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Abstract

Plane detection is a key component for many applications, such as industrial re-
verse engineering and self-driving cars. However, existing plane-detection tech-
niques are sensitive to noise and to user-defined parameters. We introduce a
fast deterministic technique for plane detection in unorganized point clouds that
is robust to noise and virtually independent of parameter tuning. It is based
on a novel planarity test drawn from robust statistics and on a split and merge
strategy. Its parameter values are automatically adjusted to fit the local distri-
bution of samples in the input dataset, thus lending to good reconstruction of
even small planar regions. We demonstrate the effectiveness of our solution on
several real datasets, comparing its performance to state-of-art plane detection
techniques, and showing that it achieves better accuracy, while still being one
of the fastest.
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Figure 1: Example of plane detection using our technique. (left) Input point cloud. (right)
Detected planar patches. Notice how it is able to extract delimited planes from connected
regions, despite the high level of noise in this point cloud.

1. Introduction

Detecting planes in unorganized point clouds is key to several emerging ap-
plications, such as self-driving cars [I], robotic navigation [2], and forensics [3].
It is also essential to more conventional applications, such as reverse engineer-
ing [, 5l [6] [7, [8] [3], camera calibration [9], object recognition [10} 1], object
reconstruction [12], denoising [13], augmented reality [14 [I5], and segmentation
[16, I7]. Since point clouds are inherently noisy and datasets containing sev-
eral millions of samples are now commonplace, detecting planar regions in point
clouds requires both robustness to noise and performance scalability. For ap-
plications such as reverse engineering, accurate reconstruction is also a crucial
aspect. Unfortunately, most available techniques for detecting planar struc-
tures in point clouds are either sensitive to noise or computationally expensive.
Moreover, most previous techniques use parameters that need to be tunned for
different datasets, which is undesirable and time consuming.

We present an efficient O(n log n) deterministic technique for plane detection
in unorganized point clouds. Our solution uses robust statistics to derive a novel
planarity test that is mostly insensitive to outliers. More specifically, we use
robust measures of distance to plane and normal deviation to detect and remove
outliers, as well as to automatically adjust our method’s parameters to the local
distribution of samples in the input dataset. This results in a robust-to-noise
approach, which is also virtually independent of parameter tuning, and handles

point clouds of large sizes and variable sampling distributions.
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Our technique uses a subdivision strategy to first detect small planar regions
in the point cloud. This is done to improve the accuracy of the overall detection
process (Section . Since it is undesirable to have a plane fragmented into
multiple small patches, it subsequently employs an iterative procedure to grow
and merge such patches (Section[3.3). This results in a fast and accurate solution
capable of automatically delimiting the detected planar regions. The growth
procedure is similar to most region-growing techniques, but unlike previous
solutions, our technique does not require user-specified parameters.

We demonstrated the effectiveness of our solution by performing a detailed
comparison with the most popular, as well as with the most recent approaches
for plane detection. The comparisons were carried out on seven datasets cho-
sen to cover various real point-cloud characteristics, such as variable sampling
density, noise level, number of samples, number of planes, and different acqui-
sition sensors. Our technique performed well on all datasets, achieving the best
accuracy measured in terms of average precision, recall, and Fl-score over all
datasets, while still being one of the fastest.

Figure [I) illustrates the use of our technique to automatically extract delim-
ited planar regions from a noisy point cloud. The image on the left shows the
input dataset, while the one on the right shows the detected planes. Note how
our technique is able to detect and delimit these regions despite the high level
of noise in the point cloud.

The contributions of this work include:

o A technique for detecting planes in unorganized point clouds that is robust
to noise and virtually independent of parameter tunning (Section . Our
solution is more accurate than previous techniques, while being computa-

tionally efficient;

o A novel planarity test based on robust statistics that is less dependent on
the noise scale of the point cloud than existing solutions (Section |3.2)).
It allows our technique to be directly applied to point clouds containing

different and variable noise levels;
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o An iterative grow-merge procedure capable of retrieving connected planar
regions with a great level of precision and detail (Section[3.3]). This allows

our technique to automatically delimit the detected planar regions;

e A mechanism to automatically adjust the plane detection parameters in
order to fit the local distribution of samples in the dataset (Sections
t013.2.3). This lends to great convenience, as users do not need to specify

or tune parameter values.

2. Related Work

Plane detection in point clouds has been extensively studied, and most tech-
niques can be classified in three broad categories: Hough transform, RANSAC,

and Region growing.

2.1. Hough Transform

The Hough transform (HT) was proposed to detect lines in binary im-
ages [I8], and variations have been introduced to improve its efficiency [19],
detect planes [20], as well as arbitrary shapes in multidimensional data [21].

The key idea behind the Hough transform is to map input samples to some
feature space and cast votes into an accumulator. The voting process consists
of incrementing the values of all accumulator’s cells for the detectable shapes
that could contain the given input sample. Detecting shapes then consists of
finding peaks in the accumulator, whose resolution depends on the quantization
applied to each dimension of the feature space. This process is computationally
expensive, becoming prohibitive as the number of dimensions (parameters) in-
creases. Plane detection requires a tridimensional accumulator defined by the
parameters (6, ¢, p), where the angles (0, ¢) define the orientation of the plane
(i.e., its normal), and p is the distance from the plane to the origin. The com-
putational cost of the standard Hough transform (SHT) is O(n NgNy), where
n = |P| is the number of points in the point cloud P, and Ny and N, are the



80

85

90

95

100

105

number of bins used to discretize angles § and ¢, respectively. Next, we discuss
the main strategies for accelerating plane detection with HT.

The Probabilistic Hough Transform (PHT) [22] tries to detect planes using
a random subset of the original samples. As such, it is non-deterministic, but
its cost is still asymptotically the same SHT’s. Moreover, finding the right
percentage for the random subset is non-trivial.

The Randomized Hough Transform (RHT) casts votes for planes defined by
groups of three non-collinear randomly selected samples. Thus, each group casts
a single vote, drastically reducing the voting cost. Unfortunately, like PHT, it
is also non-deterministic. Thus, there is no guarantee that all planes will be
detected, and the results are often not consistent among multiple executions.

Limberger and Oliveira [20] extended the Kernel-based Hough transform [19]
for plane detection. It consists of adaptively partitioning the point cloud using
an octree, detecting clusters of approximately-coplanar samples in the octree
cells using principal component analysis (PCA), and voting for each cluster at
once, instead of for individual samples, using a trivariate Gaussian kernel. They
achieve state-of-art real-time detection with cost O(nlogn). However, due to
PCA, the technique is sensitive to outliers. Moreover, the user may need to
adjust the values of the technique’s isotropy and isometry parameters, which

depend on the amount of noise in the point cloud.

2.2. RANSAC

RANdom Sample Consensus (RANSAC) [23] is another popular technique
for shape detection in multidimensional data, due to its simplicity and robust-
ness. RANSAC works iteratively in two steps: first, it draws a minimal ran-
dom set from the input and estimates a shape (model) from it; then, it evalu-
ates an inlier function for the entire input set. The minimal random set with
most inliers is retrieved, along with its estimated shape. This process is re-
peated to detect multiple shapes. RANSAC’s cost for detecting a single plane
is O(I(E + nK)) = O(In), where I is the number of iterations used to detect

one plane, E is the cost to estimate a plane from three samples, and K is the
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cost of checking if a sample lies on the estimated plane.

Schnabel et al. [24] proposed an optimized version of RANSAC using spa-
tial information to only draw nearby samples, and using normal information
to improve the inlier function. However, the resulting algorithm is still prone
to detecting spurious shapes. Li et al. [25] proposed a pre-processing step for
RANSAC intended to prevent the detection of spurious planes. It consists of
first subdividing the point cloud into cells, detecting the cells containing copla-
nar samples and using only those during RANSAC. However, it relies on a
good parameter tuning for planar cell detection, which depends on the noise
scale of the point cloud. Moreover, this technique is still prone to the detection
of spurious planes (see, its result for the Box dataset in Figure |8 (RANSAC
NDT)). Mittal et al. [26] proposed a new M-Estimator that does not require
the specification of an inlier threshold. It estimates the scale of noise by cap-
turing the difference of density between inliers and outliers in multiple random
hypotheses. Such technique is prone to merging close planes if the noise scale is
underestimated, or to miss planes if it is overestimated. Also, since it requires
the analysis of a large number random models to obtain a good estimate of the
noise scale, it is slow and unfit for point clouds with millions of samples.

Despite their great flexibility, RANSAC techniques rely on randomness,
which may require many iterations to achieve stability, making them slow. Also,
for most point clouds captured from real scenes, samples are not uniformly dis-
tributed. Thus, planes far from the sensor may never be detected, as they are
often undersampled. Another major limitation is the high sensitivity to its pa-
rameters, mainly the threshold used in the inlier function, which may be difficult

to adjust and depends on the noise level of the point cloud.

2.3. Region Growing

Region growing (RG) algorithms are very popular in 2D and 2.5D image
applications. Their use in unorganized point clouds, however, is still vastly
underrepresented. This is mainly due to the nature of such datasets, which

contain occlusions, noise, and lack neighborhood information.
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Region growing techniques generally treat the point cloud as a graph, with
the samples representing the graph vertices and their spatial proximity (neigh-
borhood) defining the edges. These techniques select seed samples to start a
graph search according to an inlier condition (e.g., the angular difference be-
tween the normals of neighbor samples should be below a certain threshold).
To reduce computational cost, some techniques partition the space containing
the point cloud into voxels and perform the graph search on each voxel.

Farid [2] introduced a region growing technique for robotic applications based
on a smoothness constraint. Unfortunately, this approach is prone to under-
segmentation as the smoothness constraint is often violated.

The work of Pham et al. [27] is similar to ours in the sense that it also
uses a partitioning strategy to extract small planar patches. However, it uses a
minimization algorithm to extract planes that often merges non-related planes.

Vo et al.’s technique [28] is the closest related to ours. It uses a two-step
coarse-to-fine approach. In the first step, an octree is created and on each
node it estimates a plane using PCA. Each such plane is used to calculate a
residual value obtained as the mean squared distance from the estimated plane
to the samples in the octree cell. If the residual is smaller than a threshold,
the cell is considered “planar”; otherwise, the cell is recursively subdivided and
re-tested until it reaches a minimal size. After this, adjacent “planar cells” are
merged if the angular difference between their plane normals is below a certain
threshold. Note that this will merge adjacent parallel planes (see, for instance,
the technique’s result for the Computer dataset in Figure . In the second
step, individual samples belonging to neighbor “non-planar cells” are added to
the cell if the distance from the sample to the cell’s estimated plane is less than
a fixed threshold.

There are, however, key differences between Vo et al.’s technique and ours.
First, we use a robust planarity test instead of PCA, which is sensitive to out-
liers. Second, instead of a top-down partitioning strategy, we use a bottom-up
approach, starting from the leaf nodes with minimal size up to the octree root.

This strategy proves to be more successful in preserving fine details, while its im-
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Figure 2: Our robust plane-detection pipeline. An input point cloud is spatially subdivided
using an octree until the leaf nodes have less than e samples. If the samples in the octree cell
pass the planarity test, they undergo a growth process and can be merged with adjacent cells
into larger planar patches. The output consists of the detected planar regions.

pact on the algorithm’s execution time is rather small due to our fast planarity
test. Our refinement step is also different. Instead of using fixed thresholds,
which require tuning for each different dataset, we estimate them directly from

the data distribution.

3. Robust Plane Detection

Our region-growing algorithm for plane detection is based on robust statistics
and consists of three main steps: split, grow, and merge. In the split phase, the
input point cloud is spatially subdivided using an octredﬂ until the leaf nodes
have less than € samples. If the samples in an octree leaf node pass our robust-to-
noise planarity test, they undergo a growth process and can further be merged
with adjacent cells into larger planar patches. In the grow phase, patches that
passed the planarity test are augmented in order to fill in possible gaps left by
the split phase. However, the growth parameters (maximum distance to the
plane and maximum normal deviation) are automatically estimated from the
data distribution. Finally, in the merge phase, patches are merged according
to some boundary condition. The grow and merge phases are iterated until all
patches become stable, that is, no further growth is possible. The output of
the entire process consists of the set of detected delimited planar regions. A
simplified version of this pipeline is shown in Figure Next, we provide the

details for these three steps.

LA tree data structure where each internal node has exactly eight children.
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Figure 3: Top-down versus bottom-up approaches to planar patch detection. (left) Original
point cloud. (middle) A top-down strategy stops subdividing on the first approximately planar
detection, failing to capture small parallel planar regions. (right) Our bottom-up approach
keeps subdividing until such structures can be detected.

3.1. Split Phase

Our technique starts by detecting minimal planar regions (patches) in the
point cloud. In order to detect such regions, it requires a partitioning technique
and a planarity test. An octree containing the entire point cloud is used to
recursively subdivide the space until each cell contains less than e samples,
which has been empirically defined as 0.1% of the total number of samples. The
planarity test is then applied from the leaves up to the root, stopping whenever
a planar patch is detected. Upon detection, the samples move to the grow step
(Figure. If all eight cells associated to a parent octree node fail the planarity
test, the parent node itself becomes the new octree leaf node (replacing its eight
children) and undergoes the planarity test. This process is applied recursively.
Such a strategy allows the detection of fine details, as shown in Figure (right).
The number of detected planar patches is not an issue, since they will be later

merged. Algorithm [I] summarizes this process.

3.2. Robust Planarity Test

Most point clouds acquired from real scenes are susceptible to noise, which
may be introduced during the acquisition phase or during post-processing. In
the acquisition phase, many factors may lend to noise: sensor limitations, the
materials present in the scene (e.g., specular surfaces), complex scene geometry

(e.g., edges may cause beam splitting), etc. During post-processing, errors in
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Algorithm 1 Detect Planar Patches

Require: O {an octree node}, patches {set of detected planar patches. An
empty set for the octree root call.}

1: procedure DETECTPLANARPATCHES(O, patches)

2 if #Opoints < € then

3 return false

4: O.createChildren() > subdivide the octree node
5: hasPlanarPatch < false > recursively call each child node
6 for all child € Ocnitgren do

7 if DetectPlanarPatches(child, patches) then

8 hasPlanar Patch < true

9: if not hasPlanarPatch then

10: > check the node for planarity only if no child is planar
11: if RobustPlanarityTest(Ogampies) then

12: removeOutliers(Osampies)

13: > insert node in the list of planar patches
14: pp.insert(new PlanarPatch(Osqmpies))

15: hasPlanar Patch < true

16: return hasPlanar Patch

registering partial point clouds also lends to noise. It is clear that in order for an
algorithm to work well in this scenario, it must be able to handle a considerable
amount of noise.

The standard procedure to test co-planarity of a set of samples uses principal
component analysis to obtain an eigen-decomposition of the samples’ covariance
matrix [20 25 28]. One way to check for (approximate) co-planarity is by
comparing the ratio between the largest and smallest eigenvalue magnitudes.
If such ratio is bigger than some threshold 7, the samples can be considered
coplanar:

AT < el < [l 28> 7 )
Al

This procedure, however, has some limitations. The first one is determining
the best threshold 7 for a set of samples to be considered approximately copla-
nar. An ideal threshold should take into consideration the samples’ noise level.
This, however, is not trivial to determine, since in most point clouds noise is
not uniformly distributed, and it is hard to estimate it without knowing the

characteristics of the sensor used for acquisition. The second limitation has to

10
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do with the fact that PCA is calculated upon the covariance matrix, which in
turn, is calculated using the mean of each variable. Since outliers disturb the
mean, they also affect PCA, making it less reliable on noisy datasets. This
limitation also applies to covariance-free PCA, because even though it does not
use covariance, it is still based on the mean of the observations [29]. Although
Robust PCA [30] does not suffer from the outlier problem, it is slow, not being
suitable for handling point clouds with millions of samples.

In Robust Statistics [31], breakdown point is the percentage of outliers an
estimator can handle before giving incorrect results. The mean estimator is
said to have a breakdown point of 0%, since a single outlier can disturb it. The
median estimator, in turn, has breakdown point of 50%, since it would require
more than 50% of outlier observations to disturb it. Thus, the median is said to
be a robust alternative to the mean. Likewise, there is a robust alternative to
the standard deviation estimator, named median absolute deviation (MAD). It

is obtained as the median of the absolute deviations from the samples’ median:

MAD =k x median(|z; — median(X)|), (2)

where z; € X represent all individual samples in the set X, and k is a constant
to make MAD yield consistent results with standard deviation. For a normal
distribution, k& = 1.4826 [32]. Like the median, MAD also has a breakdown
point of 50%.

Using these two estimators, we developed a novel planarity test that is robust
to noise. It works by first robustly estimating a plane and then checking its
planarity using robust tests. A plane II can be defined by a pair (C, N), where
C is a point on the plane, and N is the plane’s normal. C is estimated as
the median of the positions of all samples in the set, while N is a normalized
vector whose direction is given by the median of each component of the samples’

normals, as shown in Equations [3| and [

C = [median(Sy), median(S,), median(S,)]", (3)

11



235

240

[median(Sys), median(Sny), median(Sx)|*
||[median(Sns), median(Sny), median(Sn:)]||

N = : (4)

where S represents the set of samples, Si and Sy are, respectively, the k €
{z,y,2z} component of the position and normal vectors of the samples in S.
We propose three robust tests to evaluate the quality of the estimated planes:
a plane-sample distance test (T1), a plane-sample normal deviation test (T2),

and an outlier percentage test (T3).

3.2.1. Plane-sample distance test

The first part of the planarity test evaluates the variance in the sample
positions relatively to the dimensions of the tested patch. This is required
because one can tolerate bigger sample variance in larger patches than in smaller
ones. The distance of each sample to the estimated plane II is obtained using

Equation [5| defining a new set of observations D = {d;,ds, ...,d, }:
di = |(P; = C) - N|, (5)

where P; € R3 is the position of sample 4, C' is the point on the plane computed
with Equation 3, and N is the estimated plane normal (Equation . Given the
set D, we compute an interval Ip around the median covering all values which

are « MADs from the median:
Ip = [median(D) — aM AD(D); median(D) + aM AD(D))]. (6)

Such interval has a direct parallel to the z-score, which corresponds to the num-
ber of standard deviations a value is from the mean. For a normal distribution,
the z-score can be used to detect outliers, since the further a value is from the
mean, the more unlikely it is to be sampled.

For a normal distribution, 3 standard deviations around the mean correspond
t0 99.7% of the area under the curve. Since MAD is consistent to standard devi-

ation, 3 MADs also correspond to 99.7% of the area under the curve. Thus, we

12
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Figure 4: A curved surface produces a large MDP value (left), while a planar surface lends
to a small one (right). For same size patches, a larger MDP value result in a smaller angle 6
between F and N (the plane normal).

set a = 3 to detect outliers with 99.7% of confidence. Since we are dealing with
distances to a plane, the upper limit of this interval represents the maximum
distance a sample can be to a plane before it is considered an outlier. We call
this upper limit the maximum distance to plane (MDP).

When considering a set of approximately coplanar samples, the value MDP =
3xMAD may assume unreasonable large values in the case of datasets contain-
ing high levels of noise. Thus, we automatically estimate an adaptive distance
threshold relative to the dimensions of the patch. Given the plane normal N,
an orthonormal basis B = {U,V, N} for 3 can be computed. The actual direc-

tions of vectors U and V are not relevant; thus, U and V can be obtained as:

U _ [Ny _N27_NI7NI}T
I[Ny = Nz =Na, Na]|

ZV=NxU. (7)

Let F = 0.5maxz(w,))U + (MDP)N be a vector (Figure [B.2.1]), where w
and [ are the estimated planar patch’s width and length, respectively. Note
that samples from a curved surface results in a large MDP value, while samples
from a planar one lends to a small MDP value. For same size patches, large
MDP values result in smaller angles between F' and N (i.e., limpapp—oo 8 = 0°)
(Figure . We take advantage of this observation to evaluate the variance in
the sample positions relatively to the patch dimensions as an angular threshold
that works for different point cloud configurations. This eliminates the need for

the user to provide or tune parameter values to improve plane detection for

13
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different point clouds. Larger patches can admit more sample variance (i.e.,
larger MDP), which is captured by an angular threshold 6. Experimentally,
we found that 8 > 75° provides a conservative angular threshold that produces

good results for all tested datasets.

3.2.2. Plane-sample normal deviation test

This stage of the planarity test evaluates the deviation of the sample normals
with respect to the plane’s normal N. A set of coplanar samples is expected
to have relatively homogeneous normal directions, while non-coplanar samples
tend to exhibit high variance in their normal directions. Thus, we compute the
angle between each sample normal and the plane normal (Equation, creating

a new set of observations ® = {¢1, 2, ..., op }:
¢i = acos(|N; - NY), (8)

where W is the normal of sample i, and N is the estimated plane normal. As

in test T1, an inlier interval is defined as:
Iy = [median(®) — aMAD(®); median(®) + aMAD(®)). 9)

Again, we set a = 3 and are only interested in the upper limit of Is. We
call this upper limit maximum normal deviation (MND), and discard planes
with MND above a certain threshold. Unlike MDP, MND does not depend on
the patch dimensions. Experimentally we found that MND < 60° provides good

results for all tested datasets.

3.2.8. Outlier percentage test
For any given patch, if at least 25% of its samples were considered as outliers
(i.e., fall outside of either interval Ip or Ig), the plane is considered too noisy

and thus discarded.

14
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3.3. Growth Phase

Due to the partition of the point cloud into octree cells, some co-planar
samples may fall just outside of the volume that generated a given planar patch.
Also, some patches might have been discarded due to local noise. In either case,
it is necessary to grow the detected planar patches to fill in possible gaps and
provide a more accurate detection.

A detected planar patch P; has three attributes: an estimated plane II;
defined by the pair (C;, N;) (Equations [3[ and ; its maximum distance to the
plane (MDP;) (Section [3.21)); and its maximum normal deviation (MND;) (Sec-
tion . In order to grow patches, we define a neighborhood graph G for
the entire point cloud, where each vertex of the graph represents a sample, and
each edge connects two neighbor samples identified using k-nearest neighbors
(we use k = 50).

Once the neighborhood graph has been created, we perform a breadth-first
search, starting from the vertices corresponding to the samples of patch P;. A
visited sample is added to P; if: (i) it does not belong to any other patch, and
(ii) it meets the inlier condition for P;.

The inlier condition for P; must satisfy two criteria: (i) the distance of
sample j to II; should be less than MDP; (i.e., d; = |(P;—C;)-N;| < MDP;); and
(ii) the deviation between the sample normal and NV; should be less than MND;
(i.e., ¢j = acos(|Nj - N;|) < MND;). Unlike previous region growing meth-
ods [28] 2], whose inlier conditions rely on fixed thresholds for sample-to-plane
distance and normal deviation, our method does not make any assumptions on
the scale or noise level of the point cloud, as the computed robust statistics
already consider them.

Since a sample may satisfy more than one patch inlier condition, it is neces-
sary to establish some priority among patches. Thus, before starting the growth
phase, the patches are sorted by their maximum normal deviations in ascending
order. In that way the least noisy patches will grow first, having the opportunity

to grow larger. The entire growth phase is summarized in Algorithm

15



Algorithm 2 Grow Patches

Require: P {point cloud}, G {neighborhood graph}, patches {set of detected

1:

2:
3
4
5
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

planar patches}
> Patches only grow with samples from the point cloud that do not belong
to any detected plane
procedure GROWPATCHES(P, G, patches)
SortPatches ByN ormal Deviation(patches)
inliers < ()
for all patch € patches do

> samples from all detected planes are inliers
inliers.insert(patchsamples)

for all patch € patches do > all detected patches

q < patChsamples
outliers < ()
while ¢ # () do
p < q.pop()
for all n € G.neighbors(p) do
> all samples that are neighbor to p
if n ¢ inliers An ¢ outliers then
> n does not belong to any detected patch
if patch.isInlier(n) then > grow patch
patchsamples-insert(n)
inliers.insert(n) © allow the patch grow from sample
q.enqueue(n)
else > outlier wrt this specific patch
outliers.insert(n)

16
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Figure 5: Merging conditions. Patches A and B cannot be merged due to the difference in
their normals. A and C cannot be merged because they are not neighbors. Despite having
similar normals and being neighbors, B and C cannot be merged because no sample from B
or C satisfies the other patch’s inlier condition (their distance intervals do not intersect). C
and D can be merged.

3.4. Merge Phase

Patches detected at adjacent octree nodes might form a single planar surface
and, in this case, should be merged. For two patches A and B to be merged,
they must satisfy three merging conditions: (M1) they should be adjacent
(i.e., the neighborhood graph G should contain at least one edge connecting a
sample from A to a sample from B); (M2) the estimated normals for A and B
should have similar directions (i.e., the angle between these two normals should
be less than max(MDN 4,MDNp)); and (M3) at least one sample from A should
satisfy the inlier condition for B (or vice-versa). While the first two conditions
are self-evident, the third one prevents the merging of parallel patches that are
not sufficiently close to each other. These conditions are illustrated in Figure
B4

We use a union-find data structure to quickly create and find groups of
merging patches. The merging process then takes each group of patches that

satisfy the three merging conditions and returns a single unified patch.

3.5. Iterative Grow-Merge Procedure

Once a group of patches has been merged, the resulting patch might need to
have its associated plane re-estimated, along with its distributions of distances
(D) and normal deviations (®). However, since the breakdown point of our
robust estimators (median and MAD) is 50%, an update is only necessary if a

patch is extended with more than 50% of its original number of samples. In

17
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such a case, the grow and merge steps (Sections and need to be re-done,
as the inlier condition for the new patch might have changed with respect to
its previous state. This iterative process stops when no patch requires update
(i.e., when all patches are stable). To reduce the number of updates, whenever
a group of patches needs to be merged, the patch with most samples is chosen

as the group representative.

3.6. Complexity Analysis

Recall that our technique has three main steps: split, grow and merge. The
split phase constructs an octree for a set of n samples, whose cost is O(nlogg n).
On each octree leaf, a planarity test is performed. The cost of the planarity test
can be broken into: (i) estimating a plane from the median of the samples’
positions and normals, whose cost is O(n) [33]; and (ii) obtaining the sets of
distance and normal-deviation observations in O(n) time, and then finding the
median of these sets, also in O(n) [33]. Thus, the cost of the planarity test is
O(n), and the cost of the entire split phase is O(nlogs n).

For the grow phase, the worst case consists of a single patch with a small
number of samples to incorporate all samples in the point cloud. Since no sample
is visited more than once, its cost is O(n).

Since no patch can have less than e samples, a value that we set experimen-
tally to 0.1% of the total amount of samples in the point cloud, the maximum
amount of planar patches is constant. Thus, the costs for verifying the three
merging conditions are: (M1) O(n); (M2) O(1); and (M3) O(n). The cost of
each union-find operations is near constant.

The grow and merge phases are iterated, stopping when all patches become
stable. A patch is called stable when the number of samples added to it during
a grow-merge iteration is less than 50% of its previous number of samples.
Thus, the worst case would consist of a single patch starting with e samples and
receiving 50%+1 samples at each iteration. Since the size would be multiplied
by 1.5 at each iteration until it reaches n samples (the size of the point cloud),

this process might have at most log; 5(n) iterations. Since the cost of each
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iteration is O(n), the iterative grow-merge step has cost O(nlogn). Therefore,

the total cost of our plane detection algorithm is O(nlogn).

4. Results

We implemented our technique in C++ and used OpenGL to render the
point clouds and the detected planes. For linear algebra operations, we used
the Eigen library [34]. We compared our technique against the most popular as
well as the most recent approaches for plane detection, which include methods
based on the Hough transform, RANSAC, and region growing. Next, we list
the techniques chosen for comparisons and present the reasons for their choices.

The selected Hough-transform-based techniques are the Randomized Hough
Transform (RHT) [35] and the 3D Kernel-based Hough Transform (KHT-3D) [20].
RHT is a classic and popular solution for the HT, while KHT-3D is currently
the state-of-art real-time plane detection. For RHT, we used the implementa-
tion provided by [30], and for KHT-3D we used the implementation provided
by the authors [37].

For RANSAC, we chose to compare against the technique of Schnabel et
al. [24] and a recent technique by Li et al. [25]. Schnabel et al.’s technique is an
efficient RANSAC method for shape detection. The technique of Li et al. [25]
is a recent PCA-based solution intended to prevent the selection of spurious
planes. It has been chosen to stress the fact that PCA is quite sensitive to noise
(i.e., outliers), despite the use of some preprocessing. For both techniques we
used the implementations provided by their authors.

For region growing, we selected the techniques of Farid et al. [2], Pham et
al. [27], and Vo et al. [28]. Farid et al.’s approach was designed to segment
smooth regions in 2.5D depth maps, which we adapted to 3D. Pham et al.’s
solution uses a partitioning strategy to extract planar patches. Vo et al.’s recent
point-cloud segmentation technique was chosen due to its close resemblance to
ours in the sense that it also uses an octree to perform space subdivision and

sample clustering. As mentioned in Section however, the authors uses
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a top-down strategy based on PCA, while we employ a bottom-up solution
based on our robust planarity test. Moreover, Vo et al.’s technique uses fixed
thresholds that need to be tuned for each dataset to produce the best results.
Our technique, on the other hand, does not require any user intervention. Since
the source code for Vo et al.’s technique is not available, for the comparisons
shown in the paper we used our own implementation of their technique.

To evaluate our technique and compare it to the ones listed above, we used
seven datasets, which are shown in Figure @ (i) Boz, a cube with 2.5% of
uniformly-distributed noise, (ii) Computer, a computer desk, (iii) Room, (iv)
Utrecht, the facades of some buildings in the city of Utrecht, (v) Museum, (vi)
Plant, the scanning of a petrochemical plant, and (vii) Boiler Room, an indus-
trial boiler room with mostly planes and pipes. Datasets (i) to (v) were used in
[20]. Datasets (vi) to (vii) are from Leica’s public sample datasets [38]. They
were chosen because they span a large number of different characteristics, such
as number of samples, sample density, noise level, number of planes, different ac-
quisition sensors, etc. Table [I| presents detailed information about each dataset
regarding number of samples, number of planes, and percentage of samples be-
longing to planar surfaces. With the exception of the Box dataset, which is a
synthetic model containing white Gaussian noise, the remaining datasets were

captured by real sensors and thus contain natural noise.

Table 1: Dataset details: number of samples, number of planes, and percentage of samples in
planar regions.

# samples # planes % planar regions

Box 964,806 6 100
Computer 68,852 9 94
Room 112,586 15 81
Utrecht 160,256 11 70
Museum 179,744 23 74
Plant 358,116 9 57
Boiler Room 5,990,481 10 73
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4.1. Ground Truth

To evaluate our technique in comparison to others, it was necessary to de-
fine some objective metrics computed with respect to the ground truth of each
dataset. Since no ground truth was available for these datasets, we created some
by interactively selecting the samples that define each plane and using them to
estimate the corresponding plane. The selection process was performed using
software we developed for such purpose. Each plane was obtained using the me-
dian of its sample positions, as well as the median of its sample normals, which
were computed using the robust normal estimation technique FAST-MCD [39].
Figure |§| (right) displays the obtained ground truth for all datasets, with each

plane in a given dataset shown in a different color.

4.2. FEvaluation Metrics

We used three objective metrics adapted from information retrieval to eval-
uate the detection quality of the compared techniques: Precision, Recall, and
Fi-Score.

A reliable metric should not just count the number of correctly detected
planes, as this may be misleading. Some planes might be more important than
others for a given scene. For instance, detecting a large plane should be more
important than detecting a small one, since large planes tend to contribute more
for the scene reconstruction. However, simply counting the number of samples
in the detected planes can also be misleading: surfaces closer to the sensor tend
to be more densely sampled than further ones. Such sensor proximity bias is
illustrated in Figure [7| (left).

To make the number of samples on a planar patch proportional to its area,
we reqularize the point clouds. This process consists of voxelizing the space con-
taining each point cloud and replacing all samples inside a voxel with the voxel
centroid. This results in lower-resolution versions of the original point clouds
that minimize the proximity-bias effect (Figure [7|(right)). Note, however, that
the techniques still perform the actual plane-detection process in the original

(i.e., non-regularized) point clouds. The regularized ones are used only for the
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Box ground truth
I

Computer ground truth

Room Room ground truth

Museum Museum ground truth

Utrecht ground truth
K

Boiler Room Boiler Room ground truth

Figure 6: Datasets listed in Table (left) Point clouds. (right) Corresponding ground truths.
Each plane is shown in a different color.
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Figure 7: Sensor proximity bias. Planes closer to the sensor are more densely sampled than
further ones (left). In order to reduce this bias, we regularize the point cloud, making the
number of samples in a planar patch be proportional to its dimensions (right).

purpose of performing quantitative evaluations of the results produced by the
compared techniques, as explained next.

The size of each voxel depends on certain properties of the scanning process
used to acquire the point cloud (e.g., point clouds acquired through multiple
views or scans suffer from less proximity bias than point clouds acquired from a
single viewpoint). The relative voxel sizes used for each point cloud are shown
in Table They were obtained experimentally to reduce the proximity-bias
effect on each dataset and were used to evaluate the results of all techniques.

Given the samples of the original point cloud associated to a given plane 7;
(either from the ground truth or detected by a technique), if a voxel v; in the
regularized space contains at least one sample belonging to 7;, that voxel is said
to be part of the plane (i.e., v; € m;). Note that v; may be part of multiple
planes simultaneously. A plane mg7, from the ground truth is considered to be
correctly detected by a technique T if a plane 77, in T’s list of detected planes
satisfies the following conditions: (i) at least 50% of the voxels in 7y, are also
in mgr,; and (ii) the angular difference between the normals of 77, and map,
does not exceed 30°. The first criterion tries to enforce that mr, is centered
around the same spatial location as w7, . The second criterion enforces similar
orientation, and its threshold was defined empirically.

A voxel v; is said to be a true positive with respect to mp, if it belongs
to both 7, and mwgr, (i.e., v; € nr, and v; € 7gr,), and TgT, was correctly

detected by T. It is a false positive with respect to nr, if v; € 7, but
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v; & e, It is a true negative with respect to mr, if v; ¢ 77, and v; € TeT;
and it is a false negative with respect to mr, if v; ¢ 7r, but v; € Tor, .
Now we can use the classic definitions of precision, recall and F-measure, to

evaluate the performance of a technique T for a given dataset d as:

precisionr, = (TP)r, ,
(TP)r, + (FP),
TP
recally, = (TP)r, (10)

(TP)z, + (FN)z,’

precisiony X recallp
Flp, =2x

precisiont + recally’

where (T'P)r,, (FP)r,, and (FN)r, are, respectively, the number of voxels in
dataset d corresponding to true positives, false positives, and false negatives,
for technique T'.

Table 2: Voxel sizes used in the regularization of each dataset are relative to the point cloud
largest dimension.

voxel size (%)

Box 0.02
Computer 0.02
Room 0.78
Utrecht 0.78
Museum 0.02
Plant 0.19
Boiler Room 0.78

4.8. Time and Quality Analysis

We ran the experiments comparing the performances of the various tech-
niques on an Intel Core™ i7-7700K 4.20GHz CPU with 32GB RAM. Table
summarizes the results for each dataset. To prevent bias, all techniques that
require normals (RANSAC (Schnabel) [24], RG (Farid) [2], and RSPD (Ours))
used the same sample normals obtained with FAST-MCD [39], a robust normal
estimation technique, using a neighborhood of size 50. The same neighborhoods
were used to create the neighborhood graphs used by our technique, RG (Farid)
and RG (Vo) [28].
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With the exception of our own technique, all other tested ones use fixed
threshold parameters. These have been individually tuned for each specific
dataset to produce the best results in each case. QOur technique, on the other
hand, was applied to all datasets as is.

Table [3| summarizes the performance of the compared plane detection tech-
niques on the seven datasets listed in Table[l} For each combination of technique
and dataset, it shows the number of detected planes (#Detected), as well as the
corresponding values for precision, recall, F1l-score, and execution time (in sec-
onds). The execution time is an average of 5 runs. The detected planes are
shown in Figure 8]

With the exception of RANSAC (NDT) by Li et at. [25], all the techniques
performed well on the Box dataset (Figure |8 top row). For RG (Pham), we
could not find a set of parameters that yield results in reasonable time. For
this dataset, our technique achieved the second highest precision. However, the
added noise disturbed the normal estimation for some samples, precluding them
from being incorporated into any patches since, in each case, the difference in
normal orientation was bigger than MND, and thus decreasing our technique’s
recall. RG (Vo) achieved the best precision, but a low recall. In this technique,
region growing depends on the angular difference among normals of adjacent
voxels. Since RG (Vo) estimates voxel normals using PCA, this leads to bad
normal estimation near edge regions, which compromises the technique’s recall.
RANSAC (Schnabel) detected spurious planes on the edges of the Box, mostly
due to bended normal estimation in those regions, even using a robust normal
estimation technique, due to the high level of noise on the edges. KHT-3D, in
turn, achieved the best recall and F-1 score. This simple dataset proved to be an
interesting counter-example for the RANSAC (NDT), which performed poorly.
RANSAC (NDT) was designed to avoid RANSAC’s detection of spurious planes,
by discarding voxels containing non-planar regions. Since this dataset only
contains planar regions, RANSAC (NDT) reduces to a regular RANSAC.

Most techniques also performed well on the Computer dataset, which is fairly

simple. Although our technique detected a spurious plane at the monitor’s base,
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Table 3: Performance of the evaluated techniques on each dataset. Number of detected planes
over total number of planes (#), Precision (P), Recall (R), F1-Score (F1), Elapsed time in
seconds (T(s)). Best results highlighted in bold.

# P R F1 T(s)
Box
RHT 6/6 0.93 0.93 0.93 132.00
KHT-3D 6/6 0.96 0.96 0.96 0.20
RANSAC (Schnabel) 6/6 0.96 0.87 0.91 26.00
RANSAC (NDT) 5/6 0.01 0.001  0.003 67.50
RG (Farid) 6/6 0.95 0.91 0.93 55.60
RG (Pham) - - - - -
RG (Vo) 6/6 1.0 0.58 0.73 0.13
RSPD (Ours) 6/6 0.97 0.84 0.90 3.35
Computer
RHT 7/9 0.83 0.83 0.83 3.10
KHT-3D 6/9 0.77 0.73 0.75 0.09
RANSAC (Schnabel) 5/9 0.85 0.69 0.76 3.30
RANSAC (NDT) 6/9 0.82 0.86 0.84 3.10
RG (Farid) 7/9 0.98 0.76 0.85 1.18
RG (Pham) 7/9 0.80 0.30 0.43 0.68
RG (Vo) 5/9 0.73 0.67 0.70 0.01
RSPD (Ours) 9/9 0.96 0.93 0.95 0.11
Room
RHT 6/15 0.74 0.73 0.74 25.80
KHT-3D 5/15 0.81 0.82 0.81 0.07
RANSAC (Schnabel) 5/15 0.70 0.70 0.70 3.90
RANSAC (NDT) 8/15 0.95 0.39 0.56 1.08
RG (Farid) 6/15 0.83 0.73 0.78 1.80
RG (Pham) 5/15 0.51 0.60 0.55 0.51
RG (Vo) 5/15 0.58 0.60 0.59 0.03
RSPD (Ours) 10/15 0.85 0.81 0.83 0.24
Museum
RHT 20/23 0.87 0.85 0.86 20.30
KHT-3D 10/23 0.65 0.54 0.59 0.09
RANSAC (Schnabel) 9/23 0.55 0.55 0.55 6.40
RANSAC (NDT) 16/23 0.85 0.40 0.55 21.57
RG (Farid) 18/23 0.94 0.75 0.84 2.50
RG (Pham) 17/23 0.70 0.72 0.71 0.83
RG (Vo) 14/23 0.77 0.74 0.75 0.07
RSPD (Ours) 17/23  0.95 0.75 0.83 0.49
Utrecht
RHT 7/11 0.75 0.54 0.63 31.80
KHT-3D 4/11 0.39 0.42 0.40 0.09
RANSAC (Schnabel) 3/11 0.43 0.47 0.45 5.90
RANSAC (NDT) 8/11 0.73 0.31 0.43 50.40
RG (Farid) 6/11 0.64 0.56 0.60 2.90
RG (Pham) 10/11 0.41 0.44 0.42 4.50
RG (Vo) 5/11 0.62 0.46 0.53 0.21
RSPD (Ours) 11/11 0.75 0.74 0.74 0.44
Plant
RHT 5/9 0.94 0.70 0.80 63.30
KHT-3D 8/9 0.47 0.53 0.50 0.15
RANSAC (Schnabel) 7/9 0.64 0.90 0.74 12.80
RANSAC (NDT) 8/9 0.83 0.57 0.68 2.70
RG (Farid) 7/9 0.97 0.76 0.85 8.60
RG (Pham) 9/9 0.51 0.86 0.65 253.18
RG (Vo) 5/9 0.93 0.74 0.83 0.07
RSPD (Ours) 9/9 0.63 0.92 0.75 0.42
Boiler Room

RHT 9/10 0.74 0.84 0.78 28.60
KHT-3D 6/10 0.63 0.83 0.72 1.15
RANSAC (Schnabel) 6/10 0.77 0.68 0.72 185.40
RANSAC (NDT) 10/10 0.78 0.53 0.63 43.80
RG (Farid) 6/10 0.91 0.44 0.59 368.00
RG (Pham) 8/10 0.54 0.77 0.64 16.04
RG (Vo) 5/10 0.84 0.62 0.71 1.37
RSPD (Ours) 9/10 0.86 0.60 0.71 6.39
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Table 4: Average performance of the evaluated techniques considering all datasets. Average
plane detection ratio (A%), Average precision (AP), Average recall (AR), F1-Score of average
precision and average recall (AF1), Average normalized time (normalized time: elapsed time
in milliseconds divided by number of samples) (ANT). Techniques sorted by AF-1 score. Best
results highlighted in bold.

A% | AP | AR | AF1 | ANT
RANSAC (NDT) 0.76 | 0.71 | 043 | 0.52 | 0.0792
RG (Pham) 0.75 | 0.57 | 0.61 | 0.56 | 0.1256
KHT-3D 0.61 | 0.66 | 0.69 | 0.67 | 0.0005
RANSAC (Schnabel) | 0.56 | 0.70 | 0.69 | 0.69 | 0.0355
RG (Vo) 0.57 | 0.78 | 0.63 | 0.69 | 0.0003
RG (Farid) 0.69 | 0.88 | 0.70 | 0.77 | 0.0295
RHT 0.73 | 0.82 | 0.77 | 0.79 | 0.1280
RSPD (Ours) 0.90 | 0.85 | 0.79 | 0.81 | 0.0021

it was able to distinguish nearby parallel planes on the wall, due to our bottom-
up partitioning strategy, which granted our method the best recall and F-1
score for that dataset, and the second best precision. As this scene is mostly
composed by planar regions, RANSAC (NDT) again detected spurious planes.
KHT-3D detected some spurious planes and was not able to extract fine details
from the scene. RG (Vo) was not able to extract fine details either. When
trying to reduce its voxel size to preserve fine details, spurious planes started to
appear.

For the Room dataset, our technique achieved the best F-1 score, and de-
tected most of the planes in the scene (10 out of 15). Most techniques detected
spurious planes. Although RANSAC (NDT) obtained the best precision, it also
had the worst recall, as it missed many planes.

The Museum dataset contains the largest number of planes (23), most of
them small. Therefore, techniques able to analyze connected components and
delimit planar regions performed best. Our technique was able to retrieve
constrained planes in half of a second. KHT-3D, RANSAC (Schanabel), and
RANSAC (NDT) treat all coplanar samples as forming a single plane, regard-
less of spatial discontinuities. This resulted in elongated planar patches and low
precision and Fl-score.

The Utrecht dataset is highly noisy, causing most techniques to miss several
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planes. Due to our robust planarity test, however, our technique was able to
detect all of the existing planes, achieving the best recall, while still detecting
each one of them accurately, which also granted it the best precision and F1-
score.

The Plant and Boiler Room datasets contain a large number of cylinders
and other curved surfaces. Several techniques, including ours, identify approx-
imately planar patches in small cylindrical regions, thus affecting their perfor-
mance. Nevertheless, our technique achieved good F-1 score on both datasets
(0.75 and 0.71, respectively). RG (Farid) performed well in those scenarios,
since its region-growing procedure is very sensitive to changes in smoothness.
However, this same strategy is prone to false negatives in planar areas contain-
ing a high level of noise, as shown in the previous datasets. The performance
of RG (Vo) was similar to ours in these two datasets.

Our technique (RSPD) performed well on all datasets, being able to achieve
at least the best precision, recall, or F-1 score in 5 of the 7 evaluated datasets,
without requiring parameter tuning. For the ones it did not lead the results, it
was able to achieve competitive results. On average, it achieved the best overall
recall and F-1 score, and the second best overall precision, while being the one
of the fastest techniques (Table [4). In terms of time, RG(Vo) and KHT-3D

performed extremely well in all datasets, having similar running times.

5. Conclusion and Future Work

We presented a robust O(nlogn) technique for detecting planes in unorga-
nized point clouds that achieves better accuracy, measured in terms of average
precision, recall, and F1-score, than the previous approaches, while still being
one of the fastest. For this, we introduced a novel robust planarity test based on
robust statistics that is less sensitive to noise, thus providing a good alternative
to the most commonly-used procedure based on PCA. We also introduced an
iterative grow-merge strategy capable of detecting delimited planar regions with

great level of precision and detail. Our solution is robust to noise and virtually
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Box

Utrecht Museum Room Computer

Boiler Room

RANSAC RANSAC RG RG RG RSPD Ground
(Schnabel) (NDT) (Farid)  (Pham) (Vo) (Ours) truth

RHT KHT-3D

Figure 8: Planes detected by the compared techniques for all datasets. Ground truth is shown
in the rightmost column. For each pair of technique and dataset, the detected planes have
been highlighted using different colors. Black dots represent samples treated as outliers by
each technique. Left-click on the images to zoom in and inspect the details. Larger versions
of these images are also available in the supplemental material. We could not find a set of
parameters to execute RG (Pham) on the Box dataset in reasonable time.
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independent of parameter tunning.

We demonstrated the effectiveness of our technique by performing a detailed
comparison with the most popular and with the most recent approaches for plane
detection, which include methods based on the Hough transform, RANSAC, and
region growing. The techniques were evaluated on seven datasets chosen to cover
a large number of different characteristics, such as number of samples, sample
density, noise level, number of planes, and different acquisition sensors. Our
technique performed well on all datasets, achieving the best average results.

In such an evaluation, the parameters used by all other techniques have been
individually tuned for each specific dataset to produce the best results in each
case. Our technique, on the other hand, automatically adjusted its parameter
values based on the local sample distribution.

Currently, we only perform local planarity tests, disregarding the global
structure of the point cloud. This may lend to the detection of false planes on
large curved structures (e.g., the detection of rectangular sections along the axis
of a cylindrical element with a relatively large radius). This problem could be
mitigated by analyzing the surface curvature inside the patch’s parent octree

node, and preventing the detection of local planar patches in curved surfaces.
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