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B.1 Description

This document presents a derivation of the standard Hough transform (HT)
formulation for straight line detection in datasets comprised by points from
the equations defining our subspace detection framework [1]. The derivations
relating the parameter space of the standard HT for circle detection to the
proposed parameter space is presented in Supplementary Material C. These
results show that standard HTs are particular cases of our subspace detection
scheme.
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B.2 The Standard Hough Transform

Duda and Hart [2] propose a HT that uses the normal equation of the line (B.1)
while performing the line detection from points:

ρ = x cos(φ) + y sin(φ). (B.1)

In (B.1), (x, y) are the coordinates of points in the plane, ρ ∈ [−R, + R] de-
fines the distance from the line to the origin of the coordinate system of the
2-dimensional base space (i.e., the center of the image plane), φ ∈ [0, π) is the
angle between the x-axis and the normal to the line, and R =

√
w2 + h2/2

is the highest (positive) distance expected, for w and h being the width and
height of the image, respectively.

The mapping procedure described by Duda and Hart defines φ as the arbi-
trated parameter, and ρ as the parameter computed from a given φ value and
from the (x, y) coordinates of some input point.

B.3 The Proposed Approach

Duda and Hart’s formulation for the HT can be derived from our subspace
detection framework by encoding input data points and intended straight lines
into the homogeneous model of geometry (MOG). In such a MOG, the dimen-
sionality of the representational vector space R

n is n = 2 + 1 = 3 (i.e., the
d = 2 dimensions of the base space plus the extra dimension imposed by
the MOG), and the dimensionality of subspaces geometrically interpreted as
straight lines is p = 2. As a result, the proposed model function for p-blades
(i.e., equation (15) in our paper [1]):

BBB〈p〉 = TTT EEE〈p〉 T̃TT , (B.2)

reduces to
BBB〈2〉 = RRR3,1 RRR3,2 EEE〈2〉 R̃RR3,2 R̃RR3,1 (B.3)

by replacing the rotor TTT in (B.2) by its component rotor SSS 3 and, in turn,
replacing SSS 3 by its component rotors RRR3,2 and RRR3,1 (see (23) and (18) in our
paper [1]). Recall that

EEE〈2〉 = eee∗3 = −eee1 ∧ eee2 (B.4)

in (B.3) is a canonical subspace used as reference (see (21) in the paper), and
RRR3,2 and RRR3,1 encode rotations of θ3,2 and θ3,1 radians on the unit planes eee3 ∧ eee2

and eee2 ∧ eee1, respectively. The rotors RRRn,j in (B.3) are defined as:

RRRn,j = cos

(
θn,j

2

)
− sin

(
θn,j

2

)
(eeej+1 ∧ eeej) , (B.5)
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having n = 3 and j ∈ {2, 1} in this example.

B.3.1 The Equivalence of Parameter Spaces

The following derivations show how the rotation angles (θ3,2, θ3,1) characteriz-
ing 2-dimensional subspaces through (B.3) are related to the (ρ, φ) parameters
in the normal equation of the line (B.1).

The basis vectors of the representational space R
3 are {eee1,eee2,eee3}. Under the

homogeneous MOG, eee1 and eee2 are interpreted as directions parallel to the x
and y axes of the image plane, respectively, and eee3 (or eee0 in the conventional
notation of the homogeneous MOG – see Section A.3 in Supplementary Mate-
rial A) is geometrically interpreted as the point at the origin. Notice that the
reference subspace EEE〈2〉 (B.4) is spanned only by the directional portion of the
representational space (i.e., vectors eee1 and eee2). As a result, EEE〈2〉 is called an im-

proper line (i.e., a line at infinity [3]). However, as the rotor RRR3,2 is applied to

EEE〈2〉 (RRR3,2 EEE〈2〉 R̃RR3,2 in (B.3)), the vector factor eee2 in EEE〈2〉 rotates in the eee3 ∧ eee2

plane of the representational space and gets aligned to eee3. Fig. B.1a shows
that such an operation is geometrically interpreted as a translation along the
line through the origin eee3 with direction −eee2. In practice, the improper line
encoded by EEE〈2〉 leaves the infinity and approaches the origin of the image
plane as θ3,2 gets close to the ±π/2 values. Thus, the parameter θ3,2 has a
translation-like interpretation, as does have the ρ parameter in the normal
equation of the line (B.1). In fact, ρ ≡ tan(θ3,2 + π/2).

The rotor RRR3,1 in (B.1) acts on the directional information of the line re-

sulting from RRR3,2 EEE〈2〉 R̃RR3,2. Such a behavior can be derived from the rotation
plane (eee2 ∧ eee1) related to RRR3,1. Notice that a rotation in eee2 ∧ eee1 affects only
the directional portion of the underlying representational space where data
is being encoded. Fig. B.1b illustrates the subspaces (interpreted as straight
lines) in Fig. B.1a after being transformed by a rotor RRR3,1 encoding a rota-
tion of π/3 radians on the plane eee2 ∧ eee1. From these results, one can see that
the θ3,1 parameter has the same interpretation of the φ parameter from the
normal equation of the line (B.1), but in a different range of angular values.
The former is defined in the [−π/2, π/2) range, while the later is in the [0, π)
range. Such a difference may be compensated, leading to φ ≡ θ3,1 + π/2.

B.3.2 The Equivalence of Mapping Procedures

In this example, we set the input entries for our approach as subspaces en-
coding points under the homogeneous MOG. We are restricting the type of
input data in the following derivations because the HT proposed by Duda and
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Fig. B.1. Geometric interpretation of the parameters defined by our approach when
it is applied as a straight line detector on data encoded into the 2-dimensional
homogeneous MOG. (a) The θ3,2 parameter encodes the distance of the lines to
the origin of the base space (eee3). Such a behavior can be seen in the top-right
image, where straight lines are depicted in the base space. Such lines represent the
geometric interpretation of the subspaces resulting from applying, on the reference
blade EEE〈2〉 = −eee1 ∧ eee2 (B.4), rotations ranging from −π/2 to π/3 radians in the
eee3 ∧ eee2 plane of the representational space (top left). (b) The θ3,1 parameter encodes
the direction of the straight lines. It can be seen in the configuration obtained after
applying a rotation of π/3 radians in the eee2 ∧ eee1 plane on blades depicted in (a).

Hart [2] expects points as input. In practice, however, the proposed mapping
procedure is independent of the type of input entries.

In the homogeneous MOG, points are represented as vectors with the form:

xxx = xeee1 + y eee2 + eee3, (B.6)

where (x, y) are the coordinates of points, eee1 and eee2 are parallel to the image
plane, and eee3 is the basis vector related to the homogeneous coordinate.

The algorithm that maps input r-blades to P
m is presented in our paper [1] by

Figs. 6 and 7, and it is described in Section 4.2.1 (the term “our paper” will be
omitted from now on). The mapping algorithm is defined for input subspaces
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having dimensionality greater or equal to the dimensionality of intended sub-
spaces. However, in the current example, the input subspace (xxx in (B.6)) is
one-dimensional (r = 1), while the intended subspaces interpreted as straight
lines are bidimensional (p = 2) in the assumed MOG. Thus, according to Sec-
tion 4.2.1, one needs to take the dual of xxx as the used input (XXX〈r〉 in Fig. 6),
and to use the dual of EEE〈2〉 (defined in (B.4)) as reference blade (EEE〈p〉 in Figs. 6
and 7). By doing so:

XXX〈3−1〉 = xxx∗ = (xeee1 + y eee2 + eee3)
∗

= −xeee2 ∧ eee3 + y eee1 ∧ eee3 − eee1 ∧ eee2
(B.7)

and

EEE〈3−2〉 = EEE∗
〈2〉 = (−eee1 ∧ eee2)

∗ = −eee3, (B.8)

reducing the mapping procedure to the case described in Section 4.2.1 (i.e., r ≥ p,
because r = 3 − 1 = 2 in (B.7), and p = 3 − 2 = 1 in (B.8)). From the basis
vector spanning the used reference blade EEE〈3−2〉 (B.8), it follows that the set

E = {eee3}. In this case, the spaces of possibilities FFF
(t)
l (used in Fig. 7) are:

FFF
(0)
1 = eee3, (B.9)

FFF
(1)
1 = eee2 ∧ eee3, and (B.10)

FFF
(2)
1 = eee1 ∧ eee2 ∧ eee3. (B.11)

In the first step of the mapping algorithm (Fig. 6, line 1), the set P(2) is
initialized:

P(2) =
{
(XXX〈3−1〉, ∅)

}
,

where XXX〈3−1〉 is given by (B.7). The (single) 2-tuple in P(2) is processed during
the first iteration of the loop (line 2 to 9, for t = 2), resulting in the set P(1).
In line 6, the CalculateParameter function is called in order to determine if
the second coordinate of the resulting parameter vectors (θ2 in the algorithm,

or θ3,1 in double-index notation) can be computed from XXX
(2)
〈3−1〉 = XXX〈3−1〉 or if

it must be arbitrated. In this case, the parameter is arbitrated. Notice, by
looking to (B.11) and (B.10), that there is no rotation on plane PPP

(2)
〈2〉 = eee2 ∧ eee1

that, when applied to XXX〈3−1〉, makes the transformed input subspace leave the
tree of possibilities at t = 1. Actually, there is no 2-blade that can be spanned
outside FFF

(1)
1 = eee2 ∧ eee3, because such a space of possibility does not include only

one of the dimensions (i.e., eee1) of the total 3-dimensional space. Therefore, θ2

(or θ3,1) is arbitrated, as φ also is in the HT proposed by Duda and Hart [2].

By arbitrating the value of θ2 (or θ3,1), the set T in line 6 is initialized with
values in the [−π/2, π/2) range, chosen according to some discretization cri-
teria (usually linear). In turn, P(1) (line 7, Fig. 6) is updated by receiving

2-tuples comprised by blades computed as R̃RR2 XXX
(2)
〈3−1〉RRR2 and the possible (dis-
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crete) values of θ2. Recall that, according to the double-index notation, RRR2

corresponds to RRR3,1 (defined in (B.5)), as θ2 corresponds to θ3,1.

In the second iteration of the outer loop (Fig. 6, line 2 to 9), t = 1. Each ele-
ment in P(1) is processed during the inner loop (line 5 to 8), resulting in the set

P(0) with blades XXX
(0)
〈3−1〉 and the resulting parameter vectors. For all elements

being processed, the current parameter (θ1, or θ3,2 in double-index notation)
is computed by the CalculateParameter function. They are computed, rather
than being arbitrated, because there is no guarantee that all possible rotations
on plane PPP

(1)
〈2〉 = eee3 ∧ eee2 make the transformed input subspace keep at least one

vector factor inside the space of possibilities for t = 0 (FFF
(0)
1 = eee3 in (B.9)). For

instance, P(1) could include some blade

XXX
(1)
〈3−1〉 = eee1 ∧ eee2,

which needs a rotation of −π/2 radians on plane PPP
(1)
〈2〉 = eee3 ∧ eee2 in order to be

transformed into
XXX

(0)
〈3−1〉 = R̃RR1 XXX

(1)
〈3−1〉RRR1 = −eee1 ∧ eee3,

i.e., a subspace sharing at least one vector factor with FFF
(0)
1 = eee3. The only case

that causes the value of θ1 (or θ3,2) to be arbitrated is when

XXX
(1)
〈3−1〉 = eee2 ∧ eee3. (B.12)

In such a case, the current blade already shares one vector factor with FFF
(0)
1 and

there is no rotation on plane PPP
(1)
〈2〉 that is capable to change XXX

(1)
〈3−1〉, because the

subspace to be transformed (B.12) includes the rotation plane. However, the
case depicted in (B.12) will never happen if one assumes subspaces written
in the form (B.7) as input (i.e., the dual representation of points under the
homogeneous MOG). Notice that the expected input subspaces always have
the −1 coefficient multiplying the eee1 ∧ eee2 basis blade in (B.7). Such a condition
cannot be changed by arbitrating the previous parameter (θ2, or θ3,1), and
hence, it will be kept while computing θ1 (or θ3,2). Thus, as in the HT proposed
by Duda and Hart [2], the parameter θ3,2, related to ρ, is computed from the
given input entry and a value arbitrated for θ3,1, or φ.

The case depicted in (B.12) is likely to happen when the input subspace en-
codes the dual representation of directions, rather than points, under the ho-
mogeneous MOG. In such a case, the coefficient multiplying the basis vector
eee3 is zero in the direct representation of the direction, leading to a zero co-
efficient multiplying the eee1 ∧ eee2 basis blade in its dual representation. Notice,
however, that directions are not accepted as input entries of the mapping pro-
cedure proposed by Duda and Hart [2]. Our approach, on the other hand, is
independent of the type of input data.

It is important to emphasize that the CalculateParameter procedure (Fig. 7)

6



is capable to identify that the values assumed by θ2 (or θ3,1) must be arbi-
trated, while the values assumed by θ1 (or θ3,2) must be computed in the
current case study. However, in order to avoid the tedious evaluation of the
procedure, such an identification was performed by using some geometric in-
tuition about spaces of possibilities and the dimensionality of the given input
blade rather than by running the algorithm in Fig. 7 of our paper [1], step-
by-step.
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