
A Robust Statistics Approach for Plane Detection in
Unorganized Point Clouds

Abner M. C. Araújo, Manuel M. Oliveira∗

Universidade Federal do Rio Grande do Sul
Instituto de Informática - PPGC - CP 15064

91501-970 - Porto Alegre - RS - BRAZIL

Abstract

Plane detection is a key component for many applications, such as industrial re-

verse engineering and self-driving cars. However, existing plane-detection tech-

niques are sensitive to noise and to user-defined parameters. We introduce a

fast deterministic technique for plane detection in unorganized point clouds that

is robust to noise and virtually independent of parameter tuning. It is based

on a novel planarity test drawn from robust statistics and on a split and merge

strategy. Its parameter values are automatically adjusted to fit the local distri-

bution of samples in the input dataset, thus lending to good reconstruction of

even small planar regions. We demonstrate the effectiveness of our solution on

several real datasets, comparing its performance to state-of-art plane detection

techniques, and showing that it achieves better accuracy, while still being one

of the fastest.

Keywords: Plane detection, Region growing, Robust statistics, Unorganized

point clouds.

∗Corresponding author. Tel.: +55 51 3308 6821; Fax: +55 51 3308 7308.
Email addresses: amcaraujo@inf.ufrgs.br (Abner M. C. Araújo),

oliveira@inf.ufrgs.br (Manuel M. Oliveira)
URL: http://inf.ufrgs.br/~amcaraujo (Abner M. C. Araújo),

http://inf.ufrgs.br/~oliveira (Manuel M. Oliveira)

Preprint submitted to Pattern Recognition March 3, 2019

Figure 1: Example of plane detection using our technique. (left) Input point cloud. (right)
Detected planar patches. Notice how it is able to extract delimited planes from connected
regions, despite the high level of noise in this point cloud.

1. Introduction

Detecting planes in unorganized point clouds is key to several emerging ap-

plications, such as self-driving cars [1], robotic navigation [2], and forensics [3].

It is also essential to more conventional applications, such as reverse engineer-

ing [4, 5, 6, 7, 8, 3], camera calibration [9], object recognition [10, 11], object5

reconstruction [12], denoising [13], augmented reality [14, 15], and segmentation

[16, 17]. Since point clouds are inherently noisy and datasets containing sev-

eral millions of samples are now commonplace, detecting planar regions in point

clouds requires both robustness to noise and performance scalability. For ap-

plications such as reverse engineering, accurate reconstruction is also a crucial10

aspect. Unfortunately, most available techniques for detecting planar struc-

tures in point clouds are either sensitive to noise or computationally expensive.

Moreover, most previous techniques use parameters that need to be tunned for

different datasets, which is undesirable and time consuming.

We present an efficient O(n log n) deterministic technique for plane detection15

in unorganized point clouds. Our solution uses robust statistics to derive a novel

planarity test that is mostly insensitive to outliers. More specifically, we use

robust measures of distance to plane and normal deviation to detect and remove

outliers, as well as to automatically adjust our method’s parameters to the local

distribution of samples in the input dataset. This results in a robust-to-noise20

approach, which is also virtually independent of parameter tuning, and handles

point clouds of large sizes and variable sampling distributions.

2

Our technique uses a subdivision strategy to first detect small planar regions

in the point cloud. This is done to improve the accuracy of the overall detection

process (Section 3.1). Since it is undesirable to have a plane fragmented into25

multiple small patches, it subsequently employs an iterative procedure to grow

and merge such patches (Section 3.3). This results in a fast and accurate solution

capable of automatically delimiting the detected planar regions. The growth

procedure is similar to most region-growing techniques, but unlike previous

solutions, our technique does not require user-specified parameters.30

We demonstrated the effectiveness of our solution by performing a detailed

comparison with the most popular, as well as with the most recent approaches

for plane detection. The comparisons were carried out on seven datasets cho-

sen to cover various real point-cloud characteristics, such as variable sampling

density, noise level, number of samples, number of planes, and different acqui-35

sition sensors. Our technique performed well on all datasets, achieving the best

accuracy measured in terms of average precision, recall, and F1-score over all

datasets, while still being one of the fastest.

Figure 1 illustrates the use of our technique to automatically extract delim-

ited planar regions from a noisy point cloud. The image on the left shows the40

input dataset, while the one on the right shows the detected planes. Note how

our technique is able to detect and delimit these regions despite the high level

of noise in the point cloud.

The contributions of this work include:

• A technique for detecting planes in unorganized point clouds that is robust45

to noise and virtually independent of parameter tunning (Section 3). Our

solution is more accurate than previous techniques, while being computa-

tionally efficient;

• A novel planarity test based on robust statistics that is less dependent on

the noise scale of the point cloud than existing solutions (Section 3.2).50

It allows our technique to be directly applied to point clouds containing

different and variable noise levels;

3

• An iterative grow-merge procedure capable of retrieving connected planar

regions with a great level of precision and detail (Section 3.3). This allows

our technique to automatically delimit the detected planar regions;55

• A mechanism to automatically adjust the plane detection parameters in

order to fit the local distribution of samples in the dataset (Sections 3.2.1

to 3.2.3). This lends to great convenience, as users do not need to specify

or tune parameter values.

2. Related Work60

Plane detection in point clouds has been extensively studied, and most tech-

niques can be classified in three broad categories: Hough transform, RANSAC,

and Region growing.

2.1. Hough Transform

The Hough transform (HT) was proposed to detect lines in binary im-65

ages [18], and variations have been introduced to improve its efficiency [19],

detect planes [20], as well as arbitrary shapes in multidimensional data [21].

The key idea behind the Hough transform is to map input samples to some

feature space and cast votes into an accumulator. The voting process consists

of incrementing the values of all accumulator’s cells for the detectable shapes70

that could contain the given input sample. Detecting shapes then consists of

finding peaks in the accumulator, whose resolution depends on the quantization

applied to each dimension of the feature space. This process is computationally

expensive, becoming prohibitive as the number of dimensions (parameters) in-

creases. Plane detection requires a tridimensional accumulator defined by the75

parameters (θ, φ, ρ), where the angles (θ, φ) define the orientation of the plane

(i.e., its normal), and ρ is the distance from the plane to the origin. The com-

putational cost of the standard Hough transform (SHT) is O(nNθNφ), where

n = |P | is the number of points in the point cloud P , and Nθ and Nφ are the

4

number of bins used to discretize angles θ and φ, respectively. Next, we discuss80

the main strategies for accelerating plane detection with HT.

The Probabilistic Hough Transform (PHT) [22] tries to detect planes using

a random subset of the original samples. As such, it is non-deterministic, but

its cost is still asymptotically the same SHT’s. Moreover, finding the right

percentage for the random subset is non-trivial.85

The Randomized Hough Transform (RHT) casts votes for planes defined by

groups of three non-collinear randomly selected samples. Thus, each group casts

a single vote, drastically reducing the voting cost. Unfortunately, like PHT, it

is also non-deterministic. Thus, there is no guarantee that all planes will be

detected, and the results are often not consistent among multiple executions.90

Limberger and Oliveira [20] extended the Kernel-based Hough transform [19]

for plane detection. It consists of adaptively partitioning the point cloud using

an octree, detecting clusters of approximately-coplanar samples in the octree

cells using principal component analysis (PCA), and voting for each cluster at

once, instead of for individual samples, using a trivariate Gaussian kernel. They95

achieve state-of-art real-time detection with cost O(n log n). However, due to

PCA, the technique is sensitive to outliers. Moreover, the user may need to

adjust the values of the technique’s isotropy and isometry parameters, which

depend on the amount of noise in the point cloud.

2.2. RANSAC100

RANdom Sample Consensus (RANSAC) [23] is another popular technique

for shape detection in multidimensional data, due to its simplicity and robust-

ness. RANSAC works iteratively in two steps: first, it draws a minimal ran-

dom set from the input and estimates a shape (model) from it; then, it evalu-

ates an inlier function for the entire input set. The minimal random set with105

most inliers is retrieved, along with its estimated shape. This process is re-

peated to detect multiple shapes. RANSAC’s cost for detecting a single plane

is O(I(E + nK)) = O(In), where I is the number of iterations used to detect

one plane, E is the cost to estimate a plane from three samples, and K is the

5

cost of checking if a sample lies on the estimated plane.110

Schnabel et al. [24] proposed an optimized version of RANSAC using spa-

tial information to only draw nearby samples, and using normal information

to improve the inlier function. However, the resulting algorithm is still prone

to detecting spurious shapes. Li et al. [25] proposed a pre-processing step for

RANSAC intended to prevent the detection of spurious planes. It consists of115

first subdividing the point cloud into cells, detecting the cells containing copla-

nar samples and using only those during RANSAC. However, it relies on a

good parameter tuning for planar cell detection, which depends on the noise

scale of the point cloud. Moreover, this technique is still prone to the detection

of spurious planes (see, its result for the Box dataset in Figure 8 (RANSAC120

NDT)). Mittal et al. [26] proposed a new M-Estimator that does not require

the specification of an inlier threshold. It estimates the scale of noise by cap-

turing the difference of density between inliers and outliers in multiple random

hypotheses. Such technique is prone to merging close planes if the noise scale is

underestimated, or to miss planes if it is overestimated. Also, since it requires125

the analysis of a large number random models to obtain a good estimate of the

noise scale, it is slow and unfit for point clouds with millions of samples.

Despite their great flexibility, RANSAC techniques rely on randomness,

which may require many iterations to achieve stability, making them slow. Also,

for most point clouds captured from real scenes, samples are not uniformly dis-130

tributed. Thus, planes far from the sensor may never be detected, as they are

often undersampled. Another major limitation is the high sensitivity to its pa-

rameters, mainly the threshold used in the inlier function, which may be difficult

to adjust and depends on the noise level of the point cloud.

2.3. Region Growing135

Region growing (RG) algorithms are very popular in 2D and 2.5D image

applications. Their use in unorganized point clouds, however, is still vastly

underrepresented. This is mainly due to the nature of such datasets, which

contain occlusions, noise, and lack neighborhood information.

6

Region growing techniques generally treat the point cloud as a graph, with140

the samples representing the graph vertices and their spatial proximity (neigh-

borhood) defining the edges. These techniques select seed samples to start a

graph search according to an inlier condition (e.g., the angular difference be-

tween the normals of neighbor samples should be below a certain threshold).

To reduce computational cost, some techniques partition the space containing145

the point cloud into voxels and perform the graph search on each voxel.

Farid [2] introduced a region growing technique for robotic applications based

on a smoothness constraint. Unfortunately, this approach is prone to under-

segmentation as the smoothness constraint is often violated.

The work of Pham et al. [27] is similar to ours in the sense that it also150

uses a partitioning strategy to extract small planar patches. However, it uses a

minimization algorithm to extract planes that often merges non-related planes.

Vo et al.’s technique [28] is the closest related to ours. It uses a two-step

coarse-to-fine approach. In the first step, an octree is created and on each

node it estimates a plane using PCA. Each such plane is used to calculate a155

residual value obtained as the mean squared distance from the estimated plane

to the samples in the octree cell. If the residual is smaller than a threshold,

the cell is considered “planar”; otherwise, the cell is recursively subdivided and

re-tested until it reaches a minimal size. After this, adjacent “planar cells” are

merged if the angular difference between their plane normals is below a certain160

threshold. Note that this will merge adjacent parallel planes (see, for instance,

the technique’s result for the Computer dataset in Figure 8). In the second

step, individual samples belonging to neighbor “non-planar cells” are added to

the cell if the distance from the sample to the cell’s estimated plane is less than

a fixed threshold.165

There are, however, key differences between Vo et al.’s technique and ours.

First, we use a robust planarity test instead of PCA, which is sensitive to out-

liers. Second, instead of a top-down partitioning strategy, we use a bottom-up

approach, starting from the leaf nodes with minimal size up to the octree root.

This strategy proves to be more successful in preserving fine details, while its im-170

7

Point cloud Subdivide No

Yes

Is planar? Grow Merge

For each leaf node

Planes

Yes

Visit parent?

No

Is stable?

Figure 2: Our robust plane-detection pipeline. An input point cloud is spatially subdivided
using an octree until the leaf nodes have less than ε samples. If the samples in the octree cell
pass the planarity test, they undergo a growth process and can be merged with adjacent cells
into larger planar patches. The output consists of the detected planar regions.

pact on the algorithm’s execution time is rather small due to our fast planarity

test. Our refinement step is also different. Instead of using fixed thresholds,

which require tuning for each different dataset, we estimate them directly from

the data distribution.

3. Robust Plane Detection175

Our region-growing algorithm for plane detection is based on robust statistics

and consists of three main steps: split, grow, and merge. In the split phase, the

input point cloud is spatially subdivided using an octree1 until the leaf nodes

have less than ε samples. If the samples in an octree leaf node pass our robust-to-

noise planarity test, they undergo a growth process and can further be merged180

with adjacent cells into larger planar patches. In the grow phase, patches that

passed the planarity test are augmented in order to fill in possible gaps left by

the split phase. However, the growth parameters (maximum distance to the

plane and maximum normal deviation) are automatically estimated from the

data distribution. Finally, in the merge phase, patches are merged according185

to some boundary condition. The grow and merge phases are iterated until all

patches become stable, that is, no further growth is possible. The output of

the entire process consists of the set of detected delimited planar regions. A

simplified version of this pipeline is shown in Figure 2. Next, we provide the

details for these three steps.190

1A tree data structure where each internal node has exactly eight children.

8

Figure 3: Top-down versus bottom-up approaches to planar patch detection. (left) Original
point cloud. (middle) A top-down strategy stops subdividing on the first approximately planar
detection, failing to capture small parallel planar regions. (right) Our bottom-up approach
keeps subdividing until such structures can be detected.

3.1. Split Phase

Our technique starts by detecting minimal planar regions (patches) in the

point cloud. In order to detect such regions, it requires a partitioning technique

and a planarity test. An octree containing the entire point cloud is used to

recursively subdivide the space until each cell contains less than ε samples,195

which has been empirically defined as 0.1% of the total number of samples. The

planarity test is then applied from the leaves up to the root, stopping whenever

a planar patch is detected. Upon detection, the samples move to the grow step

(Figure 2). If all eight cells associated to a parent octree node fail the planarity

test, the parent node itself becomes the new octree leaf node (replacing its eight200

children) and undergoes the planarity test. This process is applied recursively.

Such a strategy allows the detection of fine details, as shown in Figure 3 (right).

The number of detected planar patches is not an issue, since they will be later

merged. Algorithm 1 summarizes this process.

3.2. Robust Planarity Test205

Most point clouds acquired from real scenes are susceptible to noise, which

may be introduced during the acquisition phase or during post-processing. In

the acquisition phase, many factors may lend to noise: sensor limitations, the

materials present in the scene (e.g., specular surfaces), complex scene geometry

(e.g., edges may cause beam splitting), etc. During post-processing, errors in210

9

Algorithm 1 Detect Planar Patches

Require: O {an octree node}, patches {set of detected planar patches. An
empty set for the octree root call.}

1: procedure DetectPlanarPatches(O, patches)
2: if #Opoints < ε then
3: return false
4: O.createChildren() . subdivide the octree node
5: hasP lanarPatch← false . recursively call each child node
6: for all child ∈ Ochildren do
7: if DetectPlanarPatches(child, patches) then
8: hasP lanarPatch← true
9: if not hasP lanarPatch then

10: . check the node for planarity only if no child is planar
11: if RobustPlanarityTest(Osamples) then
12: removeOutliers(Osamples)
13: . insert node in the list of planar patches
14: pp.insert(new PlanarPatch(Osamples))
15: hasP lanarPatch← true
16: return hasP lanarPatch

registering partial point clouds also lends to noise. It is clear that in order for an

algorithm to work well in this scenario, it must be able to handle a considerable

amount of noise.

The standard procedure to test co-planarity of a set of samples uses principal

component analysis to obtain an eigen-decomposition of the samples’ covariance

matrix [20, 25, 28]. One way to check for (approximate) co-planarity is by

comparing the ratio between the largest and smallest eigenvalue magnitudes.

If such ratio is bigger than some threshold τ , the samples can be considered

coplanar:

|λ1| ≤ |λ2| ≤ |λ3|,
|λ3|
|λ1|

> τ. (1)

This procedure, however, has some limitations. The first one is determining

the best threshold τ for a set of samples to be considered approximately copla-215

nar. An ideal threshold should take into consideration the samples’ noise level.

This, however, is not trivial to determine, since in most point clouds noise is

not uniformly distributed, and it is hard to estimate it without knowing the

characteristics of the sensor used for acquisition. The second limitation has to

10

do with the fact that PCA is calculated upon the covariance matrix, which in220

turn, is calculated using the mean of each variable. Since outliers disturb the

mean, they also affect PCA, making it less reliable on noisy datasets. This

limitation also applies to covariance-free PCA, because even though it does not

use covariance, it is still based on the mean of the observations [29]. Although

Robust PCA [30] does not suffer from the outlier problem, it is slow, not being225

suitable for handling point clouds with millions of samples.

In Robust Statistics [31], breakdown point is the percentage of outliers an

estimator can handle before giving incorrect results. The mean estimator is

said to have a breakdown point of 0%, since a single outlier can disturb it. The

median estimator, in turn, has breakdown point of 50%, since it would require

more than 50% of outlier observations to disturb it. Thus, the median is said to

be a robust alternative to the mean. Likewise, there is a robust alternative to

the standard deviation estimator, named median absolute deviation (MAD). It

is obtained as the median of the absolute deviations from the samples’ median:

MAD = k ×median(|xi −median(X)|), (2)

where xi ∈ X represent all individual samples in the set X, and k is a constant

to make MAD yield consistent results with standard deviation. For a normal

distribution, k = 1.4826 [32]. Like the median, MAD also has a breakdown

point of 50%.230

Using these two estimators, we developed a novel planarity test that is robust

to noise. It works by first robustly estimating a plane and then checking its

planarity using robust tests. A plane Π can be defined by a pair (C,N), where

C is a point on the plane, and N is the plane’s normal. C is estimated as

the median of the positions of all samples in the set, while N is a normalized

vector whose direction is given by the median of each component of the samples’

normals, as shown in Equations 3 and 4:

C = [median(Sx),median(Sy),median(Sz)]
T , (3)

11

N =
[median(SNx),median(SNy),median(SNz)]

T

||[median(SNx),median(SNy),median(SNz)]||
, (4)

where S represents the set of samples, Sk and SNk are, respectively, the k ∈

{x, y, z} component of the position and normal vectors of the samples in S.

We propose three robust tests to evaluate the quality of the estimated planes:

a plane-sample distance test (T1), a plane-sample normal deviation test (T2),

and an outlier percentage test (T3).235

3.2.1. Plane-sample distance test

The first part of the planarity test evaluates the variance in the sample

positions relatively to the dimensions of the tested patch. This is required

because one can tolerate bigger sample variance in larger patches than in smaller

ones. The distance of each sample to the estimated plane Π is obtained using

Equation 5, defining a new set of observations D = {d1, d2, ..., dn}:

di = |(Pi − C) ·N |, (5)

where Pi ∈ <3 is the position of sample i, C is the point on the plane computed

with Equation 3, and N is the estimated plane normal (Equation 4). Given the

set D, we compute an interval ID around the median covering all values which

are α MADs from the median:

ID = [median(D)− αMAD(D);median(D) + αMAD(D)]. (6)

Such interval has a direct parallel to the z-score, which corresponds to the num-

ber of standard deviations a value is from the mean. For a normal distribution,

the z-score can be used to detect outliers, since the further a value is from the

mean, the more unlikely it is to be sampled.240

For a normal distribution, 3 standard deviations around the mean correspond

to 99.7% of the area under the curve. Since MAD is consistent to standard devi-

ation, 3 MADs also correspond to 99.7% of the area under the curve. Thus, we

12

θ1

θ2

MDP1

MDP2

N N

F

F

Figure 4: A curved surface produces a large MDP value (left), while a planar surface lends
to a small one (right). For same size patches, a larger MDP value result in a smaller angle θ
between F and N (the plane normal).

set α = 3 to detect outliers with 99.7% of confidence. Since we are dealing with

distances to a plane, the upper limit of this interval represents the maximum245

distance a sample can be to a plane before it is considered an outlier. We call

this upper limit the maximum distance to plane (MDP).

When considering a set of approximately coplanar samples, the value MDP =

3×MAD may assume unreasonable large values in the case of datasets contain-

ing high levels of noise. Thus, we automatically estimate an adaptive distance

threshold relative to the dimensions of the patch. Given the plane normal N ,

an orthonormal basis B = {U, V,N} for <3 can be computed. The actual direc-

tions of vectors U and V are not relevant; thus, U and V can be obtained as:

U =
[Ny −Nz,−Nx, Nx]T

||[Ny −Nz,−Nx, Nx]||
, V = N × U. (7)

Let F = 0.5max(w, l)U + (MDP)N be a vector (Figure 3.2.1), where w

and l are the estimated planar patch’s width and length, respectively. Note

that samples from a curved surface results in a large MDP value, while samples250

from a planar one lends to a small MDP value. For same size patches, large

MDP values result in smaller angles between F and N (i.e., limMDP→∞ θ = 0◦)

(Figure 3.2.1). We take advantage of this observation to evaluate the variance in

the sample positions relatively to the patch dimensions as an angular threshold

that works for different point cloud configurations. This eliminates the need for255

the user to provide or tune parameter values to improve plane detection for

13

different point clouds. Larger patches can admit more sample variance (i.e.,

larger MDP), which is captured by an angular threshold θ. Experimentally,

we found that θ > 75◦ provides a conservative angular threshold that produces

good results for all tested datasets.260

3.2.2. Plane-sample normal deviation test

This stage of the planarity test evaluates the deviation of the sample normals

with respect to the plane’s normal N . A set of coplanar samples is expected

to have relatively homogeneous normal directions, while non-coplanar samples

tend to exhibit high variance in their normal directions. Thus, we compute the

angle between each sample normal and the plane normal (Equation 8), creating

a new set of observations Φ = {φ1, φ2, ..., φn}:

φi = acos(|Ni ·N |), (8)

where Ni is the normal of sample i, and N is the estimated plane normal. As

in test T1, an inlier interval is defined as:

IΦ = [median(Φ)− αMAD(Φ);median(Φ) + αMAD(Φ)]. (9)

Again, we set α = 3 and are only interested in the upper limit of IΦ. We

call this upper limit maximum normal deviation (MND), and discard planes

with MND above a certain threshold. Unlike MDP, MND does not depend on

the patch dimensions. Experimentally we found that MND < 60◦ provides good265

results for all tested datasets.

3.2.3. Outlier percentage test

For any given patch, if at least 25% of its samples were considered as outliers

(i.e., fall outside of either interval ID or IΦ), the plane is considered too noisy

and thus discarded.270

14

3.3. Growth Phase

Due to the partition of the point cloud into octree cells, some co-planar

samples may fall just outside of the volume that generated a given planar patch.

Also, some patches might have been discarded due to local noise. In either case,

it is necessary to grow the detected planar patches to fill in possible gaps and275

provide a more accurate detection.

A detected planar patch Pi has three attributes: an estimated plane Πi

defined by the pair (Ci, Ni) (Equations 3 and 4); its maximum distance to the

plane (MDPi) (Section 3.2.1); and its maximum normal deviation (MNDi) (Sec-

tion 3.2.2). In order to grow patches, we define a neighborhood graph G for280

the entire point cloud, where each vertex of the graph represents a sample, and

each edge connects two neighbor samples identified using k-nearest neighbors

(we use k = 50).

Once the neighborhood graph has been created, we perform a breadth-first

search, starting from the vertices corresponding to the samples of patch Pi. A285

visited sample is added to Pi if: (i) it does not belong to any other patch, and

(ii) it meets the inlier condition for Pi.

The inlier condition for Pi must satisfy two criteria: (i) the distance of

sample j to Πi should be less than MDPi (i.e., dj = |(Pj−Ci)·Ni| < MDPi); and

(ii) the deviation between the sample normal and Ni should be less than MNDi290

(i.e., φj = acos(|Nj · Ni|) < MNDi). Unlike previous region growing meth-

ods [28, 2], whose inlier conditions rely on fixed thresholds for sample-to-plane

distance and normal deviation, our method does not make any assumptions on

the scale or noise level of the point cloud, as the computed robust statistics

already consider them.295

Since a sample may satisfy more than one patch inlier condition, it is neces-

sary to establish some priority among patches. Thus, before starting the growth

phase, the patches are sorted by their maximum normal deviations in ascending

order. In that way the least noisy patches will grow first, having the opportunity

to grow larger. The entire growth phase is summarized in Algorithm 2.300

15

Algorithm 2 Grow Patches

Require: P {point cloud}, G {neighborhood graph}, patches {set of detected
planar patches}

1: . Patches only grow with samples from the point cloud that do not belong
to any detected plane

2: procedure GrowPatches(P,G, patches)
3: SortPatchesByNormalDeviation(patches)
4: inliers← ∅
5: for all patch ∈ patches do
6: . samples from all detected planes are inliers
7: inliers.insert(patchsamples)

8: for all patch ∈ patches do . all detected patches
9: q ← patchsamples

10: outliers← ∅
11: while q 6= ∅ do
12: p← q.pop()
13: for all n ∈ G.neighbors(p) do
14: . all samples that are neighbor to p
15: if n /∈ inliers ∧ n /∈ outliers then
16: . n does not belong to any detected patch
17: if patch.isInlier(n) then . grow patch
18: patchsamples.insert(n)
19: inliers.insert(n) . allow the patch grow from sample
20: q.enqueue(n)
21: else . outlier wrt this specific patch
22: outliers.insert(n)

16

Figure 5: Merging conditions. Patches A and B cannot be merged due to the difference in
their normals. A and C cannot be merged because they are not neighbors. Despite having
similar normals and being neighbors, B and C cannot be merged because no sample from B
or C satisfies the other patch’s inlier condition (their distance intervals do not intersect). C
and D can be merged.

3.4. Merge Phase

Patches detected at adjacent octree nodes might form a single planar surface

and, in this case, should be merged. For two patches A and B to be merged,

they must satisfy three merging conditions: (M1) they should be adjacent

(i.e., the neighborhood graph G should contain at least one edge connecting a305

sample from A to a sample from B); (M2) the estimated normals for A and B

should have similar directions (i.e., the angle between these two normals should

be less than max(MDNA,MDNB)); and (M3) at least one sample from A should

satisfy the inlier condition for B (or vice-versa). While the first two conditions

are self-evident, the third one prevents the merging of parallel patches that are310

not sufficiently close to each other. These conditions are illustrated in Figure

3.4.

We use a union-find data structure to quickly create and find groups of

merging patches. The merging process then takes each group of patches that

satisfy the three merging conditions and returns a single unified patch.315

3.5. Iterative Grow-Merge Procedure

Once a group of patches has been merged, the resulting patch might need to

have its associated plane re-estimated, along with its distributions of distances

(D) and normal deviations (Φ). However, since the breakdown point of our

robust estimators (median and MAD) is 50%, an update is only necessary if a320

patch is extended with more than 50% of its original number of samples. In

17

such a case, the grow and merge steps (Sections 3.3 and 3.4) need to be re-done,

as the inlier condition for the new patch might have changed with respect to

its previous state. This iterative process stops when no patch requires update

(i.e., when all patches are stable). To reduce the number of updates, whenever325

a group of patches needs to be merged, the patch with most samples is chosen

as the group representative.

3.6. Complexity Analysis

Recall that our technique has three main steps: split, grow and merge. The

split phase constructs an octree for a set of n samples, whose cost is O(n log8 n).330

On each octree leaf, a planarity test is performed. The cost of the planarity test

can be broken into: (i) estimating a plane from the median of the samples’

positions and normals, whose cost is O(n) [33]; and (ii) obtaining the sets of

distance and normal-deviation observations in O(n) time, and then finding the

median of these sets, also in O(n) [33]. Thus, the cost of the planarity test is335

O(n), and the cost of the entire split phase is O(n log8 n).

For the grow phase, the worst case consists of a single patch with a small

number of samples to incorporate all samples in the point cloud. Since no sample

is visited more than once, its cost is O(n).

Since no patch can have less than ε samples, a value that we set experimen-340

tally to 0.1% of the total amount of samples in the point cloud, the maximum

amount of planar patches is constant. Thus, the costs for verifying the three

merging conditions are: (M1) O(n); (M2) O(1); and (M3) O(n). The cost of

each union-find operations is near constant.

The grow and merge phases are iterated, stopping when all patches become345

stable. A patch is called stable when the number of samples added to it during

a grow-merge iteration is less than 50% of its previous number of samples.

Thus, the worst case would consist of a single patch starting with ε samples and

receiving 50%+1 samples at each iteration. Since the size would be multiplied

by 1.5 at each iteration until it reaches n samples (the size of the point cloud),350

this process might have at most log1.5(n) iterations. Since the cost of each

18

iteration is O(n), the iterative grow-merge step has cost O(n log n). Therefore,

the total cost of our plane detection algorithm is O(n log n).

4. Results

We implemented our technique in C++ and used OpenGL to render the355

point clouds and the detected planes. For linear algebra operations, we used

the Eigen library [34]. We compared our technique against the most popular as

well as the most recent approaches for plane detection, which include methods

based on the Hough transform, RANSAC, and region growing. Next, we list

the techniques chosen for comparisons and present the reasons for their choices.360

The selected Hough-transform-based techniques are the Randomized Hough

Transform (RHT) [35] and the 3D Kernel-based Hough Transform (KHT-3D) [20].

RHT is a classic and popular solution for the HT, while KHT-3D is currently

the state-of-art real-time plane detection. For RHT, we used the implementa-

tion provided by [36], and for KHT-3D we used the implementation provided365

by the authors [37].

For RANSAC, we chose to compare against the technique of Schnabel et

al. [24] and a recent technique by Li et al. [25]. Schnabel et al.’s technique is an

efficient RANSAC method for shape detection. The technique of Li et al. [25]

is a recent PCA-based solution intended to prevent the selection of spurious370

planes. It has been chosen to stress the fact that PCA is quite sensitive to noise

(i.e., outliers), despite the use of some preprocessing. For both techniques we

used the implementations provided by their authors.

For region growing, we selected the techniques of Farid et al. [2], Pham et

al. [27], and Vo et al. [28]. Farid et al.’s approach was designed to segment375

smooth regions in 2.5D depth maps, which we adapted to 3D. Pham et al.’s

solution uses a partitioning strategy to extract planar patches. Vo et al.’s recent

point-cloud segmentation technique was chosen due to its close resemblance to

ours in the sense that it also uses an octree to perform space subdivision and

sample clustering. As mentioned in Section 2.3, however, the authors uses380

19

a top-down strategy based on PCA, while we employ a bottom-up solution

based on our robust planarity test. Moreover, Vo et al.’s technique uses fixed

thresholds that need to be tuned for each dataset to produce the best results.

Our technique, on the other hand, does not require any user intervention. Since

the source code for Vo et al.’s technique is not available, for the comparisons385

shown in the paper we used our own implementation of their technique.

To evaluate our technique and compare it to the ones listed above, we used

seven datasets, which are shown in Figure 6: (i) Box, a cube with 2.5% of

uniformly-distributed noise, (ii) Computer, a computer desk, (iii) Room, (iv)

Utrecht, the facades of some buildings in the city of Utrecht, (v) Museum, (vi)390

Plant, the scanning of a petrochemical plant, and (vii) Boiler Room, an indus-

trial boiler room with mostly planes and pipes. Datasets (i) to (v) were used in

[20]. Datasets (vi) to (vii) are from Leica’s public sample datasets [38]. They

were chosen because they span a large number of different characteristics, such

as number of samples, sample density, noise level, number of planes, different ac-395

quisition sensors, etc. Table 1 presents detailed information about each dataset

regarding number of samples, number of planes, and percentage of samples be-

longing to planar surfaces. With the exception of the Box dataset, which is a

synthetic model containing white Gaussian noise, the remaining datasets were

captured by real sensors and thus contain natural noise.400

Table 1: Dataset details: number of samples, number of planes, and percentage of samples in
planar regions.

samples # planes % planar regions
Box 964,806 6 100
Computer 68,852 9 94
Room 112,586 15 81
Utrecht 160,256 11 70
Museum 179,744 23 74
Plant 358,116 9 57
Boiler Room 5,990,481 10 73

20

4.1. Ground Truth

To evaluate our technique in comparison to others, it was necessary to de-

fine some objective metrics computed with respect to the ground truth of each

dataset. Since no ground truth was available for these datasets, we created some

by interactively selecting the samples that define each plane and using them to405

estimate the corresponding plane. The selection process was performed using

software we developed for such purpose. Each plane was obtained using the me-

dian of its sample positions, as well as the median of its sample normals, which

were computed using the robust normal estimation technique FAST-MCD [39].

Figure 6 (right) displays the obtained ground truth for all datasets, with each410

plane in a given dataset shown in a different color.

4.2. Evaluation Metrics

We used three objective metrics adapted from information retrieval to eval-

uate the detection quality of the compared techniques: Precision, Recall, and

F1-Score.415

A reliable metric should not just count the number of correctly detected

planes, as this may be misleading. Some planes might be more important than

others for a given scene. For instance, detecting a large plane should be more

important than detecting a small one, since large planes tend to contribute more

for the scene reconstruction. However, simply counting the number of samples420

in the detected planes can also be misleading: surfaces closer to the sensor tend

to be more densely sampled than further ones. Such sensor proximity bias is

illustrated in Figure 7 (left).

To make the number of samples on a planar patch proportional to its area,

we regularize the point clouds. This process consists of voxelizing the space con-425

taining each point cloud and replacing all samples inside a voxel with the voxel

centroid. This results in lower-resolution versions of the original point clouds

that minimize the proximity-bias effect (Figure 7 (right)). Note, however, that

the techniques still perform the actual plane-detection process in the original

(i.e., non-regularized) point clouds. The regularized ones are used only for the430

21

Box Box ground truth

Computer Computer ground truth

Room Room ground truth

Museum Museum ground truth

Utrecht Utrecht ground truth

Plant Plant ground truth

Boiler Room Boiler Room ground truth

Figure 6: Datasets listed in Table 1. (left) Point clouds. (right) Corresponding ground truths.
Each plane is shown in a different color.

22

Figure 7: Sensor proximity bias. Planes closer to the sensor are more densely sampled than
further ones (left). In order to reduce this bias, we regularize the point cloud, making the
number of samples in a planar patch be proportional to its dimensions (right).

purpose of performing quantitative evaluations of the results produced by the

compared techniques, as explained next.

The size of each voxel depends on certain properties of the scanning process

used to acquire the point cloud (e.g., point clouds acquired through multiple

views or scans suffer from less proximity bias than point clouds acquired from a435

single viewpoint). The relative voxel sizes used for each point cloud are shown

in Table 2. They were obtained experimentally to reduce the proximity-bias

effect on each dataset and were used to evaluate the results of all techniques.

Given the samples of the original point cloud associated to a given plane πj

(either from the ground truth or detected by a technique), if a voxel vi in the440

regularized space contains at least one sample belonging to πj , that voxel is said

to be part of the plane (i.e., vi ∈ πj). Note that vi may be part of multiple

planes simultaneously. A plane πGTk
from the ground truth is considered to be

correctly detected by a technique T if a plane πTk
in T’s list of detected planes

satisfies the following conditions: (i) at least 50% of the voxels in πTk
are also445

in πGTk
; and (ii) the angular difference between the normals of πTk

and πGTk

does not exceed 30◦. The first criterion tries to enforce that πTk
is centered

around the same spatial location as πGTk
. The second criterion enforces similar

orientation, and its threshold was defined empirically.

A voxel vi is said to be a true positive with respect to πTk
if it belongs450

to both πTk
and πGTk

(i.e., vi ∈ πTk
and vi ∈ πGTk

), and πGTk
was correctly

detected by T . It is a false positive with respect to πTk
if vi ∈ πTk

but

23

vi /∈ πGTk
. It is a true negative with respect to πTk

if vi /∈ πTk
and vi /∈ πGTk

;

and it is a false negative with respect to πTk
if vi /∈ πTk

but vi ∈ πGTk
.

Now we can use the classic definitions of precision, recall and F-measure, to

evaluate the performance of a technique T for a given dataset d as:

precisionTd
=

(TP)Td

(TP)Td
+ (FP)Td

,

recallTd
=

(TP)Td

(TP)Td
+ (FN)Td

,

F1Td
= 2× precisionT × recallT

precisionT + recallT
,

(10)

where (TP)Td
, (FP)Td

, and (FN)Td
are, respectively, the number of voxels in455

dataset d corresponding to true positives, false positives, and false negatives,

for technique T .

Table 2: Voxel sizes used in the regularization of each dataset are relative to the point cloud
largest dimension.

voxel size (%)
Box 0.02
Computer 0.02
Room 0.78
Utrecht 0.78
Museum 0.02
Plant 0.19
Boiler Room 0.78

4.3. Time and Quality Analysis

We ran the experiments comparing the performances of the various tech-

niques on an Intel CoreTM i7-7700K 4.20GHz CPU with 32GB RAM. Table 3460

summarizes the results for each dataset. To prevent bias, all techniques that

require normals (RANSAC (Schnabel) [24], RG (Farid) [2], and RSPD (Ours))

used the same sample normals obtained with FAST-MCD [39], a robust normal

estimation technique, using a neighborhood of size 50. The same neighborhoods

were used to create the neighborhood graphs used by our technique, RG (Farid)465

and RG (Vo) [28].

24

With the exception of our own technique, all other tested ones use fixed

threshold parameters. These have been individually tuned for each specific

dataset to produce the best results in each case. Our technique, on the other

hand, was applied to all datasets as is.470

Table 3 summarizes the performance of the compared plane detection tech-

niques on the seven datasets listed in Table 1. For each combination of technique

and dataset, it shows the number of detected planes (#Detected), as well as the

corresponding values for precision, recall, F1-score, and execution time (in sec-

onds). The execution time is an average of 5 runs. The detected planes are475

shown in Figure 8.

With the exception of RANSAC (NDT) by Li et at. [25], all the techniques

performed well on the Box dataset (Figure 8, top row). For RG (Pham), we

could not find a set of parameters that yield results in reasonable time. For

this dataset, our technique achieved the second highest precision. However, the480

added noise disturbed the normal estimation for some samples, precluding them

from being incorporated into any patches since, in each case, the difference in

normal orientation was bigger than MND, and thus decreasing our technique’s

recall. RG (Vo) achieved the best precision, but a low recall. In this technique,

region growing depends on the angular difference among normals of adjacent485

voxels. Since RG (Vo) estimates voxel normals using PCA, this leads to bad

normal estimation near edge regions, which compromises the technique’s recall.

RANSAC (Schnabel) detected spurious planes on the edges of the Box, mostly

due to bended normal estimation in those regions, even using a robust normal

estimation technique, due to the high level of noise on the edges. KHT-3D, in490

turn, achieved the best recall and F-1 score. This simple dataset proved to be an

interesting counter-example for the RANSAC (NDT), which performed poorly.

RANSAC (NDT) was designed to avoid RANSAC’s detection of spurious planes,

by discarding voxels containing non-planar regions. Since this dataset only

contains planar regions, RANSAC (NDT) reduces to a regular RANSAC.495

Most techniques also performed well on the Computer dataset, which is fairly

simple. Although our technique detected a spurious plane at the monitor’s base,

25

Table 3: Performance of the evaluated techniques on each dataset. Number of detected planes
over total number of planes (#), Precision (P), Recall (R), F1-Score (F1), Elapsed time in
seconds (T(s)). Best results highlighted in bold.

P R F1 T(s)
Box

RHT 6/6 0.93 0.93 0.93 132.00
KHT-3D 6/6 0.96 0.96 0.96 0.20
RANSAC (Schnabel) 6/6 0.96 0.87 0.91 26.00
RANSAC (NDT) 5/6 0.01 0.001 0.003 67.50
RG (Farid) 6/6 0.95 0.91 0.93 55.60
RG (Pham) - - - - -
RG (Vo) 6/6 1.0 0.58 0.73 0.13
RSPD (Ours) 6/6 0.97 0.84 0.90 3.35

Computer
RHT 7/9 0.83 0.83 0.83 3.10
KHT-3D 6/9 0.77 0.73 0.75 0.09
RANSAC (Schnabel) 5/9 0.85 0.69 0.76 3.30
RANSAC (NDT) 6/9 0.82 0.86 0.84 3.10
RG (Farid) 7/9 0.98 0.76 0.85 1.18
RG (Pham) 7/9 0.80 0.30 0.43 0.68
RG (Vo) 5/9 0.73 0.67 0.70 0.01
RSPD (Ours) 9/9 0.96 0.93 0.95 0.11

Room
RHT 6/15 0.74 0.73 0.74 25.80
KHT-3D 5/15 0.81 0.82 0.81 0.07
RANSAC (Schnabel) 5/15 0.70 0.70 0.70 3.90
RANSAC (NDT) 8/15 0.95 0.39 0.56 1.08
RG (Farid) 6/15 0.83 0.73 0.78 1.80
RG (Pham) 5/15 0.51 0.60 0.55 0.51
RG (Vo) 5/15 0.58 0.60 0.59 0.03
RSPD (Ours) 10/15 0.85 0.81 0.83 0.24

Museum
RHT 20/23 0.87 0.85 0.86 20.30
KHT-3D 10/23 0.65 0.54 0.59 0.09
RANSAC (Schnabel) 9/23 0.55 0.55 0.55 6.40
RANSAC (NDT) 16/23 0.85 0.40 0.55 21.57
RG (Farid) 18/23 0.94 0.75 0.84 2.50
RG (Pham) 17/23 0.70 0.72 0.71 0.83
RG (Vo) 14/23 0.77 0.74 0.75 0.07
RSPD (Ours) 17/23 0.95 0.75 0.83 0.49

Utrecht
RHT 7/11 0.75 0.54 0.63 31.80
KHT-3D 4/11 0.39 0.42 0.40 0.09
RANSAC (Schnabel) 3/11 0.43 0.47 0.45 5.90
RANSAC (NDT) 8/11 0.73 0.31 0.43 50.40
RG (Farid) 6/11 0.64 0.56 0.60 2.90
RG (Pham) 10/11 0.41 0.44 0.42 4.50
RG (Vo) 5/11 0.62 0.46 0.53 0.21
RSPD (Ours) 11/11 0.75 0.74 0.74 0.44

Plant
RHT 5/9 0.94 0.70 0.80 63.30
KHT-3D 8/9 0.47 0.53 0.50 0.15
RANSAC (Schnabel) 7/9 0.64 0.90 0.74 12.80
RANSAC (NDT) 8/9 0.83 0.57 0.68 2.70
RG (Farid) 7/9 0.97 0.76 0.85 8.60
RG (Pham) 9/9 0.51 0.86 0.65 253.18
RG (Vo) 5/9 0.93 0.74 0.83 0.07
RSPD (Ours) 9/9 0.63 0.92 0.75 0.42

Boiler Room
RHT 9/10 0.74 0.84 0.78 28.60
KHT-3D 6/10 0.63 0.83 0.72 1.15
RANSAC (Schnabel) 6/10 0.77 0.68 0.72 185.40
RANSAC (NDT) 10/10 0.78 0.53 0.63 43.80
RG (Farid) 6/10 0.91 0.44 0.59 368.00
RG (Pham) 8/10 0.54 0.77 0.64 16.04
RG (Vo) 5/10 0.84 0.62 0.71 1.37
RSPD (Ours) 9/10 0.86 0.60 0.71 6.39

26

Table 4: Average performance of the evaluated techniques considering all datasets. Average
plane detection ratio (A%), Average precision (AP), Average recall (AR), F1-Score of average
precision and average recall (AF1), Average normalized time (normalized time: elapsed time
in milliseconds divided by number of samples) (ANT). Techniques sorted by AF-1 score. Best
results highlighted in bold.

A% AP AR AF1 ANT
RANSAC (NDT) 0.76 0.71 0.43 0.52 0.0792
RG (Pham) 0.75 0.57 0.61 0.56 0.1256
KHT-3D 0.61 0.66 0.69 0.67 0.0005
RANSAC (Schnabel) 0.56 0.70 0.69 0.69 0.0355
RG (Vo) 0.57 0.78 0.63 0.69 0.0003
RG (Farid) 0.69 0.88 0.70 0.77 0.0295
RHT 0.73 0.82 0.77 0.79 0.1280
RSPD (Ours) 0.90 0.85 0.79 0.81 0.0021

it was able to distinguish nearby parallel planes on the wall, due to our bottom-

up partitioning strategy, which granted our method the best recall and F-1

score for that dataset, and the second best precision. As this scene is mostly500

composed by planar regions, RANSAC (NDT) again detected spurious planes.

KHT-3D detected some spurious planes and was not able to extract fine details

from the scene. RG (Vo) was not able to extract fine details either. When

trying to reduce its voxel size to preserve fine details, spurious planes started to

appear.505

For the Room dataset, our technique achieved the best F-1 score, and de-

tected most of the planes in the scene (10 out of 15). Most techniques detected

spurious planes. Although RANSAC (NDT) obtained the best precision, it also

had the worst recall, as it missed many planes.

The Museum dataset contains the largest number of planes (23), most of510

them small. Therefore, techniques able to analyze connected components and

delimit planar regions performed best. Our technique was able to retrieve

constrained planes in half of a second. KHT-3D, RANSAC (Schanabel), and

RANSAC (NDT) treat all coplanar samples as forming a single plane, regard-

less of spatial discontinuities. This resulted in elongated planar patches and low515

precision and F1-score.

The Utrecht dataset is highly noisy, causing most techniques to miss several

27

planes. Due to our robust planarity test, however, our technique was able to

detect all of the existing planes, achieving the best recall, while still detecting

each one of them accurately, which also granted it the best precision and F1-520

score.

The Plant and Boiler Room datasets contain a large number of cylinders

and other curved surfaces. Several techniques, including ours, identify approx-

imately planar patches in small cylindrical regions, thus affecting their perfor-

mance. Nevertheless, our technique achieved good F-1 score on both datasets525

(0.75 and 0.71, respectively). RG (Farid) performed well in those scenarios,

since its region-growing procedure is very sensitive to changes in smoothness.

However, this same strategy is prone to false negatives in planar areas contain-

ing a high level of noise, as shown in the previous datasets. The performance

of RG (Vo) was similar to ours in these two datasets.530

Our technique (RSPD) performed well on all datasets, being able to achieve

at least the best precision, recall, or F-1 score in 5 of the 7 evaluated datasets,

without requiring parameter tuning. For the ones it did not lead the results, it

was able to achieve competitive results. On average, it achieved the best overall

recall and F-1 score, and the second best overall precision, while being the one535

of the fastest techniques (Table 4). In terms of time, RG(Vo) and KHT-3D

performed extremely well in all datasets, having similar running times.

5. Conclusion and Future Work

We presented a robust O(n log n) technique for detecting planes in unorga-

nized point clouds that achieves better accuracy, measured in terms of average540

precision, recall, and F1-score, than the previous approaches, while still being

one of the fastest. For this, we introduced a novel robust planarity test based on

robust statistics that is less sensitive to noise, thus providing a good alternative

to the most commonly-used procedure based on PCA. We also introduced an

iterative grow-merge strategy capable of detecting delimited planar regions with545

great level of precision and detail. Our solution is robust to noise and virtually

28

B
o
x

C
o
m

p
u
te

r
R

o
o
m

M
u
se

u
m

U
tr

e
ch

t
P

la
n
t

B
o
il
e
r

R
o
o
m

RHT KHT-3D
RANSAC

(Schnabel)

RANSAC

(NDT)

RG

(Farid)

RG

(Pham)

RG

(Vo)

RSPD

(Ours)

Ground

truth

Figure 8: Planes detected by the compared techniques for all datasets. Ground truth is shown
in the rightmost column. For each pair of technique and dataset, the detected planes have
been highlighted using different colors. Black dots represent samples treated as outliers by
each technique. Left-click on the images to zoom in and inspect the details. Larger versions
of these images are also available in the supplemental material. We could not find a set of
parameters to execute RG (Pham) on the Box dataset in reasonable time.

29

independent of parameter tunning.

We demonstrated the effectiveness of our technique by performing a detailed

comparison with the most popular and with the most recent approaches for plane

detection, which include methods based on the Hough transform, RANSAC, and550

region growing. The techniques were evaluated on seven datasets chosen to cover

a large number of different characteristics, such as number of samples, sample

density, noise level, number of planes, and different acquisition sensors. Our

technique performed well on all datasets, achieving the best average results.

In such an evaluation, the parameters used by all other techniques have been555

individually tuned for each specific dataset to produce the best results in each

case. Our technique, on the other hand, automatically adjusted its parameter

values based on the local sample distribution.

Currently, we only perform local planarity tests, disregarding the global

structure of the point cloud. This may lend to the detection of false planes on560

large curved structures (e.g., the detection of rectangular sections along the axis

of a cylindrical element with a relatively large radius). This problem could be

mitigated by analyzing the surface curvature inside the patch’s parent octree

node, and preventing the detection of local planar patches in curved surfaces.

Acknowledgments565

This work was sponsored by CNPq-Brazil (fellowships and grants 312975/2018-

0, 130895/2017-2, and 423673/2016-5) and by ONR Global Award # N62909-

18-1-2131. We thank Li et al. [25], Schnabel et al. [24], Pham et al. [27],

Limberger et al. [20] and Borrmann et al. [36] for kindly providing the source

code of their techniques.570

References

[1] V. Potó, J. Á. Somogyi, T. Lovas, Á. Barsi, Laser scanned point clouds to

support autonomous vehicles, Transportation Research Procedia 27 (2017)

531–537.

30

[2] R. Farid, Region-growing planar segmentation for robot action planning,575

in: Australasian Joint Conference on Artificial Intelligence, Springer, 2015,

pp. 179–191.

[3] V. Raja, K. J. Fernandes, Reverse engineering: an industrial perspective,

Springer Science & Business Media, 2007.

[4] H. Fuchs, Z. M. Kedem, S. P. Uselton, Optimal surface reconstruction from580

planar contours, Commun. ACM 20 (10) (1977) 693–702.

[5] G. Vosselman, E. Dijkman, 3d building model reconstruction from point

clouds and ground plans, Int. Arch. of Photogrammetry and Remote Sens-

ing (2001) 37–43.

[6] R. Kaucic, R. Hartley, N. Dano, Plane-based projective reconstruction, in:585

Proceedings of Eighth IEEE International Conference on Computer Vision,

Vol. 1, 2001, pp. 420–427 vol.1.

[7] F. Tarsha-Kurdi, T. Landes, P. Grussenmeyer, Hough-transform and ex-

tended ransac algorithms for automatic detection of 3d building roof planes

from lidar data, International Archives of Photogrammetry, Remote Sens-590

ing and Spatial Information Sciences, ISPRS 3 (2007) 407–412.

[8] H. Huang, C. Brenner, M. Sester, 3d building roof reconstruction from point

clouds via generative models, in: Proceedings of the 19th ACM SIGSPA-

TIAL International Conference on Advances in Geographic Information

Systems, GIS ’11, ACM, 2011, pp. 16–24.595

[9] B. Triggs, Autocalibration from planar scenes, in: Proceedings of the 5th

European Conference on Computer Vision, Vol. 1 of ECCV ’98, Springer-

Verlag, 1998, pp. 89–105.

[10] C. A. Rothwell, A. Zisserman, D. A. Forsyth, J. L. Mundy, Planar object

recognition using projective shape representation, International Journal of600

Computer Vision 16 (1) (1995) 57–99.

31

[11] M. Peternell, T. Steiner, Reconstruction of piecewise planar objects from

point clouds, Computer-Aided Design 36 (2003) 333–342.

[12] J. Liu, L. Cao, Z. Li, X. Tang, Plane-based optimization for 3d object

reconstruction from single line drawings, IEEE Trans. Pattern Anal. Mach.605

Intell. 30 (2) (2008) 315–327.

[13] P. Qiu, P. S. Mukherjee, Edge structure preserving 3d image denoising by

local surface approximation, IEEE transactions on pattern analysis and

machine intelligence 34 (8) (2012) 1457–1468.

[14] G. Simon, A. W. Fitzgibbon, A. Zisserman, Markerless tracking using pla-610

nar structures in the scene, in: Proceedings of IEEE and ACM International

Symposium on Augmented Reality, 2000, pp. 120–128.

[15] D. Chekhlov, A. P. Gee, A. Calway, W. Mayol-Cuevas, Ninja on a plane:

Automatic discovery of physical planes for augmented reality using visual

slam, in: Proc. of the IEEE and ACM ISMAR, 2007, pp. 1–4.615

[16] J. M. Biosca, J. L. Lerma, Unsupervised robust planar segmentation of

terrestrial laser scanner point clouds based on fuzzy clustering methods,

ISPRS J. of Photogrammetry and Remote Sensing 63 (1) (2008) 84–98.

[17] X. Ning, X. Zhang, Y. Wang, M. Jaeger, Segmentation of architecture

shape information from 3d point cloud, in: Proc. 8th Int. Conf. Virtual620

Reality Continuum and Its Applications in Industry, 2009, pp. 127–132.

[18] P. V. Hough, Method and means for recognizing complex patterns, uS

Patent 3,069,654 (Dec. 18 1962).

[19] L. A. F. Fernandes, M. M. Oliveira, Real-time line detection through an

improved hough transform voting scheme, Pattern recognition 41 (1) (2008)625

299–314.

[20] F. A. Limberger, M. M. Oliveira, Real-time detection of planar regions in

unorganized point clouds, Pattern Recognition 48 (6) (2015) 2043–2053.

32

[21] D. H. Ballard, Generalizing the hough transform to detect arbitrary shapes,

Pattern recognition 13 (2) (1981) 111–122.630

[22] N. Kiryati, Y. Eldar, A. M. Bruckstein, A probabilistic hough transform,

Pattern recognition 24 (4) (1991) 303–316.

[23] M. A. Fischler, R. C. Bolles, A paradigm for model fitting with applications

to image analysis and automated cartography (reprinted in readings in

computer vision, ed. ma fischler,”, Comm. ACM 24 (6) (1981) 381–395.635

[24] R. Schnabel, R. Wahl, R. Klein, Efficient ransac for point-cloud shape

detection, in: Computer graphics forum, Vol. 26, Wiley Online Library,

2007, pp. 214–226.

[25] L. Li, F. Yang, H. Zhu, D. Li, Y. Li, L. Tang, An improved ransac for 3d

point cloud plane segmentation based on normal distribution transforma-640

tion cells, Remote Sensing 9 (5) (2017) 433.

[26] S. Mittal, S. Anand, P. Meer, Generalized projection-based m-estimator.,

IEEE transactions on Pattern analysis and machine intelligence 34 (12)

(2012) 2351.

[27] T. T. Pham, M. Eich, I. Reid, G. Wyeth, Geometrically consistent plane645

extraction for dense indoor 3d maps segmentation, in: Intelligent Robots

and Systems (IROS), 2016 IEEE/RSJ International Conference on, IEEE,

2016, pp. 4199–4204.

[28] A.-V. Vo, L. Truong-Hong, D. F. Laefer, M. Bertolotto, Octree-based region

growing for point cloud segmentation, ISPRS Journal of Photogrammetry650

and Remote Sensing 104 (2015) 88–100.

[29] J. Weng, Y. Zhang, W.-S. Hwang, Candid covariance-free incremental prin-

cipal component analysis, IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 25 (8) (2003) 1034–1040.

33

[30] J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal compo-655

nent analysis: Exact recovery of corrupted low-rank matrices via convex

optimization, in: Advances in neural information processing systems, 2009,

pp. 2080–2088.

[31] P. J. Huber, E. M. Ronchetti, Robust Statistics (Wiley Series in Probability

and Statistics Book 693), Wiley, 2011.660

[32] P. J. Rousseeuw, C. Croux, Alternatives to the median absolute deviation,

Journal of the American Statistical association 88 (424) (1993) 1273–1283.

[33] A. Alexandrescu, Fast deterministic selection, in: 16th International Sym-

posium on Experimental Algorithms, Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik GmbH, Wadern/Saarbruecken, Germany, 2017, pp. 24:1—665

-24:18. doi:10.4230/lipics.sea.2017.24.

URL http://drops.dagstuhl.de/opus/volltexte/2017/7612/

[34] Eigen c++ library for linear algebra, http://eigen.tuxfamily.org/

index.php?title=Main_Page, accessed: 2018-07-01.

[35] L. Xu, E. Oja, P. Kultanen, A new curve detection method: randomized670

hough transform (rht), Pattern recognition letters 11 (5) (1990) 331–338.

[36] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, The 3d hough trans-

form for plane detection in point clouds: A review and a new accumulator

design, 3D Research 2 (2) (2011) 3.

[37] KHT-3D - real-time detection of planar regions in unorganized point675

clouds, http://www.inf.ufrgs.br/~oliveira/pubs_files/HT3D/HT3D_

page.html, accessed: 2018-12-01.

[38] Leica cyclone/cloudworx example databases, https://hds.

leica-geosystems.com/en/29453.htm, accessed: 2018-07-01.

[39] P. J. Rousseeuw, K. V. Driessen, A fast algorithm for the minimum covari-680

ance determinant estimator, Technometrics 41 (3) (1999) 212–223.

34

http://drops.dagstuhl.de/opus/volltexte/2017/7612/
https://doi.org/10.4230/lipics.sea.2017.24
http://drops.dagstuhl.de/opus/volltexte/2017/7612/
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://www.inf.ufrgs.br/~oliveira/pubs_files/HT3D/HT3D_page.html
http://www.inf.ufrgs.br/~oliveira/pubs_files/HT3D/HT3D_page.html
http://www.inf.ufrgs.br/~oliveira/pubs_files/HT3D/HT3D_page.html
https://hds.leica-geosystems.com/en/29453.htm
https://hds.leica-geosystems.com/en/29453.htm
https://hds.leica-geosystems.com/en/29453.htm

	Introduction
	Related Work
	Hough Transform
	RANSAC
	Region Growing

	Robust Plane Detection
	Split Phase
	Robust Planarity Test
	Plane-sample distance test
	Plane-sample normal deviation test
	Outlier percentage test

	Growth Phase
	Merge Phase
	Iterative Grow-Merge Procedure
	Complexity Analysis

	Results
	Ground Truth
	Evaluation Metrics
	Time and Quality Analysis

	Conclusion and Future Work

