geometric) interpretation of the subspaces. Moreover, the mapping
procedure is also independent of the input data type. Thus, our approach sys-
tematically adapts itself to the detection of shapes in unordered heterogeneous
datasets having arbitrary dimensionality (Fig. 2). Supplementary Materials B

5

and C include derivations showing that standard HTs are particular cases of
the proposed approach.

The Generalized Hough Transform (GHT) is a Hough-like method for de-
tecting shapes (in images) that cannot be represented analytically [24]. The
method allows the identification of the occurrences of the shape regarding
changes in location, orientation, and scaling. The extension of the GHT to 3-
dimensional shapes is described by Wang and Reeves [25]. We are concerned
with the detection of subspaces interpreted as analytic shapes. Thus, our gen-
eralized approach targets a different problem than the GHT. As pointed out
by Leavers [19], the GHT is not suitable for the detection of analytic shapes
because it does not offer an efficient representation of all such shapes. In order
to achieve an efficient representation, the parameterization of the GHT must
be explicitly changed.

A naive implementation of standard HTs and of the proposed approach suffers
from the same drawbacks: large memory requirements and high computational
cost. However, as any HT, the proposed approach is robust to the presence of
outliers and is suitable for implementation on massively parallel architectures.
Moreover, the generality of our approach guarantees that any optimization
immediately benefits the processing of all detectable shapes. The attempts
to minimize drawbacks in standard HTs, on the other hand, are targeted at
particular versions of HTs, due to specificities in their formulations [18,19].
Thus, optimizations to the HT need to be done on a case-by-case basis. For
instance, O’Gorman and Clowes [26] pointed out that line detection from
feature pixels may be optimized by the use of gradient information computed
for the pixels. Kimme et al. [21] follow such an approach providing the same
level of optimization to the HT for circles in images. Note that the same
optimization took almost two years to be extended to a single case of HT.

1.2.2 Tensor Voting

The Tensor Voting (TV) framework [27] is a unified methodology for the
robust inference of local features from data. Such features are retrieved in
terms of emerging surfaces, curves, and labeled junctions in a given set of
points, points with an associated tangent direction, points with an associated
normal direction, or any combination of the above.

While TV can compete with HT in terms of robustness against noise, it is,
however, inherently model-free. As a result, it cannot be efficiently applied
to the detection of predefined types of data alignments. By definition, it re-
trieves, at the same time, all the salient structures (with any dimensionality)
embedded in a dataset. A subsequent filtering step is required in order to per-
form the detection of some intended type of structure. Our approach detects

6

the occurrences of emerging subspaces with a given dimensionality p in mul-
tidimensional datasets. The detection can be driven to a specific type of data
alignment just by choosing p, and by changing the assumed MOG where data
have been encoded.

1.2.3 Subspace and Submanifold Clustering

The goal of subspace clustering techniques is to find, among all possible lin-
ear or affine subspaces, those that accommodate as many database objects as
possible (see [28] for a review). A common practice to these techniques is to
assume Euclidean metric to the ambient space and linear relations between
pairs of features [29–32]. For cases where input data can be distributed along
nonlinear submanifolds, one can assume that input entries are embedded in
Euclidean space and use (at least locally) the Euclidean metric or a varia-
tion of it to perform clustering [33–35]. However, there are several situations
where it is more natural to consider features that live in a non-Euclidean
space (e.g., diffusion tensor imaging segmentation). For those cases, Rieman-
nian spaces have been used [36]. But, as pointed out by Goh and Vidal [36],
even with Riemannian spaces the specific calculations vary depending on the
application. In a recent work, Favaro et al. [37] proposed a closed-form solution
for subspace estimation and clustering. However, their formulation constraints
the detected elements to linear and affine subspace and the type of input data
to points only.

In contrast to existing subspace and submanifold clustering approaches, the
calculations performed by our closes-form detection framework are not tai-
lored to specific applications or input data type. By definition, the proposed
formulation systematically adapts itself to the MOG where data is being en-
coded.

2 Geometric Algebra

This section presents a brief introduction to the concepts of GA required for
understanding our approach. Due to space restrictions, the primary goal of
this section is to introduce the notational convention adopted in the paper
rather than to introduce a complete view of the works in geometric or Clifford
algebra. A more detailed introduction to GA can be found in [15]. The books
by Dorst et al. [16], Perwass [17] and Hestenes [38], and the tutorials by
Doran et al. [39,40] and Hildenbrand et al. [41] provide in-depth treatments
to the subject. Supplementary Material D presents a quick reference guide to
the notational convention used in this paper.

7

2.1 Subspaces as Computational Elements

Subspaces, or blades (in GA notation), are the basic computational elements
in GA. A k-blade represents a weighted k-dimensional oriented subspace spanned
by the outer product (∧) of k independent vectors. Thus, for instance, a
scalar value α ∈ R is a 0-blade, a vector aaa ∈ Rn is a 1-blade, and a 2-blade
can be computed as CCC〈2〉 = aaa ∧ bbb for linearly independent vectors aaa and bbb.

In linear algebra, k-dimensional subspaces are represented as collections of k
vectors in a vector space Rn, for 0 ≤ k ≤ n. Vectors are the primitive elements
of linear algebra and are expressed as a weighted sum of the basis elements
{eeei}ni=1 assumed for Rn, e.g.:

aaa = α1 eee1 + α2 eee2 + α3 eee3 ∈ R3.

In order to treat k-blades as computational primitives, GA decomposes them
in a basis of blades comprised by the outer product of k vectors in the set
{eeei}ni=1 of basis vectors. For instance, the outer product of two general vectors
in R3 naturally induces the representation of 2-blades as the weighted sum of
the 2-dimensional basis blades eee1 ∧ eee2, eee1 ∧ eee3, and eee2 ∧ eee3:

CCC〈2〉 = aaa ∧ bbb

= (α1 eee1 + α2 eee2 + α3 eee3) ∧ (β1 eee1 + β2 eee2 + β3 eee3)

= (α1 β2 − α2 β1)eee1 ∧ eee2
+ (α1 β3 − α3 β1)eee1 ∧ eee3 (3)

+ (α2 β3 − α3 β2)eee2 ∧ eee3.

The algebraic manipulation in (3) is obtained by recalling that by linearity,
the outer product is distributive over the sum, and scalar values commute.
By antisymmetry, the outer product of two vectors commute at the cost of
a sign change (e.g., eee2 ∧ eee1 = −eee1 ∧ eee2). Thus, the outer product of a vector
with itself disappears (i.e., eeei ∧ eeei = 0).

The expression in (3) can be extended to represent any k-dimensional subspace

as the weighted sum of
(
n
k

)
k-dimensional basis blades. The space defined by

the
∑n
k=0

(
n
k

)
= 2n blades (treated as basis elements) is called the multivector

space
∧Rn built from a vector space Rn. The concept of subspace and the

construction of blades using the outer product are independent of any metric
properties a vector space Rn or its associated multivector space

∧Rn might
have.

Section 4 presents our general approach for detecting k-dimensional subspaces
(i.e., k-blades). In such an approach, an arbitrary k-blade BBB〈k〉 is characterized
through the parameterization of its properties:

8

attitude The equivalence class γBBB〈k〉, for any γ ∈ R.
weight The value of γ in BBB〈k〉 = γ JJJ〈k〉, where JJJ〈k〉 is a reference blade

with the same attitude as BBB〈k〉.
orientation The sign of the weight relative to JJJ〈k〉.

2.2 Geometric Product

The geometric product has no special symbol and it is denoted by a thin
space. For real values (i.e., 0-blades) it is equivalent to the standard multi-
plication operation. For vectors, it is defined as the linear combination of the
vector inner product (·) and the outer product:

aaabbb = aaa · bbb + aaa ∧ bbb. (4)

The outcome of (4) is an element of mixed dimensionality. It is the sum of a
scalar value computed from the inner product characterizing the metric rela-
tion of the vectors, and a 2-blade computed from the nonmetric outer product.
The formulation extending (4) to arbitrary terms can be found in [15,16].

There are many products in GA, which are special cases of the geometric
product. In this paper, we are concerned with three of them – the outer
product:

AAA〈r〉 ∧BBB〈s〉 =
〈
AAA〈r〉BBB〈s〉

〉
r+s

; (5)

the scalar product:

AAA〈r〉 ∗BBB〈s〉 =
〈
AAA〈r〉BBB〈s〉

〉
0

; (6)

and the left contraction:

AAA〈r〉 cBBB〈s〉 =
〈
AAA〈r〉BBB〈s〉

〉
s−r

. (7)

In (5), (6), and (7), AAA〈r〉 and BBB〈s〉 are blades, 〈�〉k is used to retrieve the k-
dimensional part of the geometric product of AAA〈r〉 and BBB〈s〉 (the outcome of
AAA〈r〉BBB〈s〉 may have mixed dimensionality).

The outer product introduced in Section 2.1 and defined in (5) is used to span
a (r + s)-dimensional subspace from blades of dimensionality r and s. If there
is at least one common vector factor in the multiplied terms then the outcome
is zero.

The scalar product (6) is the generalization of the vector inner product to
arbitrary subspaces with same dimensionality (i.e., r = s). Under Euclidean
metric, the resulting scalar value is proportional to the cosine of the angle
between the subspaces and to the weight of the multiplied terms. For blades
with different dimensionality the outcome is zero. In Section 4.2 we use the

9

scalar product to check whether two blades have the same dimensionality and
are not orthogonal.

The scalar product can be used to compute the squared norm of a blade:∥∥∥AAA〈k〉∥∥∥2 = AAA〈k〉 ∗ Ã̃ÃA〈k〉, (8)

where Ã̃ÃA〈k〉 = (−1)k (k−1)/2 AAA〈k〉 denotes the reverse of the subspace. A blade
is invertible if it has a nonzero norm. The inverse AAA−1〈k〉 of a blade AAA〈k〉 satisfies

AAA〈k〉AAA
−1
〈k〉 = AAA−1〈k〉AAA〈k〉 = 1, and is computed as:

AAA−1〈k〉 =
Ã̃ÃA〈k〉∥∥∥AAA〈k〉∥∥∥2 .

The geometric interpretation of the left contraction presented in (7) can be
described as removing from BBB〈s〉 the part that is “like” AAA〈r〉, returning the
(s− r)-dimensional subspace that is contained in BBB〈s〉 and is “unlike” AAA〈r〉.
Under Euclidean metric, the portion of AAA〈r〉 that is like BBB〈s〉 is the orthogonal
projection of AAA〈r〉 onto BBB〈s〉. Therefore, the left contraction returns the sub-
space in BBB〈s〉 that is orthogonal to the projection of AAA〈r〉, and hence orthogonal
to AAA〈r〉.

2.3 Dual Representation of Subspaces

The left contraction can be used to compute the dual representation of a sub-
space. The dual representation of a subspace AAA〈k〉 is its (n− k)-dimensional
orthogonal complement with respect to the total (n-dimensional) space:

AAA∗〈k〉 = AAA〈k〉 c III−1〈n〉, (9)

where �∗ denotes the dual operation, III〈n〉 = eee1 ∧ eee2 ∧ · · · ∧ eeen is the unit
pseudoscalar of the n-dimensional space. The complement of taking the dual
is the undual operation:

DDD−∗〈n−k〉 = DDD〈n−k〉 c III〈n〉. (10)

By using this operation, the dual representation of a blade can be correctly
mapped back to its direct representation (i.e., (AAA∗〈k〉)

−∗ = AAA〈k〉).

In Sections 4.1 and 4.2 we use the dual and undual operations to define
a closed-form solution for subspace detection involving input and resulting
blades of arbitrary dimensionalities.

10

2.4 Meet and Join of Subspaces

The meet and join products are the GA analogs of intersection and union
operators from set theory. For any two blades AAA〈r〉 and BBB〈s〉 one can factor out
a blade MMM〈t〉 from both AAA〈r〉 and BBB〈s〉:

AAA〈r〉 = AAA′〈r−t〉 ∧MMM〈t〉 and BBB〈s〉 = MMM〈t〉 ∧BBB′〈s−t〉.

Meet returns the subspace shared by AAA〈r〉 and BBB〈s〉:

AAA〈r〉 ∩BBB〈s〉 = MMM〈t〉, (11)

while the join is the subspace spanned by the disjoint and by the common
parts of AAA〈r〉 and BBB〈s〉:

AAA〈r〉 ∪BBB〈s〉 = AAA′〈r−t〉 ∧MMM〈t〉 ∧BBB′〈s−t〉. (12)

Both meet (11) and join (12) are independent of the particular metric since
they are based on factorization by the (nonmetric) outer product.

Meet and join are nonlinear products. However, if AAA〈r〉 and BBB〈s〉 are disjoint,
and their join is the total space (i.e., AAA〈r〉 ∪BBB〈s〉 = III〈n〉, the pseudoscalar), then
the meet reduces to the regressive product (∨):

AAA〈r〉 ∩BBB〈s〉 =
(
BBB∗〈s〉 ∧AAA∗〈r〉

)−∗
= AAA〈r〉 ∨BBB〈s〉, (13)

which is also linear and nonmetric. The regressive product can be regarded
as the dual operation to the outer product. We use it in Section 4.1 while
defining the proposed parameterization of subspaces.

2.5 Rotors

In GA a rotor is defined as the geometric product of an even number of
unit invertible vectors. Under Euclidean metric, rotors encode rotations and
generalize quaternions to n-dimensional spaces. The transformation encoded
by a rotor RRR is applied to a k-blade AAA〈k〉 by using a sandwiching construction
involving the geometric product:

AAA′′〈k〉 = RRR AAA〈k〉 R̃RR,

where AAA′′〈k〉 denotes the transformed subspace, and R̃RR denotes the reverse of

RRR. In GA, the inverse of a rotor is equal to its reverse (i.e., RRR−1 = R̃RR), thus
AAA〈k〉 = R̃RR AAA′′〈k〉RRR.

11

As orthogonal transformations, rotors preserve both the inner and the outer
products. This way, the structure preservation of rotors holds for the geometric
product (4), and hence to all other products, i.e.:

RRR (A ◦ B) R̃RR =
(
RRR AR̃RR

)
◦
(
RRR B R̃RR

)
, (14)

where the ◦ symbol represents any product of GA, and, as a consequence, any
operation defined from the products (e.g., inversion, duality, meet, and join).

An alternative (and more practical) way to define rotors is to use the expo-
nential of 2-blades. Under Euclidean metric, the rotor RRR encoding a rotation
of θ radians on the unit plane PPP〈2〉 is given by:

RRR = exp

(
−θ

2
PPP〈2〉

)
= cos

(
θ

2

)
− sin

(
θ

2

)
PPP〈2〉.

Using the exponential form one can easily define a rotation on an arbitrary
plane without being concerned about the handedness of the space.

3 Data Alignments as Subspaces

GAs can be constructed over any type of quadratic space [17], which includes
real-valued vector spaces, and also more sophisticated Hilbert spaces, such as
finite Fourier basis, finite random-variable spaces, basis of orthogonal polyno-
mials, wavelets and spherical harmonics, among others. In all cases, the con-
cepts of blades, intersections, and combinations of subspaces are still valid,
even though they may not have the same geometric meaning (see [17] for a
discussion).

By assuming a MOG, one defines the quadratic space where data will be
encoded and provides a practical (geometric) interpretation to blades as input
data entries or resulting data alignments. For the case of real-valued vector
spaces with a metric, such an interpretation may be achieved by embedding the
d-dimensional base space Rd (i.e., space where the geometric interpretation
happens) into an n-dimensional representational space Rn (i.e., the total
vector space). The geometric properties of the elements in Rn, and hence Rd,
depend on its chosen metric. See Supplementary Material A for examples of
MOGs and the geometric primitives that can be represented on them.

12

4 The Subspace Detector

The properties of an arbitrary k-blade BBB〈k〉 (i.e., attitude, weight, and orien-
tation) are intrinsic to the construction of the blade by the outer product of
its vector factors. Therefore, they are independent of the assumed MOG and
its metric. However, the attitude affects the geometric interpretation of the
subspace. We use CCC〈3〉 in Fig. 3 (top) to illustrate the properties of a blade.
The attitude of CCC〈3〉 is the stance of the circle in the surrounding space. By
changing the sign of the subspace (i.e., −CCC〈3〉) one changes the orientation of
the circle from qqq1 → qqq2 → qqq3 to qqq3 → qqq2 → qqq1. Both CCC〈3〉 and −CCC〈3〉 determine
the same set of points defining the circumference in Fig. 3 (top) because they
have the same attitude. Multiplying the subspace by a scalar value (e.g., 4CCC〈3〉)
produces a blade with a different weight. Again, both CCC〈3〉 and 4CCC〈3〉 deter-
mine, essentially, the same circle. The later could be said to pass through its
points four times faster than the former. In order to get a different circle, one
has to change the attitude of CCC〈3〉. Thus, by parameterizing the attitude
of subspaces we define a general parameterization that is applica-
ble to any data alignment that can be represented by a linear subspace
(i.e., a blade). In Section 4.1 we show that the attitude of a subspace BBB〈p〉 in a
n-dimensional space can be characterized by a set of m = p (n− p) rotations
applied to a canonical subspace (EEE〈p〉) used as reference. More precisely:

BBB〈p〉 = TTT EEE〈p〉 T̃TT . (15)

In (15), TTT is the rotor encoding the sequence of m rotation operations. The
computation of TTT is defined in (23). The m rotation angles are the pa-
rameters characterizing the attitude of BBB〈p〉, and the values of p and n
depend on the intended shape. For instance, by assuming the homogeneous
MOG for line detection in images (Fig. 1a), n = 3 and p = 2, leading to m = 2.

The m rotation angles related to the sequence of rotation operations in (15)
define a parameter space for p-blades. Our subspace detector uses such pa-
rameter space. The application of the proposed approach consists of three
steps:

(i) Create an accumulator array as a discrete representation of the parameter
space;

(ii) Perform a voting procedure where the input dataset is mapped to the
accumulator array;

(iii) Search for the peaks of votes in the accumulator, as they correspond to
the p-blades that best fit the input dataset.

Step (i) setups the model function for p-blades (15) and defines a parameter

13

C
X \3

q
1

q
2

q
3

-1.5
-1

-0.5
0

0.5
1

1.5

-1.5
-1

-0.5
0

0.5
1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

θ
4
,1

θ
4,2θ

4,3

q
3

q
2

C
X \3

q
1

-1.5
-1

-0.5
0

0.5
1

1.5

-1.5
-1

-0.5
0

0.5
1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

θ
4
,1

θ
4,2θ

4,3

C
X \3

Fig. 3. Parameter spaces for simple detection case of a circle. (top) In conformal
MOG, CCC〈3〉 = qqq1 ∧ qqq2 ∧ qqq3 is a blade interpreted as a circle, and vectors qqq1, qqq2 and
qqq3 are interpreted as points. (left) Parameter space using points from top as input.
(right) Parameter space using subspaces tangent to CCC〈3〉 at qqqi as input, leading to
a simpler voting procedure.

space for the m degrees of freedom:

Pm = {(θ1, θ2, · · · , θm) | θt ∈ [−π/2,π/2)}, (16)

where each parameter vector (θ1, θ2, · · · , θm) ∈ Pm characterizes an instance
of a p-blade, and θt is the angle related to the t-th rotation applied to EEE〈p〉 (15),
for 1 ≤ t ≤ m. In practice, we need to discretize Pm, for which we build an
accumulator array to receive “votes” and initially set its bins to zero.

Step (ii) maps the input dataset to parameter space. Essentially, our mapping
procedure takes each r-blade XXX〈r〉 in the input dataset (encoded into a MOG)
and identifies the parameters (coordinates in Pm) of all p-blades related to it.
When r ≤ p, the mapping procedure identifies in Pm all p-blades containing
XXX〈r〉 (e.g., the lines containing an input point in Fig. 2, left). If r ≥ p, the
procedure identifies in Pm all p-blades contained in XXX〈r〉 (e.g., the lines on the
input plane in Fig. 2, left). A detailed description of our mapping procedure
is given in Section 4.2. Note that it is defined for input blades having any
dimensionality (i.e., 0 ≤ r ≤ n). This is possible because the proposed model
function (15) and its parameter space (16) are independent of the input data
type.

After the voting procedure has been performed for all XXX〈r〉, the number of
votes deposited in each accumulator bin defines the importance of that bin to
the input blades. Thus, the most voted bins represent the detected p-blades.
The final step of our approach searches for local maxima in the accumulator
array. The parameter vectors associated with such bins are used in (15) to
retrieve the detected subspaces. This is achieved by applying the sequence of
rotations specified by these bins to the canonical subspace EEE〈p〉.

14

The algorithm described above uses the voting-based paradigm that is com-
mon to the class of techniques referred to as HTs. However, it is important
to emphasize that the proposed formulation for representing intended struc-
tures (15) and the proposed mapping procedure for input entries (used in
step (ii)) are different from ones presented in conventional techniques. Our
definitions are conceptually different in the sense that they can be applied
without changes to the detection of any primitives that can be modeled as a
blade. The advantages on representing subspaces by means of the proposed pa-
rameterization instead of using the conventional parameterization scheme for
p-dimensional subspaces is discussed in Section 4.1.2. Section 4.2.3 discusses
the novel aspects of the proposed mapping procedure.

4.1 Parameterization of Subspaces

Let
∧Rn be the multivector space of a metric space Rn with basis vectors

{eeei}ni=1. As pointed out in Section 2, a p-blade can be built as the outer product
of p independent vectors (i.e., 1-blades in

∧Rn). From the dual relationship of
the outer and the regressive product (13) one can state that a p-blade can also
be built as the regressive product of n− p pseudovectors (i.e., (n− 1)-blades
in
∧Rn). In this section, we show that the attitude of vectors and pseudovec-

tors can be parameterized by n− 1 parameters. The parameterization of an
arbitrary p-blade is comprised by the parameters characterizing the vectors
(or pseudovectors) used in its construction. The choice for one of the two con-
structions is based on the value of p and n, and will be discussed later in this
section. Both the outer and the regressive products are independent of the
metric of Rn. Therefore, we can replace the actual metric by any convenient
metric. We assume Euclidean metric for Rn in all computations in order to
prescind the interpretation of subspaces in the actual context (e.g., the geo-
metric interpretation given by the MOG). This way, blades can be interpreted
as Euclidean subspaces rather than specific structures.

An arbitrary vector aaa can be expressed in Euclidean space Rn by (n− 1) angles
and a scalar value. Assuming a reference unit vector eeen, aaa can be written as:

aaa = γ SSSn eeen S̃SSn, (17)

where
SSSn = RRRn,1 · · ·RRRn,n−2 RRRn,n−1 (18)

is a rotor encoding a sequence of rotations of θn,j radians on the unit planes
eeej+1 ∧ eeej, for

RRRn,j = cos

(
θn,j

2

)
− sin

(
θn,j

2

)
(eeej+1 ∧ eeej) , (19)

and j ∈ {n− 1, n− 2, · · · , 1}. Note that the rotors RRRn,j in (18) are applied

15

to eeen from the right to the left. Thus, the first rotation applied is RRRn,n−1,
followed by RRRn,n−2, and so on. By assuming θn,j ∈ [−π/2, π/2), we ensure

that SSSn eeen S̃SSn (17) is inside the hemisphere defined by +eeen. Such a condition
guarantees that the rotation angles encode aaa’s attitude. In (17), γ ∈ R is the
weight, and γ’s sign is the orientation of aaa.

The parameterization of vectors naturally extends to pseudovectors through
the dual relationship between 1-dimensional and (n− 1)-dimensional sub-
spaces. By making the parameterized pseudovector AAA〈n−1〉 = aaa∗ and the refer-
ence unit blade EEE〈n−1〉 = eee∗n (�∗ is defined in (9)), (17) becomes:

AAA〈n−1〉 = γ SSSnEEE〈n−1〉 S̃SSn. (20)

A parameterization that is equivalent for both 1-dimensional and (n− 1)-
dimensional subspaces is convenient due the possibility to build p-blades from
these subspaces while using the smallest number of parameters. For instance,
when p < (n− p), spanning a p-blade as the outer product of p vectors uses
less parameters than spanning it as the regressive product of (n− p) pseu-
dovectors. However, when p > (n− p), the best choice is to use (n− p) pseu-
dovectors. We build the reference unit subspace for p-blades as:

EEE〈p〉 =


∧
v∈V eeev for p 6= q∨
v∈V eee∗v for p = q

(21)

where q = max(p, n− p), ∧v∈V denotes the outer product of vectors eeev, and∨
v∈V is the regressive product of pseudovectors eee∗v, for V = {2 (q + i)− n}n−qi=1 .

As for the parameterization of vectors (17) and pseudovectors (20), the weight
and orientation of an arbitrary blade BBB〈p〉 are expressed by a scalar value (γ),
while its attitude is characterized by a set of rotations (TTT) applied to the
reference blade EEE〈p〉:

BBB〈p〉 = γTTT EEE〈p〉 T̃TT , (22)

where

TTT = SSSnSSSn−2 · · ·SSS 2 (q+1)−n, (23)

and SSS v are rotors computed according to (18). Each SSS v is related to the
parameterization of the attitude of a reference vector (or pseudovector) used
in the construction of the reference blade EEE〈p〉 (21) for BBB〈p〉.

The interpretation of blades is not affected by γ (i.e., the weight and orien-
tation of the blade). Therefore, we can safely assume γ = 1 in (22) (leading
to (15)), and define the parameterization consisting of m =

∑
v∈V(v − 1) =

p (n− p) rotation angles θv,j.

16

FX3\

GX3\

e2

e1

BX2\

e3

e4
q

p

GX3\

e2

e1

BX2\

FX3\

q

e3

e4

p

Fig. 4. Homogeneous MOG and a 3-dimensional base space: (left) BBB〈2〉 is the blade
(interpreted as a line) resulting from the intersection of FFF〈3〉 and GGG〈3〉 (interpreted
as planes). GGG〈3〉 defines the distance from BBB〈2〉 to the origin eee4. ppp is the closest point

to eee4 for both BBB〈2〉 and GGG〈3〉. FFF〈3〉 includes qqq = GGG−∗〈3〉, a vector that is orthogonal to

GGG〈3〉 in the representational space. (right) Configuration after rolling back rotations
RRR4,1 and RRR4,2 from blades ppp, qqq, BBB〈2〉, FFF〈3〉, and GGG〈3〉. The ? symbol indicates that

AAA?
〈k〉 = R̃RR4,2 R̃RR4,1 AAA〈k〉RRR4,1 RRR4,2, where AAA〈k〉 is some blade on the left.

4.1.1 Used Reference Vectors and Pseudovectors

Consecutive values for v ∈ V used in (21) and (23) are spaced two units apart.
This avoids ambiguous sets of vectors/pseudovectors while defining BBB〈p〉 (22),
and leads to a more compact parameterization. The example shown in Fig. 4
illustrates this. Note that the example is described in terms of pseudovectors
and, therefore, its solution immediately extends to sets of pseudovectors in
spaces of any dimensionality. For this example, consider the parameterization
of a straight line in 3-dimensional base space under the homogeneous MOG.
In such a case, n = (3 + 1) and the line (BBB〈2〉) is a 2-dimensional subspace em-
bedded in the 4-dimensional representational space. The homogeneous MOG
in GA is analogous to using homogeneous coordinates in projective geometry.
The basis vectors are {eee1,eee2,eee3,eee4} and eee4 is geometrically interpreted as the
point at the origin.

We can write BBB〈2〉 in terms of the intersection (regressive product) of pseu-
dovectors FFF〈3〉 and GGG〈3〉, geometrically interpreted as planes in Fig. 4 (left):

BBB〈2〉 = FFF〈3〉 ∨GGG〈3〉. (24)

The choice of arbitrary pairs of planes can lead to ambiguous representa-
tions for BBB〈2〉. For instance, by rotating FFF〈3〉 and GGG〈3〉 around the line BBB〈2〉 in
Fig. 4 (left), one gets different pairs of planes, and hence different parame-
terizations for the attitude of BBB〈2〉. Recall that rotations parameterizing the
attitude of BBB〈2〉 come from the parameters of the planes (pseudovectors) defin-
ing it (see the sequence of rotors SSS v in (23)). We avoid such ambiguity by
choosing GGG〈3〉 and FFF〈3〉 such that they satisfy some constraints. We make GGG〈3〉
be the plane whose smallest distance to eee4 is the same as the smallest dis-
tance from BBB〈2〉 to eee4. Also, we choose FFF〈3〉 as the plane passing through BBB〈2〉

17

as well as through the point qqq = GGG−∗〈3〉. The undual operation (10) makes qqq
be orthogonal to GGG〈3〉 in the 4-dimensional representational space. Therefore,
we guarantee that FFF〈3〉 includes a vector factor that is orthogonal to GGG〈3〉. In
Fig. 4 (left), ppp is the closest point to the origin eee4 for both BBB〈2〉 and GGG〈3〉. Since
ppp ⊂ GGG〈3〉, ppp and qqq are orthogonal vectors in the representational space.

Now, let’s replace GGG〈3〉 in (24) by the pseudovector parameterization in (20):

BBB〈2〉 = FFF〈3〉 ∨
(
β SSS 4 EEE〈3〉 S̃SS 4

)
. (25)

where EEE〈3〉 = eee∗4 = eee4 c III−1〈4〉 = −eee1 ∧ eee2 ∧ eee3 is the reference blade for GGG〈3〉. Note
that SSS 4 is computed from rotations (see (18)) in such a way that any vec-
tor in the 4-dimensional space is affected by it. Therefore, one can write
FFF〈3〉 = SSS 4 FFF′〈3〉 S̃SS 4 and replace it in (25):

BBB〈2〉 =
(
SSS 4 FFF′〈3〉 S̃SS 4

)
∨
(
β SSS 4 EEE〈3〉 S̃SS 4

)
.

From the structure preservation property of rotors (14):

BBB〈2〉 = β SSS 4

(
FFF′〈3〉 ∨EEE〈3〉

)
S̃SS 4. (26)

Fig. 4 (right) shows that, rolling back RRR4,1 and RRR4,2 (the latest transformations

in SSS 4) from blades in Fig. 4 (left), one gets ppp? = (R̃RR4,2 R̃RR4,1)ppp (RRR4,1 RRR4,2) and

qqq? = (R̃RR4,2 R̃RR4,1)qqq (RRR4,1 RRR4,2) in the space spanned by {eee3,eee4}. By also rolling
back RRR4,3 (a rotation on the 2-blade eee4 ∧ eee3), all the transformations defining
SSS 4 are removed from ppp and qqq. A rotation on eee4 ∧ eee3 applied to vectors in the
space {eee3,eee4} (such as ppp? and qqq?) is interpreted as a translation along the
line through eee4 with direction eee3. As a result, R̃RR4,3 qqq?RRR4,3 translates qqq? to the
origin and makes it equal to eee4 up to a scaling factor (as one would expect
from (17)). Also, R̃RR4,3 ppp?RRR4,3 translates ppp? to the infinity, until it becomes eee3
up to a scaling factor. Since {ppp,qqq} ⊂ FFF〈3〉, we can state that {eee3,eee4} ⊂ FFF′〈3〉
and write

FFF′〈3〉 = FFF′〈1〉 ∧ eee3 ∧ eee4, (27)

where FFF′〈1〉 is the weighted portion of FFF′〈3〉 that is enclosed in the space spanned
by {eee1,eee2}.

Using the pseudovector parameterization from (20) over FFF′〈1〉, (27) becomes:

FFF′〈3〉 =
(
αSSS 2 EEE′〈1〉 S̃SS 2

)
∧ eee3 ∧ eee4. (28)

EEE′〈1〉 = eee2 c III−1〈2〉 = −eee1 is the reference blade for FFF′〈1〉, a pseudovector in the
{eee1,eee2} space. III〈2〉 is the pseudoscalar of such 2-D space. Replacing (28) in (26),

BBB〈2〉 = β SSS 4

(((
αSSS 2 EEE′〈1〉 S̃SS 2

)
∧ eee3 ∧ eee4

)
∨EEE〈3〉

)
S̃SS 4. (29)

18

Note that rotation planes from SSS 2 do not affect subspace eee3 ∧ eee4 nor EEE〈3〉, be-
cause such rotation planes are orthogonal to the former and they are contained
by the latter. As a result, equation (29) can be rewritten as

BBB〈2〉 = γ
(

SSS 4 SSS 2

) ((
EEE′〈1〉 ∧ eee3 ∧ eee4

)
∨EEE〈3〉

) (
S̃SS 2 S̃SS 4

)
. (30)

Since EEE′〈1〉 ∧ eee3 ∧ eee4 = −eee1 ∧ eee3 ∧ eee4 = eee∗2 and EEE〈3〉 = eee∗4 (25), (30) can be sim-
plified to

BBB〈2〉 = γ
(

SSS 4 SSS 2

)
(eee∗2 ∨ eee∗4)

(
S̃SS 2 S̃SS 4

)
. (31)

Recall that reference pseudovectors for FFF〈3〉 and GGG〈3〉 are the dual represen-
tation of vectors eee2 and eee4, respectively (as one would expect from (21), for
V = {2, 4} and p = q = 2), and γ = αβ.

In (31), SSS 2 and SSS 4 describe two sequences of rotations. The former consists of
one rotation. It is similar to the case depicted in (18), but in a dimensionality
lower than n = 4. The latter consists of three rotations, exactly like in (18).
Together, the 4 rotation angles describe the attitude of BBB〈2〉.

4.1.2 A Coordinate Chart for the Grassmannian

In this section we show that the proposed parameterization represents the
intended p-blades with the smallest possible number of parameters.

The Grassmannian G(p,n) is the set of all p-dimensional linear subspaces
of a vector space Rn [42]. In GA, the representation of such subspaces resides
in
∧pRn, i.e., the portion of

∧Rn with p-dimensional basis elements. A lin-
ear combination of basis elements in

∧pRn is called a p-vector. However, an
arbitrary p-vector is not necessarily a p-dimensional subspace. These are the
p-vector which can be factored in terms of the outer product of p linearly in-
dependent vectors. Thus, G(p,n) corresponds to a subset of p-vectors (i.e., the
p-blades) in

∧pRn.

The Grassmannian defines a projective variety of dimension p (n− p) in the(
n
p

)
-dimensional space of

∧pRn [42]. Therefore, an arbitrary p-dimensional sub-

space requires at least p (n− p) coordinates. By choosing a reference subspace,
one may define an open affine covering Ap (n−p) for G(p,n) [42]. The covering is
open because the p-dimensional subspaces orthogonal to the reference one are
not properly represented in the affine space Ap (n−p) as finite points (i.e., they
reside at infinity). The remaining p-dimensional subspaces in G(p,n), on the
other hand, are represented uniquely as points in Ap (n−p), where the reference
subspace is related to the point at the origin.

The parameter space Pm (16) provides an alternative coordinate chart for
G(p,n). In such a coordinate chart, a p-dimensional subspace is addressed by

19

a set of p (n− p) rotation angles in the [−π/2, π/2) range (i.e., the parameter
vector). In contrast to the open affine covering Ap (n−p) of G(p,n), our param-
eterization can represent all p-blades in

∧pRn while using the same number
of parameters defining a cyclic domain.

4.2 Mapping Procedure

Our mapping procedure is based on three key observations. The first obser-
vation is that the dimensionality of an arbitrary input blade XXX〈r〉 defines a
containment relationship between XXX〈r〉 and CCC〈p〉 ∈ C (i.e., XXX〈r〉 is contained
or it contains CCC〈p〉), where C is the set of all p-blades related to XXX〈r〉. Since
p-blades are expressed as orthogonal transformations applied to a reference
blade EEE〈p〉 (15), we can extend such relationships through the sequence of
transformations: XXX

(t)
〈r〉 ⊆ CCC

(t)
〈p〉 for r ≤ p

XXX
(t)
〈r〉 ⊇ CCC

(t)
〈p〉 for r ≥ p

(32)

where
XXX

(t)
〈r〉 = R̃RRt+1 XXX

(t+1)
〈r〉 RRRt+1 (33)

and
CCC

(t)
〈p〉 = RRRtCCC

(t−1)
〈p〉 R̃RRt

for XXX
(m+1)
〈r〉 = XXX〈r〉, CCC

(0)
〈p〉 = EEE〈p〉, RRRm+1 = 1, and 1 ≤ t ≤ m. Here, RRRt encodes the

t-th rotation applied to EEE〈p〉. In Section 4.1 we used a double-index notation
(i.e., v and j in RRRv,j) in order to emphasize that rotations RRRv,j are related
to a rotor SSS v, and hence to a reference vector eeev or pseudovector eee∗v. In this
section we have changed the notation to a single index (t) because it is more
convenient for the following derivations. Thus, one can think of the model
function (15) by replacing the rotor TTT by its component rotors SSS v and, in
turn, by replacing each SSS v by its component rotors RRRv,j, leading to:

CCC〈p〉 = RRRm · · ·
(
RRR2

(
RRR1 EEE〈p〉 R̃RR1

)
R̃RR2

)
· · · R̃RRm. (34)

The second observation is related to the rotation of basis vectors in E span-
ning EEE〈p〉 (21):

E =

{eeev}v∈V for p 6= q

{eeev}v∈V\{eeei}ni=1 for p = q

where A\B denotes the relative complement or A in B. As the rotation op-
erations are applied to vectors vvvl ∈ E (for 1 ≤ l ≤ |E|, and |E| denoting
the cardinality of E), the dimensionality of the regions of Rn that
can be reached by vectors vvvl increases. We call these regions spaces of
possibilities. Fig. 5 illustrates the tree of possibilities of reference vectors
vvv1 = eee2 (Fig. 5, left) and vvv2 = eee4 (Fig. 5, right), for E = {eee2,eee4} and n = 4. In

20

0

1

2

3

4

t v1

e1 e2 e3 e4

e1

e1

e1

e1

e2

e2

e2

e2

e3

e3

e3

e3

e4

e4

e4

e4

e4

e2-e1

e4-e3

e3-e2

e1 e2 e3

e2-e1

v2 P
X2\

(t)

e4

e4

e4

e4

e3

e3

e3

e3

e2

e2

e2

e2

e1

e1

e1

e1

Fig. 5. Trees of possibilities for vvv1 = eee2 (left) and vvv2 = eee4 (right) in a 4-dimensional
representational space (n = 4 and p = 2).

Fig. 5, each row of the grid is related to a rotation on the plane PPP
(t)
〈2〉. The values

of index t are indicated on the left side, and the rotation planes (e.g., eeei ∧ eeej)
are indicated on the right. The set of colored squares at each row corresponds
to the region that can be reached by the reference vector after applying the
rotations up to a given row (i.e., the space of possibilities FFF

(t)
l , defined in (35)).

For instance, after applying the three first rotations to vvv1 = eee2, it can become
a vector in the space spanned by FFF

(3)
1 = eee1 ∧ eee2 ∧ eee3.

We compute the spaces of possibilities as:

FFF
(t)
l =

FFF
(t−1)
l ∪PPP

(t)
〈2〉 for grade(FFF

(t−1)
l ∩PPP

(t)
〈2〉) = 1

FFF
(t−1)
l otherwise

(35)

where FFF
(t)
l is the space reachable by vector vvvl ∈ E after the application of

the first t rotations. Therefore, FFF
(0)
l = vvvl. PPP

(t)
〈2〉 is the plane where the t-th

rotation happens, ∪ and ∩ denote, respectively, the join (12) and the meet (11)
operations, and the grade function retrieves the dimensionality of a subspace.
It is important to note that a parameter vector (θ1, θ2, · · · , θm) ∈ Pm defines

the transformation of each vvvl into a vector ccc
(t)
l ⊆ FFF

(t)
l , where ccc

(t)
l = RRRt ccc

(t−1)
l R̃RRt,

for ccc
(0)
l = vvvl and ccc

(m)
l = cccl.

The third observation is that rotations do not commute. Therefore, one needs
to respect the sequence of rotations while computing the parameter vec-
tors of blades in C. Since XXX〈r〉 and EEE〈p〉 are the only data available to compute
the elements in C, we calculate the parameter vectors starting from
the last to the first θt (i.e., from θm to θ1). Thus, using XXX

(t)
〈r〉 (33) as input,

we compute the t-th rotation angle. In this case, XXX
(4)
〈r〉 = XXX〈r〉 is related to the

last row of the trees of possibilities. By computing the last parameter we are
able to find the rotation that takes XXX〈r〉 into the previous row (i.e., we find

XXX
(3)
〈r〉) and so on, until we compute all the θt values, and finally reach XXX

(0)
〈r〉. XXX

(0)
〈r〉

is then related to the canonical reference EEE〈p〉.

21

4.2.1 Mapping Procedure for r ≥ p

The procedure for mapping an input blade XXX〈r〉 to parameter space Pm is
shown in Fig. 6. The algorithm assumes that r ≥ p. The case involving r ≤ p
is discussed in Section 4.2.2. When the t-th parameter (i.e., θt) is computed,
for r ≥ p, the condition depicted in (32) and the second observation guarantee

the existence of vectors ccc
(t)
l ⊆ (XXX

(t)
〈r〉 ∩FFF

(t)
l) for all 1 ≤ l ≤ |E|. This holds since

CCC
(t)
〈p〉 can be factorized as

CCC
(t)
〈p〉 = ccc

(t)
1 ∧ ccc

(t)
2 ∧ · · · ∧ ccc(t)p , (36)

where each factor ccc
(t)
l is related to a space of possibilities FFF

(t)
l , and XXX

(t)
〈r〉 includes

the entire blade CCC
(t)
〈p〉. In Fig. 5, it means that the transformed input blade XXX

(t)
〈r〉

will always share at least one vector factor with each space of possibilities at
each row of the trees. At the first row of Fig. 5, XXX

(0)
〈r〉 must include vvv1 and vvv2.

In its first step (Fig. 6, line 1), the mapping procedure initializes a set P(m)

with a 2-tuple comprised by the input blade XXX〈r〉 and an empty set (∅) de-
noting that no parameter was calculated yet. At each iteration (lines 2 to 9)
the 2-tuples in P(t) are processed and a new set P(t−1) is created. For each
2-tuples in P(t) (inner loop, lines 5 to 8), the procedure CalculateParameter

(defined in Fig. 7) calculates the parameter θt for the CCC
(t)
〈p〉 blades related to

XXX
(t)
〈r〉. Recall that a given input blade XXX〈r〉 can lead to one or more parame-

ter vectors, and hence one or more blades CCC〈p〉 ∈ C. It depends on how many
p-blades are related to XXX〈r〉. Calculating the t-th parameter implies identifying

the ccc
(t)
l vectors in (36), for the current t, and computing the RRRt that ensures

the existence of vectors ccc
(t−1)
l = R̃RRt ccc

(t)
l RRRt inside their respective FFF

(t−1)
l spaces.

In other words, computing the value for θt consists of guaranteeing that each
tree of possibilities includes at least one vector of XXX

(t)
〈r〉 for all t values.

When θt is being calculated it can assume a single value (i.e., it is computed
from input data) or assume all values in [−π/2,π/2) (i.e., it is arbitrated).
Given the discrete nature of the accumulator array, to assume all values in
[−π/2,π/2) means replicate the current 2-tuple being processed and assign a
discrete value in the [−π/2,π/2) range to each one of the replicas. The possible
values for θt define the set T and are computed by the CalculateParameter
function (line 6). Once θt is known, its related rotation must be rolled
back from the input blade in order to not affect the computation of θt−1 (see

the sandwiching construction R̃RRtXXX
(t)
〈r〉RRRt in line 7, where PPP

(t)
〈2〉 is the rotation

plane of the t-th rotation applied to EEE〈p〉 in (34)). Also, the parameter vector

must be updated (see (θt,Θ
(t)
1 , · · · ,Θ

(t)
m−t) in line 7) by including the new

parameter value θt with the other parameters {Θ(t)
k }m−tk=1 computed so far. At

the end of the process (line 10), XXX
(0)
〈r〉 ⊇ EEE〈p〉 for all (XXX

(0)
〈r〉,Θ

(0)) ∈ P(0), where

22

Require: An input r-blade XXX〈r〉
1: P(m) ←

{
(XXX〈r〉,∅)

}
2: for t = m down to 1 do
3: Let PPP

(t)
〈2〉 be the rotation plane of the t-th rotation applied to EEE〈p〉 in (34)

4: P(t−1) ← ∅
5: for all (XXX

(t)
〈r〉,Θ

(t)) ∈ P(t) do

6: T ← CalculateParameter(XXX
(t)
〈r〉)

7: P(t−1) ← P(t−1) ∪
{

(R̃RRtXXX
(t)
〈r〉RRRt, (θ

t,Θ
(t)
1 , · · · ,Θ(t)

m−t)) | θt ∈ T ,

and RRRt = cos
(
θt

2

)
− sin

(
θt

2

)
PPP
(t)
〈2〉
}

8: end for
9: end for

10: return
{

Θ(0) | (XXX(0)
〈r〉,Θ

(0)) ∈ P(0)
}

Fig. 6. The algorithm used to map an input r-blade XXX〈r〉 to Pm (16). The procedure

returns a set of parameter vectors Θ(0) ∈ Pm characterizing the p-blades that are
contained by XXX〈r〉.

Θ(0) is a parameter vector resulting from mapping XXX〈r〉 to Pm. All the Θ(0)

related to a given XXX〈r〉 are used to tessellate a mesh of simplexes in Pm. Voting
is performed by rasterizing the mesh and incrementing the related accumulator
bins by the importance ω of XXX〈r〉.

The CalculateParameter function is presented in Fig. 7. It takes as input
the blade YYY(t), computed in Fig. 6 as XXX

(t)
〈r〉. In this algorithm, the input blade

is denoted by YYY(t) instead of XXX
(t)
〈r〉 because its dimensionality may be changed

while executing the procedure.

The function in Fig. 7 is iterative (see the loop in lines 4 to 16). In line 5 it
creates a set M containing the meet of YYY(t) with the spaces of possibilities
FFF

(t)
l . Here we are concerned with the intersections (MMM

(t)
l) whose vector factors

can be associated to well defined FFF
(t)
l ’s at current t. These intersections define

the set N in line 6, where S is a set comprised by blades MMM
(t)
h that are not

orthogonal to MMM
(t)
l and have the same dimensionality as MMM

(t)
l . As a result, a

1-blade MMM
(t)
l ∈ N is related (exclusively) to the l-th space of possibilities, while

a 2-blade MMM
(t)
l ∈ N is related to two well-defined spaces of possibilities and

so on. When N is empty (line 7), θt assumes all value in [−π/2, π/2)
and the procedure stops. Assuming all values in [−π/2, π/2) means that

all rotation values keep at least one vector factor of XXX
(t−1)
〈r〉 = R̃RRtXXX

(t)
〈r〉RRRt (33)

inside the (t− 1)-th spaces of possibilities. Therefore, the condition depicted
in (32) will be respected. However, when N is not empty it must be ensured

that 1-blades MMM
(t)
l ∈ N contained in FFF

(t)
l will also be contained in FFF

(t−1)
l after

rolling back RRRt from them. Thus, the set O (line 10) is defined as containing

23

Require: YYY(t), the current input blade

1: Let PPP
(t)
〈2〉 be the rotation plane of the t-th rotation applied to EEE〈p〉 in (34)

2: Let FFF
(t)
l be a space of possibilities as defined in (35)

3: Let rrr
(t)
l ← FFF

(t−1)
l cFFF

(t)
l , i.e., the vector factor in FFF

(t)
l that is not in FFF

(t−1)
l

4: loop

5: M←
{

(YYY(t) ∩FFF
(t)
l) | l ∈ Z, and 1 ≤ l ≤ |E|

}
6: N ←

{
MMM

(t)
l |MMM

(t)
l ∈M, and grade(MMM

(t)
l) = |S| ,

where S ←
{
MMM

(t)
h |MMM

(t)
h ∈M, and MMM

(t)
l ∗MMM

(t)
h 6= 0

}}
7: if N = ∅ then
8: return

{
θt | θt ∈ [−π/2,π/2)

}
9: end if

10: O ←
{
MMM

(t)
l |MMM

(t)
l ∈ N , and grade(MMM

(t)
l) = 1, and grade(rrr

(t)
l) = 1

}
11: Q ←

{
qqq
(t)
l | qqq

(t)
l = (mmm

(t)
l cPPP

(t)
〈2〉) 6= 0, and mmm

(t)
l ∈ O

}
12: if Q 6= ∅ then

13: return
{
θt | θt = tan−1

(
((qqq

(t)
l ∧ rrr

(t)
l) ∗PPP

(t)
〈2〉) / (qqq

(t)
l ∗ rrr

(t)
l)
)

,

where qqq
(t)
l is one of the vectors in Q

}
14: end if
15: YYY(t) ← (MMM

(t)
l)−1cYYY(t), where MMM

(t)
l is the blade with the highest dimensionality

in the set N
16: end loop

Fig. 7. Function CalculateParameter. The algorithm takes as input a r-blade YYY(t)

and determines if the t-th parameter in Θ(0) (Fig. 6, line 10) can be computed from
YYY(t) or if it must be arbitrated.

the vectors inN that can potentially “leave” FFF
(t−1)
l . Notice that it may happen

only when the dimensionality of FFF
(t−1)
l is smaller than the dimensionality of

FFF
(t)
l . The vector rrr

(t)
l = FFF

(t−1)
l cFFF

(t)
l in Fig. 7 (line 3) represents the additional

dimension of FFF
(t)
l . Thus, the left contraction (c) when computing rrr

(t)
l can be

interpreted as removing from FFF
(t)
l the part that is not orthogonal to FFF

(t−1)
l . An

example of rrr
(t)
l in Fig. 5 (left) is vector eee3 at t = 2 and t = 3.

In line 11, the set Q is comprised by the nonzero vectors qqq
(t)
l resulting from

the contraction of vectors mmm
(t)
l ∈ O onto the rotation plane PPP

(t)
〈2〉. When qqq

(t)
l is

zero, it means that mmm
(t)
l is orthogonal to PPP

(t)
〈2〉 and, thus, it is not affected by a

rotation in PPP
(t)
〈2〉 and cannot leave FFF

(t−1)
l . However, when qqq

(t)
l is not zero there

is a single rotation angle θt that makes R̃RRtmmm
(t)
l RRR be inside FFF

(t−1)
l . Such angle

is computed in line 13 as the smallest angle between qqq
(t)
l and rrr

(t)
l . The vector

qqq
(t)
l is orthogonal to mmm

(t)
l and is contained in plane PPP

(t)
〈2〉, as one would expect

from the left contraction in line 11. The rotation angle θt that makes rrr
(t)
l

parallel to qqq
(t)
l is the only rotation angle that respects the condition

24

in (32) after rolling back rotation RRRt from XXX
(t)
〈r〉. This is because it ensures

that R̃RRtmmm
(t)
l RRRt will be included in FFF

(t−1)
l . The vector rrr

(t)
l is included in PPP

(t)
〈2〉

and FFF
(t)
l , but it is not included in FFF

(t−1)
l . By orthogonality, as qqq

(t)
l gets parallel

to rrr
(t)
l and goes out of the tree of possibilities, mmm

(t)
l keeps inside of the related

tree.

If the set Q is empty, then there is no vector qqq
(t)
l to be used to compute

θt. In such a case, the input blade YYY(t) is updated by removing (see the left
contraction in line 15) its highest dimensional portion that certainly will not
“leave” the related spaces of possibilities after rolling back RRRt for any value of
θt.

The procedure in Fig. 7 executes p iterations in the worst case. This happens
when YYY(t) is updated, at each iteration, by contracting (in line 15) only one

of the factors shared with CCC
(t)
〈p〉.

4.2.2 Mapping Procedure for r ≤ p

For the case involving r ≤ p, one can explore the dual relationship between
k-dimensional and (n− k)-dimensional subspaces in order to compute the
parameter vectors of blades in C. By taking XXX∗〈r〉 as input and EEE∗〈p〉 as refer-
ence blade, the containment relationship between XXX〈r〉 and the elements in C
changes from XXX〈r〉 ⊆ CCC〈p〉 to XXX∗〈r〉 ⊇ CCC∗〈p〉, reducing the mapping problem to the
case described in Section 4.2.1.

Supplementary Material E presents a step-by-step example where one vector
geometrically interpreted as a point under the homogeneous MOG is mapped
to the parameter space defined for subspaces interpreted as straight lines in
the 3-dimensional base space of the same MOG. In such a case, r = 1, p = 2,
and n = 3 + 1.

4.2.3 On the generality of the mapping procedure

In standard HTs the input data type is known a priori. Thus, standard map-
ping procedures predefine which parameters must be arbitrated and which
ones must be computed. The conventional approach to define how to treat
each parameter follows the ideas presented by Ballard [24] to describe how
to define a HT for analytic curves on the plane. Such an approach relies on
the derivative of the chosen model function of the curve (1), which must be
written with respect to the expected kind of input entry. This restricts the
expected input shape and forces the specialization of the function that char-
acterizes the intended curve. As pointed out in [24], defining the transform
for analytic curves from their derivative often requires considerable algebraic

25

manipulation. Our approach, on the other hand, uses a general model function
and does not require prior information about input data. It decides at run-
time how to treat each parameter θt. In Section 5 we explore those features to
perform concurrent detection of subspaces with different geometric interpre-
tations in heterogeneous datasets (see Fig. 2, right) without having to worry
about deriving particular mapping procedure for each type of input entry.

5 Results and Discussions

We have implemented the described algorithm using C++ and have used
MATLABr to display detection results. We have chosen to use our own GA
library. However, any other library implementing the basic products of GA
could be used instead (e.g., Gaigen 2 [43], GluCat [44]).

From our experience, the quality of the detections performed by our approach
is equivalent to the one obtained through standard HTs. It is because HTs
for detecting analytic geometric shapes are particular cases of our subspace
detection scheme (see Supplementary Materials B and C). Therefore, due to
space restrictions, we present results illustrating the use of the proposed ap-
proach in cases that cannot be covered by a single HT designed for detecting
some specific type of alignment on a given type of input data.

Fig. 1a shows the detection of subspaces geometrically interpreted as the
straight lines that best fit a set of 395,248 vectors interpreted as points under
homogeneous MOG. Those points were generated by supersampling (16×)
each one of the 24,703 edge pixels obtained from the input image (after a
Canny edge detector plus thresholding and thinning – Fig. 1b). The super-
sampling is used in order to treat edge pixels as area elements rather than
as point elements, leading to a smoother distribution of votes in the result-
ing accumulator array. In this example we use homogeneous MOG, leading
to n = 3 (the dimensionality of the representational space), p = 2 (the dimen-
sionality of blades interpreted as straight lines in the MOG), and r = 1 (the
dimensionality of input vectors interpreted as points). The discretization step
for defining the accumulator array is π/900, and the importance value of each
input is the magnitude of the gradient computed by the edge detector.

Fig. 8 (right) illustrates the accumulator array computed for the straight-line
detection (p = 2) from uncertain subspaces encoding straight lines (r = 2) in
the 2-dimensional homogeneous MOG (n = 3). The input 2-blades were com-
puted from the edge pixels of the image (Fig. 8, left) and their gradient vector
directions. The standard deviation for coordinates of a given edge pixel is
2/(512

√
12), where 2 is the size of the image after normalizing its coordinates

to the [−1,+1] range, 512 is the number of pixels in each dimension of the

26

θ 3,1

θ 3,2

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

0

2

4

6

8

10

12

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 8. The 22 most relevant detected lines obtained using our approach are pre-
sented on the left. These results were obtained from the edge information of the
given image. The accumulator array on the right was obtained as the linear dis-
cretization of the parameter space P2, using π/360 as discretization step.

image, and 12 comes from the second central moment of a pixel with unit
side. The standard deviation assumed for gradient directions was 0.13, lead-
ing to ±0.39 radians of uncertainty on the direction normal to a given input
line. The accumulator array was obtained as the linear discretization of the
parameter space P2 (m = 2 (3− 2) = 2), using π/360 as discretization step.
The importance value ω of each input is the magnitude of the gradient com-
puted by the edge detector. For the voting procedure, each one of the 15,605
uncertain blades was represented by 160 random samples. Notice that Figs. 1a
and 8 (left) show the detection of straight lines. However, they use different
input data types. The dataset of the former is comprised by points, while the
later is comprised by straight lines. In both cases the proposed approach is
applied without changes.

The accumulator array for a simple case of circle detection is presented in
Fig. 3 (left). For this example we represent data in the conformal MOG, lead-
ing to n = 4, p = 3, and m = 3 (4− 3) = 3. We use points qqq1, qqq2, and qqq3 in
Fig. 3 (top) as input vectors (r = 1). Each input vector maps to a surface in
parameter space (see Fig. 3, left). In such a mapping, the parameters θ4,1 and
θ4,2 assume all values in [−π/2, π/2), while θ4,3 is computed from θ4,1, θ4,2, and
a given input vector. Note that the parameter space is defined onto a periodic
domain. Therefore, surfaces resulting from mapping input data can, eventu-
ally, seem discontinuous regarding a single [−π/2, π/2) period per parameter.
The intersection of the three surfaces (the bins receiving three votes) defines
the parameter vector related to CCC〈3〉 in Fig. 3 (top). In this example, ω = 1
and the step for linear discretization of P3 is π/180.

Fig. 1c illustrates the detection of circles that best fit a set of 1,353,760 sub-
spaces encoding tangent directions in conformal MOG. A tangent direction
is a geometric primitive encoding the subspace tangent to rounds at a given
location. Therefore, tangent directions have a point-like interpretation, and
also direction information assigned to them. The input tangent directions

27

(2-blades, leading to r = 2) were computed from 8,461 edge pixels (Fig. 1d)
and their gradient vector directions (supersampled as 160 random samples
per edge pixel to account for ±0.35 radians of uncertainty on the gradient
direction). As in Fig. 1a, ω is the magnitude of gradient directions. In order
to make the irregular imaged structures become more circular, the image in
Fig. 1c was convolved with a pillbox filter of radius 5 pixels before edge detec-
tion. Retrieved circles having radius bigger than 50% the image width were
discarded to avoid detecting the plate. In this example, the accumulator array
was defined as the linear discretization of the parameter space, using π/900
as discretization step.

The use of tangent directions (2-blades) while searching for circles allows a
simpler voting procedure than when using points (1-blades without tangent
information), due to the constraint imposed by the directional information.
Fig. 3 (right) illustrates the result of the mapping of directions tangent to CCC〈3〉
at points qqq1, qqq2, and qqq3 (Fig. 3, top) to the parameter space. By comparing
the accumulator arrays in Fig. 3 (bottom), one notices that the directional
information of a given tangent direction restricts the mapping of each input
blade to a curve (Fig. 3, right) on the surface related to its respective point
(Fig. 3, left). Such an expected behavior is a natural outcome of our mapping
procedure (Section 4.2).

Our general mapping procedure allows the detection of subspaces in hetero-
geneous datasets. In Fig. 2 (left) we present a synthetic dataset illustrating
the use of homogeneous MOG for detection of lines (p = 2) that best fit a
heterogeneous input set comprised by 45 points (r = 1) and 1 plane (r = 3) in
a 3-dimensional base space (leading to n = 3 + 1 = 4, and m = 2 (4− 2) = 4).
In this example, we are concerned with the detection of the lines on the input
plane that are also best fit for collinear input points. We set the importance
of the points to ω = 1 and the importance of the plane to ω = 45 (the number
of points). After performing the voting procedure, the bins in the accumula-
tor array having 47 votes or more represent the lines (on the plane) defined
by at least two points. Notice in Fig. 2 (left) that one subset of the points
clearly defines a line, but it was not retrieved because such line is not on the
plane. This example shows how our approach can be used to perform more
complex coherence queries on data than standard HTs. For this example, the
accumulator array was defined as the linear discretization of the parameter
space, using π/360 as discretization step.

Some MOGs may represent different geometric shapes with subspaces having
the same dimensionality. In conformal MOG, for instance, lines and circles are
3-dimensional subspaces, and planes and spheres are 4-dimensional subspaces.
Our approach takes advantage of such a feature, allowing the concurrent de-
tection of all shapes that have the same dimensionality on a given MOG.
Fig. 2 (right) illustrates this situation, where 1 plane and 2 spheres (p = 4)

28

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Fig. 9. Detection of data alignments from random noisy data. (left) Two subspaces
interpreted as planes detected in a set of 2,855 vectors interpreted as points, from
which 52.54% are outliers. (right) The concurrent detection of one plane and one
sphere in a set of 3,314 input points, where 45.26% are outliers.

are detected simultaneously. In this example the heterogeneous (synthetic)
dataset is comprised by 43 points (r = 1), 1 straight line (r = 3), and 3 circles
(r = 3) in conformal MOG. The importance values of input blades was set to
one, and the accumulator array was defined by using π/360 as discretization
step.

Fig. 9 shows synthetic datasets comprised by points encoded into homogeneous
(n = 3 + 1, left) and conformal (n = 3 + 2, right) MOGs. The points were ran-
domly distributed on grids in order to improve the visualization of them as part
of the data alignments to be detected. In both datasets, zero-mean Gaussian
noise is added to point coordinates. In Fig. 9 (left) the dataset is comprised
by 1,355 points (r = 1), which approximate two planes (p = 3), and 1,500 uni-
formly distributed outliers (the non-coplanar points), leading to 2,855 input
entries altogether. Signal-to-noise ratio is 1.9. For the examples in Fig. 9 (left),
the importance value of input blades was set to one, and the accumulator array
was defined by using π/450 as discretization step (i.e., 450 discrete angular
values per axis of the 3-dimensional parameter space). Fig. 9 (right) illustrates
the detection of a plane and a sphere (p = 4) in an input set of 3,314 points
(r = 1), where 1,500 of such points characterize outliers with uniform distribu-
tion. Signal-to-noise ratio is 2.21. A coarse discretization step is assumed for
the accumulator array (π/90). The examples in Fig. 9 show that the proposed
approach can identify subspaces even in datasets having noise and outliers.

An approximation of the dth-order Voronoi diagram [14] of a set of points in
Rd can be retrieved as byproduct of the detection of subspaces geometrically
interpreted as (d− 1)-spheres (e.g., a 1-sphere is a circle, a 2-sphere is an ordi-
nary sphere, and so on) in the conformal MOG. Fig. 10 presents an example in
R2 (thus, n = 2 + 2 = 4). The points pppi in Fig. 10 (left) were encoded in con-
formal MOG and used as input for the detection of circles (p = 3). Each point
maps to a surface in the 3-dimensional parameter space (m = 3 (4− 3) = 3).
From the intersection of three or more surfaces one retrieves the circles pass-

29

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

p
1

p
2

p
7

p
3 p

4
p

5

p
6

θ 4,3

θ 4,2

θ 4,1

-1

0

1

-1

0

1

0

1

2

3

v
8

v
5

v
1

v
4

v
2

v
6

v
3

v
7

Fig. 10. (left) The vertices (vvvj) and edges (approximated by gray points) of the
Voronoi diagram of points pppi are defined by the center of circles having no points
in their interior and passing through more than two, and passing through exactly
two input points, respectively. (right) These circles reside on a well defined surface
at the parameter space.

ing thought three or more input points. The centers of the circles having the
smaller radius correspond to the vertices of the Voronoi diagram (points vvvj in
Fig. 10, left). As Fig. 10 (right) shows, such circles reside (in parameter space)
on a surface defined by the superposition of mapped input data. Thus, the
vertices of the diagram can be retrieved just by looking for the bins having
the largest values on that surface (i.e., more than two votes). The bins having
two votes correspond to the circles whose centers are at an edge of the Voronoi
diagram (the gray points in Fig. 10, left). The votes accumulated by the bins
below the green surface in Fig. 10 (right) are not shown for sake of clarity.
In this example, the discretization step for defining the accumulator array is
π/720, and ω = 1. See Supplementary Material C for a detailed description of
how to obtain the results presented in Fig. 10.

The Voronoi example (Fig. 10) shows that one can restrict the voting proce-
dure to a specific region of the parameter space to restrict the detection process
to a subset of geometric shapes (e.g., circles with radius in a given range). Such
a specialization is driven by the geometric properties of the intended shape.
However, it does not affect the generality of our approach because the map-
ping procedure (Section 4.2) is not affected. By specifying a smaller range of
interest in the parameter space, we reduce the memory and computational
requirements of the technique.

We have developed proof of concept implementations of the described algo-
rithms (Figs. 6 and 7) that keep the complete accumulator array, as well as
some auxiliary data structures, allocated in the main memory. Due to prac-
tical issues, when the accumulator array has more than three dimensions, or
when the discretization step is too small, the total memory required by our
program can exceed the amount of memory that a process can allocate. In
Windowsr XP 32-bit, such a limit is 4 GB per program. By decreasing the
discretization step, a higher-dimensional accumulator array may be allocated

30

in some acceptable amount of memory. However, the representation of the sub-
spaces may be affected by the coarse discretization. The study of solutions for
the memory-budget problem is a promising direction for future exploration.

For the results presented in this section, the discretization step of the ac-
cumulator arrays was defined according to the number of dimensions of the
parameter space. In each case, the discretization step was set as the smallest
value that allows the allocation of the accumulator array, while respecting the
restrictions imposed by the operating system.

5.1 Time Complexity

The time complexity of our approach is O(p2 (m− k) skN), for r ≥ p and,
by duality, O((n− p)2 (m− k) skN), for r ≤ p, where m is the number of
parameters used to characterize an instance of a p-dimensional subspace in
the underlying n-dimensional space, k is the number of arbitrated parameters,
s is the number of samples along one dimension of the accumulator array, and
N is the number of input r-dimensional entries.

Standard HTs are usually defined assuming r < p and p = n− 1. Under such
conditions, their time complexity is O((m− k) skN). HTs are also often de-
fined for cases where only one parameter is not arbitrated, i.e., k = m− 1,
leading to O(sm−1N). It is important to notice that under the same con-
ditions (i.e., r < p, p = n− 1, and k = m− 1) the time complexity of the
proposed approach is the same as that of standard HTs.

5.2 Limitations

A naive implementation of our approach has the same drawbacks as standard
HTs regarding memory requirement and computational cost. However, as op-
posed to standard HTs, our approach is a closed-form solution that can be
applied to all kinds of data alignments represented by linear subspaces in any
complete metric spaces. As a result, any optimization developed on our frame-
work is also generally applicable and immediately benefits the processing of
all detection cases.

As one would expect, the proposed approach is limited to the detection of ele-
ments that can be represented as blades. However, it is sufficient for detecting
a wide class of data alignments because GAs can be constructed over any type
of quadratic spaces.

31

6 Summary and Future Work

We have presented a general framework for subspace detection in unordered
multidimensional datasets. Our approach can be seen as a general analytical
shape detector whose definition does not depend on the shape one wants to
detect nor on the input data type. We have demonstrated the effectiveness of
our approach as a shape detector on both real (Figs. 1 and 8) and synthetic
(Figs. 2 and 9) datasets. One should note that, given its generality, our frame-
work is not restricted to the detection of geometric shapes. It can be applied
to any domain in which a problem can be cast as subspace detection. For ex-
ample, the subspace clustering problem in data mining applications. Since our
approach is independent of the metric space (Section 4), it can be used, with-
out any change, for the detection of subspaces having different interpretations
(e.g., different MOGs), including some that may be defined in the future.

Mapping existing HT optimizations for the proposed approach constitutes
some promising direction for future exploration. For instance, we believe that
the Statistical Hough Transform proposed by Dahyot [45] for straight-line
detection could be generalized to our subspace detector. This would overcome
limitations due to the use of a discrete accumulator array, replacing it with a
continuous representation of the parameter space. The use of the connectionist
approach for peak detection in multidimensional parameter space proposed by
Vinod et al. [46] is also being investigated. In some previous work [47], we have
presented a HT for real-time line detection. We are currently working on the
generalization of this optimization, which should benefit the detection of any
pattern that can be represented as a subspace. We are also investigating the
generalization of the Probabilistic Hough Transform proposed by Kiryati et
al. [48], and analyzing the quality of detection achieved by using a subset of
input entries chosen at random from some heterogeneous database.

The generality of our solution should enable new and exciting applications
in many different areas ranging from image processing to data mining. Our
approach eliminates the laborious task of defining a model and a mapping
procedure for each specific case of detection. Thus, it should stimulate research
on new optimization approaches for subspace detection.

Acknowledgments

This work was sponsored by CNPq-Brazil grants 142627/2007-0 and 308936/2010-
8, FAPERGS PQG 10/1322-0. We thank J. A. Small and J. R. Michael, and
M. Matrosovich for kindly providing the datasets used in Fig. 1, and the
anonymous reviewers for their comments and insightful suggestions.

32

References

[1] R. Mankel, Pattern recognition and event reconstruction in particle physics
experiments, Rep. Prog. Phys. 67 (4) (2004) 553–622.

[2] M. Fechner et al., Kinematic reconstruction of atmospheric neutrino events in a
large water Cherenkov detector with proton identification, Phys. Rev. D 79 (11)
(2009) 112010.

[3] B. Krishnan, A. M. Sintes, M. A. Papa, B. F. Schutz, S. Frasca, C. Palomba,
Hough transform search for continuous gravitational waves, Phys. Rev. D 70 (8)
(2004) 082001.

[4] B. Abbott et al., All-sky search for periodic gravitational waves in LIGO S4
data, Phys. Rev. D 77 (2) (2008) 022001.

[5] J. M. Bewes, N. Suchowerska, D. R. McKenzie, Automated cell colony counting
and analysis using the circular Hough image transform algorithm (CHiTA),
Phys. Med. Biol. 53 (21) (2008) 5991–6008.

[6] J. Kürner, A. S. Frangakis, W. Baumeister, Cryo-electron tomography reveals
the cytoskeletal structure of Spiroplasma Melliferum, Science 307 (5708) (2005)
436–438.

[7] D. Naumović, P. Aebi, L. Schlapbach, C. Beeli, K. Kunze, T. A. Lograsso,
D. W. Delaney, Formation of a stable decagonal quasicrystalline Al-Pd-Mn
surface layer, Phys. Rev. Lett. 87 (19) (2001) 195506.

[8] T. Liu, D. Raabe, S. Zaefferer, A 3D tomographic EBSD analysis of a CVD
diamond thin film, Sci. Technol. Adv. Mater. 9 (3) (2008) 035013.

[9] M. Ding, A. Fenster, A real-time biopsy needle segmentation technique using
Hough transform, Med. Phys. 30 (8) (2003) 2222–2233.

[10] F. Oloumi, R. M. Rangayyan, Detection of the temporal arcade in fundus images
of the retina using the Hough transform, in: Proc. of IEEE Eng. Med. Biol. Soc.,
2009, pp. 3585–3588.

[11] W. Xiangyu, S. Ramanathan, M. Kankanhalli, A robust framework for aligning
lecture slides with video, in: Proc. of IEEE Int. Conf. Image Process., 2009, pp.
249–252.

[12] O. Barinova, V. Lempitsky, P. Kohli, On detection of multiple object instances
using Hough transforms, in: Proc. of IEEE Conf. Comput. Vis. Pattern
Recognit., 2010, pp. 2233–2240.

[13] J. Koh, V. Govindaraju, V. Chaudhary, A robust iris llocalization method using
an active contour model and Hough transform, in: Proc. of IEEE Int. Conf.
Pattern Recognit., 2010, pp. 2852–2856.

[14] G. Voronoi, Nouvelles applications des paramètres continus à la théorie des
formes quadratiques, J. Reine Angew. Math. (Crelle’s J.) 1908 (134) (1908)
198–287.

33

[15] L. A. F. Fernandes, M. M. Oliveira, Geometric algebra: a powerful tool for
solving geometric problems in visual computing, in: Tutorials of Brazilian Symp.
Comput. Graph. Image Process., 2009, pp. 17–30.

[16] L. Dorst, D. Fontijine, S. Mann, Geometric algebra for computer science: an
object oriented approach to geometry, Morgan Kaufmann, 2007.

[17] C. Perwass, Geometric algebra with applications in engineering, Springer, 2009.

[18] J. Illingworth, J. Kittler, A survey of the Hough transform, Comput. Vis. Graph.
Image Process. 44 (1) (1988) 87–116.

[19] V. F. Leavers, Which Hough transform?, CVGIP: Image Underst. 58 (2) (1993)
250–264.

[20] R. O. Duda, P. E. Hart, Use of the Hough transformation to detect lines and
curves in pictures, Commun. ACM 15 (1) (1972) 11–15.

[21] C. Kimme, D. Ballard, J. Sklansky, Finding circles by an array of accumulators,
Commun. ACM 18 (2) (1975) 120–122.

[22] P. V. C. Hough, Machine analysis of bubble chamber pictures, in: Proc. of Int.
Conf. on High Energy Accelerators and Instrum., CERN, 1959.

[23] N. Bennett, R. Burridge, N. Saito, A method to detect and characterize ellipses
using the Hough transform, IEEE Trans. Pattern Anal. Machine Intell. 21 (7)
(1999) 652–657.

[24] D. H. Ballard, Generalizing the Hough transform to detect arbitrary shapes,
Pattern Recognit. 13 (2) (1981) 111–122.

[25] H. L. Wang, A. P. Reeves, Three-dimensional generalized Hough transform for
object identification, in: Proc. of SPIE, Vol. 1192, 1990, pp. 363–374.

[26] F. O’Gorman, M. B. Clowes, Finding picture edges through collinearity of
feature points, in: Proc. of Joint Conf. on Artif. Intell., 1973, pp. 543–555.

[27] G. Medioni, M.-S. Lee, C.-K. Tang, A computational framework for
segmentation and grouping, Elsevier, Amsterdam, 2000.

[28] R. Vidal, Subspace clustering, IEEE Signal Process. Mag. 28 (2) (2011) 52–68.

[29] M. E. Tipping, C. M. Bishop, Mixtures of probabilistic principal component
analyzers, Neural Comput. 11 (2) (1999) 443–482.

[30] R. Vidal, Y. Ma, S. Sastry, Generalized principal component analysis (GPCA),
IEEE Trans. Pattern Anal. Mach. Intell. 27 (12) (2005) 1945–1959.

[31] E. Elhamifar, R. Vidal, Sparse subspace clustering, in: Proc. of IEEE Conf.
Comput. Vis. Pattern Recognit., 2009, pp. 2790–2797.

[32] X. Chen, Y. Ye, X. Xu, J. Z. Huang, A feature group weighting method for
subspace clustering of high-dimensional data, Pattern Recognit.(to appear).

34

[33] M. Polito, P. Perona, Grouping and dimensionality reduction by locally linear
embedding, in: Proc. of Advances in Neural Inform. Process. Syst., 2001, pp.
1255–1262.

[34] R. Souvenir, R. Pless, Manifold clustering, in: Proc of IEEE Int. Conf. Comput.
Vis., 2005, pp. 648–653.

[35] A. Goh, R. Vidal, Segmenting motions of different types by unsupervised
manifold clustering, in: Proc. of IEEE Conf. Comput. Vis. Pattern Recognit.,
2007, pp. 1–6.

[36] A. Goh, R. Vidal, Clustering and dimensionality reduction on Riemannian
manifolds, in: Proc. of IEEE Conf. Comput. Vis. Pattern Recognit., 2008, pp.
1–7.

[37] P. Favaro, R. Vidal, A. Ravichandran, A closed form solution to robust subspace
estimation and clustering, in: Proc. of IEEE Conf. Comput. Vis. Pattern
Recognit., 2011, pp. 1801–1807.

[38] D. Hestenes, New foundations for classical mechanics, Reidel Publishing
Company, 1987.

[39] C. Doran, J. Lasenby, L. Dorst, D. Hestenes, S. Mann, A. Naeve, A. Rockwood,
Geometric algebra: new foundations, new insights, Course 31 at SIGGRAPH
(2000).

[40] C. Doran, J. Lasenby, L. Dorst, D. Hestenes, S. Mann, A. Naeve, A. Rockwood,
Geometric algebra, Course 53 at SIGGRAPH (2001).

[41] D. Hildenbrand, D. Fontijne, C. Perwass, L. Dorst, Geometric algebra and its
application to computer graphics, Tutorial 3 at Eurographics (2004).

[42] J. Harris, Algebraic geometry: a first course, Springer, 1992.

[43] D. Fontijne, Gaigen 2: a geometric algebra implementation generator, in: Proc.
of Int. Conf. Generative Progr. Component Eng., ACM Press, 2006, pp. 141–
150.

[44] P. C. Leopardi, GluCat (2009).
URL http://glucat.sourceforge.net/

[45] R. Dahyot, Statistical Hough transform, IEEE Trans. Pattern Anal. Mach.
Intell. 31 (8) (2009) 1502–1509.

[46] V. V. Vinod, S. Chaudhury, S. Ghose, J. Mukherjee, A connectionist approach
for peak detection in Hough space, Pattern Recognit. 25 (10) (1992) 1253–1264.

[47] L. A. F. Fernandes, M. M. Oliveira, Real-time line detection through an
improved Hough transform voting scheme, Pattern Recognit. 41 (1) (2008) 299–
314.

[48] N. Kiryati, Y. Eldar, A. M. Bruckstein, A probabilistic Hough transform,
Pattern Recognit. 24 (4) (1991) 303–316.

35

