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C.1 Description

This document presents a discussion on how to retrieve an approximation of
the dth-order Voronoi diagram [1] of a set of points in R

d as byproduct of
our subspace detection framework [2]. Such a result is achieved when our ap-
proach is applied to the detection of subspaces geometrically interpreted as
(d − 1)-spheres (e.g., a 0-sphere is a pair of points, a 1-sphere is a circle, a
2-sphere is an ordinary sphere, and so on) in the conformal model of geome-
try (MOG).

This document also describes how the parameter space of the standard Hough
transform (HT) for circle detection from points in the plane is related to
the proposed parameter space defined for the same detection case under the
conformal MOG.
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C.2 Setup of the Proposed Approach

Supplementary Material A shows that the dimensionality of the representa-
tional space R

n in conformal MOG is n = d + 2, where d is the dimensionality
of the Euclidean base space, and the two extra dimensions are imposed by the
MOG. The first of such extra dimensions is a null vector interpreted as the
origin point of the base space (denoted by ooo), while the second is a null vector
interpreted as the point at infinity (denoted by ∞∞∞). In the conventional no-
tation of the conformal MOG, the basis vectors of the representational space
are:

{ooo,eee1,eee2, · · · ,eeed,∞∞∞} , (C.1)

where {eeei}
d
i=1 define the Euclidean, and {ooo,∞∞∞} define the non-Euclidean por-

tions of the total space (see the multiplication table for the vector inner prod-
uct of the basis vectors under conformal MOG in Supplementary Material A).

In order to have an accumulator array that approximates the Voronoi diagram,
one has to assume the following order for the basis vectors of the representa-
tional space:

{eee1,eee2, · · · ,eeed,∞∞∞,ooo} . (C.2)

Such an ordering of basis vectors is important for retrieving the Voronoi di-
agram because it gives the appropriate geometric interpretation to the pa-
rameters of our parameterization scheme. The study of the interpretation of
parameters regarding all possible ordering of basis vectors is out of the scope
of this work. We have used the conventional ordering of basis vectors in other
(d − 1)-spheres detection examples presented in our manuscript [2].

After defining the basis vector as (C.2), one has to replace the actual degen-
erate metric of the representational space by a more convenient metric while
performing the proposed subspace detection scheme (as discussed in our pa-
per [2] – Section 4.1). By assuming Euclidean metric for R

n, the basis vectors
in (C.2) map to the basis vectors of some Euclidean space, i.e.,

eee1 7→ eee1,

eee2 7→ eee2,
...

eeed 7→ eeen−2,

ooo 7→ eeen−1,

∞∞∞ 7→ eeen,

leading to the following (Euclidean) vector basis:

{eee1,eee2, · · · ,eeen} . (C.3)
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Recall that the intended subspaces are geometric interpreted as (d − 1)-spheres
under the conformal MOG. The dimensionality of such subspaces is p = n − 1.
As a result, the proposed model function for p-blades (i.e., equation (15) in
our paper [2]):

BBB〈p〉 = TTT EEE〈p〉 T̃TT , (C.4)

reduces to
BBB〈n−1〉 = SSSn EEE〈n−1〉 S̃SSn (C.5)

by replacing the rotor TTT in (C.4) by its component rotor

SSSn = RRRn,1 · · · RRRn,n−2 RRRn,n−1, (C.6)

where rotors RRRn,j are defined as:

RRRn,j = cos

(
θn,j

2

)
− sin

(
θn,j

2

)
(eeej+1 ∧ eeej) , (C.7)

for j ∈ {n − 1, n − 2, · · · , 1} (see (23), (18) and (19) in [2]). The rotation an-
gles θn,j related to RRRn,j in (C.7) are the parameters characterizing the attitude
of p-blades, and hence the intended (d − 1)-spheres.

The blade EEE〈n−1〉 in (C.5) is a canonical subspace used as reference (see (21)
in the paper). It is defined as

EEE〈n−1〉 = eee∗n

= (−1)d (d+1)/2 eee1 ∧ eee2 ∧ · · · ∧ eeen−1. (C.8)

Under the assumed Euclidean metric, EEE〈n−1〉 is just a (n − 1)-dimensional
Euclidean subspace. However, under the actual conformal MOG, the blade
EEE〈n−1〉 is written as

EEE〈n−1〉 = (−1)d (d+1)/2 eee1 ∧ eee2 ∧ · · · ∧ eeed ∧∞∞∞,

and it is geometrically interpreted as an improper (d − 1)-flat. In practice,
it means that the reference blade EEE〈n−1〉 is a straight line at infinity when a
2-dimensional base space is assumed (d = 2), or a plane at infinity by assuming
some 3-dimensional base space (d = 3), and so on.

C.3 Geometric Interpretation of the Parameters

According to (C.5), (C.6), and (C.7), the proposed subspace detection scheme
defines a sequence of (n − 1) rotation operations applied to blade EEE〈n−1〉 (C.8)
under the assumed Euclidean MOG. The first rotation is encoded by rotor
RRRn,n−1. Under the conformal MOG, the resulting blade may be interpreted as
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some real or imaginary (d − 1)-sphere at the origin of the base space, with
square radius (r2

origin) varying in the (−∞, +∞) range in function of the value
of θn,n−1 (i.e., the rotation angle in RRRn,n−1). The relation between rorigin and
θn,n−1 is given by:

rorigin =

√
2 tan

(
θn,n−1 +

π

2

)
, (C.9)

where rorigin is real for θn,n−1 ∈ [−π/2, 0), and imaginary for θn,n−1 ∈ (0, π/2).
When θn,n−1 = 0, the resulting blade is EEE〈n−1〉 without change.

The second transformation performed in (C.5) is encoded by RRRn,n−2. It is

applied to blade RRRn,n−1 EEE〈n−1〉 R̃RRn,n−1. Under the conformal MOG, such a
transformation may be interpreted as scaling a (d − 1)-sphere at the origin
of the base space by some factor α ≥ 1, followed by translating the scaled
(d − 1)-sphere along the line through the origin ooo with direction eeed. The ra-
dius r of the resulting (d − 1)-sphere and the distance t of its center from the
origin of the base space are given, respectively, by:

r =

√√√√ r2
origin

cos (θn,n−2)
+ tan2 (θn,n−2), (C.10)

and

t = − tan
(
θn,n−2

)
, (C.11)

where rorigin is defined in (C.9), and θn,n−2 is the rotation angle related to the
rotor RRRn,n−2.

The other rotors applied to EEE〈n−1〉 in (C.5) (i.e., RRRn,i, for i ∈ {n − 3, n − 4, · · · , 1})
encode rotation operations on planes defined by the basis vectors of the Eu-
clidean base space R

d. As a result, under the conformal MOG those transfor-
mations are geometrically interpreted as rotating the (d − 1)-sphere
RRRn,n−2 RRRn,n−1 EEE〈n−1〉 R̃RRn,n−1 R̃RRn,n−2 around the origin of R

d. Therefore, the ge-
ometric interpretation of the transformations in RRRn,i makes θn,i equivalent to
the rotational portion of a hyperspherical coordinate system [3].

C.3.1 The Standard Hough Transform

The standard HT for circle detection in the plane is usually defined regard-
ing the center-radius parameterization of the circle. For instance, the circle
detection proposed by Duda and Hart [4] uses

(x − xc)
2 + (y − yc)

2 − r2 = 0 (C.12)
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as model function, while Kimme et al. [5] assume



x

y


 =



xc

yc


+ r



cos (φt)

sin (φt)


 (C.13)

as model for circles. In (C.12) and (C.13), (xc, yc, r) is the parameter vector
for circles centered at (xc, yc) and with radius r. Both models expect point
coordinates (x, y) as input.

When applied to the same detection case, the parameter vector of our subspace
detection scheme is {θ4,3, θ4,2, θ4,1}. The relation between the r parameter of
standard HTs for circles in the plane and the proposed parameters is given
by (C.10). It is important to comment that by restricting input point coor-
dinates to the [−1, 1] × [−1, 1] range, the contribution of θ4,2 to the circle’s
radius is proportionally (much) smaller than the contribution of θ4,3. Such a
contribution is computed as r/rorigin, where rorigin (C.9) is fully determined
by θ4,3. Therefore, one can assume that the value of r is encoded by θ4,3. The
relation between the (xc, yc) parameters of standard HTs and the proposed
parameterization is given by replacing the conventional Cartesian coordinate
system by a polar coordinate system, where θ4,2 encodes the displacement of
circles from the origin of the image space, and θ4,1 the rotation of displaced
circles on the image plane.

In contrast to standard HTs for circle detection, our approach naturally ex-
tends to the concurrent detection of straight lines. It is possible because
3-blades under the conformal MOG can be geometrically interpreted as circles
or as straight lines (see Supplementary Material A, Section A.4). In such a
case, one can think on a straight line as a circle with infinity radius whose
(straight) circumference crosses the image plane. The set of parameter vectors
representing all possible straight lines reside in the {θ4,3, θ4,1}-plane of the
parameter space where θ4,2 = −π/2.

Notice that pairs of points (as a single element), free directions, and tangent
direction are not accepted as input entries of the model functions used by
Duda and Hart [4] and Kimme et al. [5]. Our approach, on the other hand, is
independent of the type of input data.

C.4 Retrieving the Voronoi Diagram

Fig. C.1b presents an approximation of the 2th-order Voronoi diagram in R
2

(thus, n = 2 + 2 = 4) retrieved by using our subspace detection framework
in the points depicted in Fig. C.1a. These points were encoded in conformal
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Fig. C.1. The Voronoi diagram of a set of points can be retrieved from the accumu-
lator array produced while performing circle detection with the conformal MOG:
(a) The vertices (vvvj) and edges (approximated by gray points) of the Voronoi di-
agram of points pppi are defined by the center of circles having no points in their
interior and passing through more than two, and passing through exactly two input
points, respectively. (b) These circles reside on a well defined surface at the parame-
ter space. They can be identified as the bins, in such surface, having more than two
and two votes, respectively. The multiple detection of vertices vvv6, vvv7 and vvv8 in (a),
and the width of the edge between ppp4 and ppp5 are related to the quasi-alignment of the
surfaces related to ppp4 and ppp5 in parameter space, leading to multiple intersections
while defining the surface depicted in (b).

MOG as 1-blades:

pppk = xk eee1 + yk eee2 +
x2

k + y2
k

2
∞∞∞ + 1ooo, (C.14)

and used as input for the detection of circles (p = 3). In (C.14), (xk, yk) are
the coordinates of the k-th point, and {eee1,eee2,∞∞∞,ooo} are basis vectors of the
representational space, as explained in Section C.2.

While performing the voting procedure for subspace detection, each input
blade/point ppp maps to a surface in the 3-dimensional parameter space (thus,
m = 3 (4 − 3) = 3 in this example). The voting procedure increments the bins
of the accumulator array related to such a mapping. From the intersection of
p = 3 or more surfaces one retrieves the circles passing thought three or more
input points. Recall that the center of the circles having the smaller radius
corresponds to the vertices of the Voronoi diagram (points vvvj in Fig. C.1a).
Therefore, by finding the bins corresponding to the circles having the smaller
radius and receiving three or more votes, one finds the vertices of the Voronoi
diagram.

The parts of the surfaces closest to the origin of the parameter space and at the
positive side of the θ1-axis (or θ3,2 in double-index notation) are comprised by
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the parameter vector of the circles with smaller square radius. This relation
between θ3,2 and the square radius of circles can be derived from (C.9) by
computing r2

origin, and by mapping θ3,2 to the [0, π/2) range. Notice that the
square of rorigin for imaginary circles is negative, while for conventional circles
is zero or positive. As Fig. C.1b shows, the circles with smaller radius reside
(in parameter space) on a surface defined by the superposition of mapped
input data. Thus, the vertices of the diagram can be retrieve just by looking
for the bins having the largest values on that surface (i.e., more than d = 2
votes). The bins having d votes correspond to the circles whose centers are at
an edge of the Voronoi diagram (the gray points in Fig. C.1a).

The votes accumulated by the bins behind the green surface in Fig. C.1b are
not shown for sake of clarity. It is important to emphasize that, by definition,
no vote is cast in front of the green surface. In this example, the discretization
step for defining the accumulator array is π/720, and ω = 1. The extension of
the example describe in this section to higher-dimensions is straightforward.

C.5 Related Work

The idea of using a rasterizing scheme to construct 2-dimensional Voronoi
diagrams of points was first suggested by Haeberli [6], and efficiently imple-
mented in Graphics Hardware by Hoff et al. [7]. The approach computes the
discrete diagram by Z-buffering right circular cones onto a 2-dimensional can-
vas. The base of the cones is defined as being parallel to the image plane
and the apex points are located at the point sites. By rendering a polygonal
approximation of the cones, all distances across the polygonal mesh are rep-
resented and stored as depth in a Z-buffer. The Z-buffer depth test compares
the new depth value to the previously stored value. If the new value is less,
the Z-buffer records the new distance, and the frame buffer records the site’s
ID as a unique color assigned to each site. In this way, each pixel in the frame
buffer will have a color corresponding to its closest site, and the depth-buffer
will have the distance to that site. After all the cones have being rendered, an
approximation of the Voronoi diagram can be retrieved from the boundaries
of the resulting image.
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