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ABSTRACT

In this work, we present two practical solutions for simulating accommodation and low-
order aberrations of optical systems, such as the human eye. Taking into account pupil size
(aperture) and accommodation (focal distance), our approaches model the corresponding
point spread function and produce realistic depth-dependent simulations of low-order vi-
sual aberrations (e.g., myopia, hyperopia, and astigmatism). In the first solution, we use
wave optics to extend the notion of Depth Point Spread Function, which originally relies
on ray tracing, to perform the generation of point spread functions using Fourier optics. In
the other technique, we use geometric optics to build a light-gathering tree data structure,
presenting a solution to the problem of artifacts caused by absence of occluded pixels in
the input discretized depth images. As such, the resulting images show seamless transi-
tions among elements at different scene depths. We demonstrate the effectiveness of our
approaches through a series of quantitative and qualitative experiments on images with
depth obtained from real environments. Our results achieved SSIM values above 0.94
and PSNR above 32.0 in all objective evaluations, indicating strong agreement with the

ground-truth.

Keywords: Visual simulation. low-order aberrations. partial occlusion artifacts. Fourier

Optics. Zernike polynomials.



Simulacio de acomodacao e aberracoes de baixa ordem do olho humano

usando arvores de coleta de luz

RESUMO

Neste trabalho, apresentamos duas técnicas de simulacdo de acomodacgdo e aberragcdes
de baixa ordem de sistemas Opticos, tais como o olho humano. Nossos algoritmos lan-
cam mao de determinadas informacdes, tais como o tamanho da pupila e a acomodagao
(distancia focal), com o objetivo de modelar a fun¢do de espalhamento pontual (point
spread function) do sistema, resultando na produ¢do de simulagdes realistas de aberra-
coes de baixa ordem (p.e., miopia, hipermetropia e astigmatismo). Nossas simulacdes
levam também em consideragdo as distancias dos objetos que compdem a cena a fim de
aplicar o borramento apropriado. A primeira técnica estende o conceito de Funcdo de
Espalhamento Pontual com Profundidade (Depth Point Spread Function), originalmente
construida mediante o tracado de raios (ray tracing), que passa entdo a ser gerada por
meio de métodos da 6ptica de Fourier. A segunda técnica, por sua vez, utiliza-se da 6p-
tica geométrica para construir uma estrutura de dados em forma de arvore. Esta drvore
¢ entdo utilizada para simular a propagacdo da luz no ambiente, gerando os efeitos de
borramento esperados, e de quebra soluciona o problema de artefatos visuais causados
pela auséncia de informacao na imagem original (provocada pela oclusdo parcial entre
elementos da cena). N6s demonstramos a efetividade de nossos algoritmos por meio de
uma série de experimentos quantitativos e qualitativos em imagens com profundidade ob-
tidas de ambientes reais. Nossos resultados alcangcaram valores de SSIM superiores a 0,94
e valores de PSNR superiores a 32,0 em todas as avaliacdes objetivas, o que indica uma

expressiva concordincia com as imagens de referéncia.

Palavras-chave: Simulacdo visual. Aberragdes de baixa ordem. Artefatos de oclusdo

parcial. Optica de Fourier. Polinémios de Zernike.
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1 INTRODUCTION

Vision is arguably our most important sense. As a process used to sense the en-
vironments through luminous stimuli, it produces a personal experience influenced by
intrinsic characteristics of one’s visual system. Thus, achieving faithful simulation for
a given individual would require, in principle, a large amount of information from a
wide variety of areas, ranging from optics and physiology to psychology and neuro-
science (KRUEGER; OLIVEIRA; KRONBAUER, 2016; SCHWARTZ, 2010). However,
obtaining such data tends to be impractical and this level of precision might not be justi-
fiable.

Among the optical aberrations, the so-called low-order ones, which include reg-
ular astigmatism as well as both positive and negative defocus (myopia and hyperopia,
respectively), are by far the most frequent cause of diminished visual acuity. They are
responsible for approximately 90% of the aberration in the eye (LOMBARDO; LOM-
BARDO, 2010). With a considerable impact in quality of life, it is estimated that between
one and two billion individuals worldwide are affected by refractive errors, but the actual
prevalence depends upon the surveyed population; it varies from roughly 25% in Europe
to over 80% in some Asian countries (DENNISTON; MURRAY, 2014).

Even though most patients end up using glasses or contact lenses for correcting
such aberrations, a considerable number of them undergo refractive surgery as a means
of correcting their sight or minimizing the errors. In light of potential risks and benefits
of the surgery, it is desirable that patients could preview their post-operation sight, taking
into account potential residual refractive errors, and thus make a better informed decision.
This can be achieved by simulating the patient’s vision before and after the surgery, using
pictures and videos blurred in a controlled way. Such simulations should also help doctors
and medical students in better understanding the patients’ conditions.

We approach the problem of simulating vision in two forms. In the first approach,
it is treated using the mathematical rigor of Fourier optics; some unfortunate aspects
related to missing information due to partial occlusion, however, led us to address the
theoretical aspects of a simplified version of the problem, where the scene is composed
of elements that do not occlude each other. This simplification makes the problem easier
because the scene is constrained to a unique depth with a convex structure, and the issue
derived from different blurring methods for adjacent pixels is mitigated.

In the second approach, we overcome the inconvenience imposed by occlusions;
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but in order to make this problem tractable at interactive times, some simplifications are
applied to the scene such as its discretization into a set of parallel planar regions. Further-
more, the introduction of a new data structure (light-gathering trees) associated to such set
of planes results in simulations that are able to resolve the partial occlusion problem. Nev-
ertheless, our technique produces interactive personalized realistic simulations of how an
individual would perceive real scenes considering accommodation and low-order aber-
rations (e.g., myopia, hyperopia, and astigmatism), pupil size, and focal distance. By
taking into account pupil size, our simulations naturally produce realistic depth-of-field
effects. All these parameters can be dynamically changed during the simulation. Existing
techniques that perform similar tasks are either limited to a single depth (KRUEGER;
OLIVEIRA; KRONBAUER, 2016), positive defocus (XIAO et al., 2018), or lack preci-
sion when dealing with partially occluded objects (BARSKY, 2004).

Figure 1.1 illustrates a simulation result produced using our Fourier optics tech-
nique for a real scene (captured by a DSLR camera) containing an object (eye chart)
at a single distance seen by an astigmatic individual. The astigmatism (S = 0 diopters,
C = -1 diopters, and ¢ = 86°) was induced by an external lens placed in front of the cam-
era lens. Figure 1.1a shows a portion of the original photograph captured without the
external lens. Figure 1.1b shows the image obtained after applying anisotropic minifica-
tion and brightness adjustment to Figure 1.1a to compensate for the use of the external
lens. Figure 1.1c depicts the ground-truth astigmatic image obtained using the external
lens in front of the camera. Figure 1.1d presents the simulated result produced by our
Fourier optics technique taking Figure 1.1b as input. Note the similarity between the
ground truth and our simulated result.

Figure 1.2 illustrates the use of our second technique for simulating accommoda-
tion and low-order aberration on a scene containing elements at various distances from
the observer. Such distances are represented in Figure 1.2c. The white and blue flower,
the red flower, and the game box are approximately 0.5 m, 1 m, and 2 m away from the
observer, respectively. Figure 1.2a shows a simulated view of a myopic subject with 0.5
diopters and no accommodation (thus focusing 2.0 m away). Note that the texture of
the game box, which is located at approximately 2 m, exhibits a relatively sharp texture.
As the distance decreases towards the red, and then the white and blue flower, blurring
increases. In particular, note the blurry blue petal against the sharp game box texture.
The corresponding reference sub-images are shown at the bottom of Figure 1.2c, where

all elements appear sharp regardless of their relative depths. Figure 1.2b shows a simu-
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Figure 1.1: Simulation of astigmatism using Fourier optics. Aberration parameters:
S = 0 diopters, C = -1 diopters, ¢ = 86°. (a) Picture taken without extra lens. Cam-
era settings: ISO 100, exposure 1/40's, f =20 mm, f/5. (b) Anisotropic minification and
brightness adjustment applied to (a) to compensate for the use of an external lens used to
induce astigmatism. (c) Ground-truth image obtained with an external lens in front of the
camera. (d) Simulated result produced by the Fourier optics technique.

(@) (b)
() (d)

Source: The Authors
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Figure 1.2: Simulation of accommodation and low-order aberrations using our technique.
It is applied to a scene containing elements whose approximate distances to the observer
are: white and blue flower, 0.5 m; red flower, 1 m; and game box 2 m. (a) Simulated view
of a myopic subject with 0.5 diopters and no accommodation. Note that starting from a
relatively sharp game box texture, the amount of blur progresses as the distance decreases
towards the white and blue flower. Note the blurry blue petal against the sharp game box
texture. The corresponding reference (sharp) sub-images are shown at the bottom of (c).
(b) Simulated view of the same myopic individual this time accommodating at the white
and blue flower, which now appears sharp while the game box texture becomes blurry. (c)
Scene depth (top) and reference sub-images (bottom).

TN

0.5 D)

(a) Myopic subject (S

(b) Accommodation at 0.5 m

(c) Depth and reference sub-images

Source: The Authors



17

lated view of the same myopic individual focusing (i.e., accommodating) at the white and
blue flower. Such flower now appears sharp while the game box texture becomes blurry.
In both examples, the red flower (located at an intermediate depth) shows some relative
defocusing with respect to its reference image.

The goal of this work is to provide a method for interactive vision simulation
considering real scenes and low-order optical aberrations and accommodation.

The contributions of this thesis include:

e An interactive technique for producing realistic simulations of the human vision un-
der low-order aberrations, accommodation, and variable scene depth (Chapter 5).
Our technique provides smooth transitions among scene elements located at differ-

ent depths.

e A tree data structure used for light gathering that allows the handling of partial
occlusions among objects in the presence of a finite pupil (Chapter 5). Such new
data structure allows us to provide a practical solution to a long-standing problem

related to vision simulation of real environments.

e A derivation of the Fourier transform performed by convex thin lenses geared to-

wards the Computational Photography community (Sections 2.4 to 2.6).

e A mathematical formulation for computing the coefficients of the Zernike polyno-
mials in order to model how one would perceive an object at an arbitrary distance

while (s)he is focusing at a different distance (Chapter 4).

1.1 Thesis structure

This thesis is structured as follows. Chapter 2 reviews some geometric and wave
optics concepts, including Fourier optics, required for understanding the development of
the thesis. Chapter 3 discusses works closely related to ours. In Chapter 4 presents a vi-
sion simulation technique based on Fourier optics. Chapter 5 describes our second vision
simulation technique, which is based a tree data structure built using geometric optics to
perform light gathering. Chapter 6 describes the experiments performed to validate both
techniques, as well as the obtained results. Chapter 7 summarizes this thesis contributions

and presents some guidelines and ideas for future exploration.
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2 BACKGROUND

This chapter presents a physics background regarding some aspects of the phe-
nomenon of light which are necessary to understand both simulation techniques presented
in this work. Light propagation itself can be explained using three different models: light
rays in geometric optics; perturbation of the electromagnetic field in wave optics; and
evolution of a complex probability density function in quantum mechanics. While the
latter gives the most precise, and currently the most extensive known explanation for the
light phenomenon, it adds an unnecessary layer of complexity; as a consequence, only the
models of geometric and wave optics will be considered.

Section 2.1 explains the ray propagation model for light, which serves as a basis
for the understanding of the bending of light and refractive errors. Section 2.2 shows in
a glimpse how eyeglass prescriptions are organized. Section 2.3 tackles Zernike polyno-
mials, which are used to mathematically model wavefront errors. Section 2.4 introduces
some aspects of wave optics; together with Section 2.5, which shows the phase transfor-
mation of thin lenses, and the Huygens-Fresnel principle presented in Section 2.6, they
form the basis for understanding Fourier optics, derived in Section 2.7. Partial-occlusion

effects are described in Section 2.8.

2.1 Geometric optics

In the geometric optics model, it is assumed that light in a homogeneous medium
travels in straight lines called light rays. Besides normal propagation, light can also be
absorbed, reflected, or even bent in some circumstances, which are analyzed on the next
subsection. Note that, in accordance with the convention used in this work, the light
source will always be illustrated on the left and the resulting image will be produced on

the right; thus, light is assumed to propagate from left to right.

2.1.1 Refraction

When light rays strike the interface between different media, they are either re-
flected, absorbed or transmitted. In the case of transmittance, the propagation veloc-

ity of light can change due to a phenomenon that can only be properly explained by
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Figure 2.1: Snell’s Law. Interface between the two surfaces is represented by the vertical
line, and the normal to the interface is the dashed horizontal line. The refractive indices
of the left and right media are n; and ns respectively. In this example, ny > n;. Light ray
is represented by red arrow.

ni|ng

normal

interface
Source: The Authors

wave optics or quantum mechanics. The ratio between the speed of light in vacuum
¢ = 299,792,458 m/s and its speed v in a given medium is called index of refraction,
usually indicated by

C
n—=-—.
(%

If both sides of the interface have different refractive indices (n; and ns), the ray will
bend according to those indices and the angle formed by the incoming ray direction and
the interface normal (6). This relationship (Figure 2.1) is summarized by Snell’s law,
which states that

nq sin 81 = N9 sin 02. (21)

Lenses, which consist of especially designed transparent materials with curved
surfaces, are devices that use the phenomenon of refraction to bend light in a controlled
way and produce images. Convergent (convex) lenses focus parallel light rays coming
from object space to a single point in image space (Figure 2.2a). Divergent (concave)
lenses diverge parallel light rays coming from object space, giving the impression that
they diverge from a single point in object space (Figure 2.2b). In the former case, a real
inverted image of the object is formed; in the latter case, the image is virtual and right
way up.

A matter of the utmost importance is to consider the distance between the object
and the lens (S,) and that between the object’s image and the lens (.5;). They are related

to each other, and can be computed by

1 1 1 1
S—O‘FE—(n—l)(E—FE). (2.2)
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Figure 2.2: Convergent and divergent lenses. (a) Convergent lens, where parallel light
rays converge to a single point on the right of the lens. (b) Divergent lens, where parallel
light rays appear to diverge from a single point on the left of the lens.
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(a) (b)
Source: The Authors

Figure 2.3: Lens maker relation. Distance from object to the lens is S,. Distance from
image to the lens is S;. The radii of the intersecting spheres that form the left and right
lens surfaces are 71 and — R respectively. The distances are measured from the central
lens plane (represented by a dotted vertical line segment), since we are dealing with thin
lenses.

Source: The Authors

The value of S, is always positive, while 5; is positive when the image is real (on the
opposite side as the object) and negative otherwise. The radii of both surfaces of the lens
are indicated by R, and R;. The adopted sign convention imposes that 2, is positive and
R, is negative.

Every optical system has an imaginary line crossing its geometrical center (rota-
tion axis), called optical axis. All light rays parallel to the optical axis crossing the lens
meet at the same point at a distance f, which is the most important feature of the lens.

Known as focal distance, it can be found by setting S, = oo in Equation (2.2) and solving
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Figure 2.4: Aperture stop, entrance and exit pupils. Entrance pupil (a) is the virtual image
of the aperture stop as seen from object space. Exit pupil (b) is the virtual image of the
aperture stop as seen from image space.

Entrance pupil Exit pupil
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space space
Aperture Aperture
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Source: The Authors
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for f = §;, yielding
1 1 1

=00 () -
The focal distance is positive for converging lenses and negative for diverging lenses.

Magnification is another important feature of the optical phenomenon which mea-
sures the ratio between the size of the image and the size of the respective object, as
indicated by

M=
So
A negative magnification indicates that the image is upside-down, and that is usually the
case in the applications considered in this work.

Aperture stop is the physical hole that determines the maximum conic solid angle
of the bundle of light rays through an optical system. Two notable examples are the
physical pupil of the human eye and the camera shutter. The image of the aperture as seen
from the object plane is known as entrance pupil (Figure 2.4a). Conversely the image
of the pupil as seen from the image plane is known as exit pupil (Figure 2.4b). Both
are virtual images, thus their sizes do not usually match the actual aperture size due to

magnification. The entrance pupil is closely related to the f-number of an optical system,

given by
= i, (2.4)

2R
where f is the system’s focal length and R is the radius of entrance pupil. It is common
to indicate the f-number preceded by “f/”. TIts value tells the lens “speed”, or image

brightness, which is inversely proportional to the square of the f-number.



22
Figure 2.5: Wavefront and Gaussian reference sphere. The OPD between wavefront and
reference sphere, shown in red, is known as wavefront error.

Wavefront
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Source: The Authors

The optical path length (OPL) is obtained by summing the geometric path length
(GPL) traversed by light in each medium (which is the actual distance traveled by light
rays in that medium) multiplied by the refractive index of the corresponding medium (HECHT,
2002): -
OPL= "n; x GPL;.

=1

The difference between two OPL is the optical path difference (OPD), defined by
OPD = nyGPLy, — ny GPLs. (2.5)

Besides its relevance in geometric optics, the OPD also plays a meaningful role when
dealing with the wave characteristics of light, because it is directly related to the oscilla-
tion phase difference and results in important optical effects (shown in Section 2.5).
Surfaces containing points sharing the same OPL are known as wavefronts (Fig-
ure 2.5). When the optical system is not aberrated, the wavefronts formed in image space
by incoming rays that were parallel to the optical axis in object space are shaped as a
Gaussian reference sphere centered at the lens focal point (Figure 2.5). On the other
hand, in an aberrated optical system, the same wavefronts deviate from the reference
sphere; the OPD between the actual wavefront and the expected ideal reference sphere is
known as wavefront error. The map of wavefront errors between the wavefront and the
reference sphere, when both are tangent to the exit pupil, is known as wavefront error

map (Figure 2.6).
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Figure 2.6: Wavefront error map for an aberrated optical system with S =-1 D, C=2.5D,
and ¢ = 25°. Exit pupil diameter is 3 mm. Each point on the map represents the wavefront
deviation (in pm) from a Gaussian reference sphere centered on the ideal focal point
(where the optical axis intersects the image plane).
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Source: The Authors

2.1.2 Refractive errors

Refractive errors (or optical aberrations) comprise a class of monochromatic op-
tical aberrations (as opposed to chromatic aberrations). They occur when a point light
source is not properly focused into a single image point due to aberrations in the shape
of the lens (and more specifically the human eye), causing light to bend incorrectly. This
causes a divergence between the image that would be produced by an ideal system and
the actual obtained image.

The two types of aberrations relevant to this work are defocus (Figures 2.7b and 2.7¢)
and ophthalmic astigmatism (Figure 2.7d). Among other definition methods, they are also
characterized by the wavefront error, which can be described by first and second order
Zernike polynomials (introduced in Section 2.3), and as such are also called low-order

aberrations.
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Figure 2.7: Effects of refractive errors on vision. (a) Emmetropic vision. (b) Myopic
vision. (c) Hyperopic vision. (d) Astigmatic vision (left) compared to vision without
astigmatism (right)

(d)
Source: (a,c,b) Lee Hung Ming eye centre; (d) Oakland Eye Care
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Figure 2.8: Myopia and hyperopia in the human eye. In myopia, the focal point for
parallel rays is shorter than expected, and the patient is unable to focus on distant objects.
On the other hand, the focal point is longer in hyperopia, and the patient is unable focus
on close objects.

f\
L—

(a) Myopia (nearsightedness). (b) Hyperopia (farsightedness).

Source: The Authors

2.1.3 Defocus

Defocus comprises myopia (nearsightedness) and hyperopia (farsightedness). It
happens when the image is formed on a plane different from the focal plane. This error
is easily fixed with a simple translation of the lens (or the focal plane). The mathemat-
ical formulation for this aberration stems from the OPD of a smaller circle tangent to a
larger circle. Note that defocus should not be confused with spherical aberration, which
originates from the OPD of a parabola tangent and inscribed into a circle.

Myopia (Figure 2.8a) occurs when either the eye shape is longer than normal along
the optical axis or the intrinsic properties of the cornea cause light to bend more than
expected. Either way, the image is formed on a plane shifted towards the lens. Hyperopia
(Figure 2.8b), on the other hand, occurs when the eye’s axial length is shorter than normal,
or when the cornea is more planar than usual. In these situations, the light rays converge
to a point beyond the retina. Both myopia and hyperopia are quantified with a single
number: the lens power required to cause the shift between the expected image plane and

the plane where image is perfectly focused. This value is defined by

S — ?,

and has units of m ™!, also known as diopters (D). Positive optical power denotes myopia;
negative indicates hyperopia. As one should expect, in order to compensate for the aber-
rated vision, hyperopic lenses are prescribed to nearsighted patients and myopic lenses

are prescribed to farsighted patients.
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Figure 2.9: Astigmatic optical system showing the two images formed. Rays on the
sagittal plane (shown in light green) meet at a point on the primary image (a vertical line
segment). Conversely, rays on the meridional plane (shown in pink) meet at a point on the
secondary image (a horizontal line segment). As a result, there is no single focal point.

PHIBALY THAEE 1 eridional plane

secondary image \‘

sagittal plane
Source: The Authors

2.1.4 Ophthalmic astigmatism

Ophthalmic astigmatism is caused by an irregular curvature in the cornea (corneal
astigmatism) or in the lens (lenticular astigmatism). In both cases, the shape of the eye
is not curved equally in all meridians, and as a consequence, rather than a point at a
single focal plane, two ellipsis-shaped spots, called primary and secondary images, are
formed at different planes. An example can be seen in Figure 2.9, where these spots are
represented by a vertical and a horizontal line respectively.

Due to the anisotropic nature of astigmatism, a direction is used to define the
meridian perpendicular to the aberration. This is called cylinder, since this is the shape
of a lens with zero optical power on the meridian coinciding with the cylinder axis, and
maximum power on the orthogonal meridian. Thus, unlike defocus, ophthalmic astigma-
tism needs two numbers to be characterized: optical power (indicated by letter “C”’, in
diopters), and axis angle (indicated by the symbol “©”, in degrees). The angle is used to
define the direction of the cylinder axis, and the optical power indicates the curvature of
the cylinder (always perpendicular to the axis). The eye meridians are measured according
to the angle formed between the cylinder axis and the horizontal line in counter-clockwise
direction, as seen in Figure 2.10.

Ophthalmic astigmatism should not be confused with another type of astigma-
tism, known as oblique astigmatism, which is a third-order aberration that occurs even on
perfectly symmetrical lens when objects are off-axis. Ophthalmic astigmatism does not
depend on the object’s distance to the optical axis. It is usually classified according to the
simultaneous occurrence of defocus on the same optical system as myopic, hyperopic,
and mixed. In mixed astigmatism, one meridian is nearsighted and the other is farsighted.

In myopic astigmatism, on the other hand, one meridian is nearsighted and the other is
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Figure 2.10: Eye meridians used to indicate cylindrical axis. The convention used in
this work states that meridians are measured counter-clockwise on both eyes as if one is
viewing the patient’s eye straight on and, using a clock as reference, the hour hand is on
0° at three o’clock position.

Source: Adapted from <https://openclipart.org/detail/23899>

Figure 2.11: Eyeglass prescription.
SPH | CYL | AX
O.D. | -0.50 | 1.75 | 40
0.S. | -0.70 | DS
Source: The Authors

nearsighted or flat. In hyperopic astigmatism, one meridian is farsighted and the other is
farsighted or flat. In all cases, it can be compensated for with a toric lens with the same

cylindrical axis but opposite powers with respect to those of the eye.

2.2 Eyeglass prescriptions

Spectacle prescriptions are usually written in a form similar to the one presented
in Figure 2.11. The abbreviations O.D. and O.S. stand for the Latin terms “oculus dexter”
and “oculus sinister”, which translate to right eye and left eye, respectively. The headlines
“SPH”, “CYL” and “AX” lay out the optical parameters for sphere, cylinder, and axis.
Sphere indicates the correction in diopters used to compensate defocus. Cylinder tells the
astigmatic maximum correction power in diopters on the meridian perpendicular to the
given axis. The two letters “DS” written on the cylinder column of the left eye stand for
diopter sphere and indicate absence of astigmatism on that eye.

Two different notations are used to indicate astigmatism: plus-cylinder and minus-
cylinder. They differ only on the sign of cylindrical power and are remnants of the meth-
ods used for constructing lenses (either adding or subtracting a given power from a base

lens). Both notations are equivalent and can be easily converted into each other through a


https://openclipart.org/detail/23899
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Table 2.1: Cylinder transposition of S=3 D, C=1 D, ¢ = 150°.
Step Description Operation Current values
1 Add spherical and S+—S+C S=4D,C=1D, p=150°
cylindrical powers to
obtain the new
spherical power.
2 Change sign of cylinder. C<+—-C S=4D,C=-1D, p=150°
Add 90° to the axis angle. Y — p+90° S=4D,C=-1D, p=240°
4 Ensure axis angle lies ¢ «— ¢(mod 180°) | S=4D,C=-1D, p=60°
in range (0°, 180°).

W

Source: The Authors

process known as cylinder transposition. In order to perform the conversion, the cylindri-
cal and spherical powers should be added to obtain the new spherical power. After that,
the sign of the cylindrical power is changed and 90° should be added to the cylinder axis
angle; the final angle should be adjusted to stay inside the range 0° to 180°. An example
of cylinder transposition for the prescription S =3 D, C = 1 D, ¢ = 150°, from plus-
cylinder to minus-cylinder notation, is shown in Table 2.1. The same algorithm applies to
transposition from minus-cylinder to plus-cylinder notation.

There are different approaches to measure cylinder axis angles currently in usage
by optometrists and ophthalmologists. It is assumed in this work that all angles are mea-
sured as if one is viewing the patient’s eye straight on and, using a clock as reference, the
hour hand is on 0° at three o’clock position. Angles increase counter-clockwise and are

only counted up to 180°, as shown on Figure 2.10.

2.3 Zernike polynomials

In order to describe wavefront errors, it is important to define functions that map
every point on the pupil plane to the respective deviation from a perfect plane wave. The
domain of such functions is commonly a dimensionless subset of R?, extending from -1
to 1 in both dimensions. Considering that optics is usually based on circular apertures, a
special subset D of this domain is usually used instead, and it is known as closed unit disk.
It can be mathematically described as the set of points () € R? for which the distance to

the origin (0, 0) is less than or equal to one:

D={Q:[Q] <1}.
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Figure 2.12: The first fifteen Zernike polynomials on the unit circle domain. Colors
indicate the value of the function, ranging from -1 (blue) to 1 (red), as shown in the color
bar.
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Zernike polynomials, introduced by the optical physicist Frits Zernike in 1934,
are a class of orthogonal polynomials useful for characterizing wavefront errors on the
closed unit disk. Initially used in phase contrast microscopy for quantifying wavefront
aberrations in circular mirrors, over the years they saw widespread usage and became “one
of the most popular orthonormal polynomials over circular pupils” (DAL, 2008). They are
formed by the product of a radial factor and an angular factor. Since their natural domain
is the unit circle, they are more naturally expressed using polar coordinates and may be
used to describe any real function on the pupil plane.

It 1s useful to distinguish between even and odd polynomials. Even polynomials

are obtained by the expression
Z"(p,w) = N;"R" cos(mw), (2.6)

where w is the polar angle (ranging from 0O to 27) and n, m are non-negative integers. The
index n indicates the highest power of p in the polynomial, and therefore is called order.
The value m stands for azimuthal frequency, and denotes the frequency of the angular

repeating pattern (Figure 2.12). Magnitude p is used to calculate the radial coefficient
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R. Note that it uses an even function (cosine). Odd polynomials, on the other hand, are
defined by
Z,™(p,w) = NJ'R" sin(mw), (2.7)

and use an odd function (sine).

The normalization factor N is defined by

N 2(n+1)7
1+5m0

where 9,0 is the Kronecker delta (its value is 1 when m = 0, and 0 otherwise).

Finally, the radial part is given by the polynomial

n—m)/2

) —1)*(n — k)! ok

Important features of Zernike polynomials include orthogonality over the closed
unit disk and rotational symmetry. By the former, additions of new terms to the poly-
nomial do not disrupt the surface (coefficients are independent). Furthermore, when in
orthonormal form, the coefficients of the polynomial terms represent their standard devia-
tions. The latter allows Zernike polynomials to be expressed as products of radial factors
and functions of angle, like R(p)G(w). Note that G(w) is a continuous periodic function
with period 27; as a corollary, the coordinate system can be rotated by an angle o without

changing the form of the polynomial (WYANT; CREATH, 1992). In other words,
G(w+a) = G(w)G(a).

There are two ways of referencing a Zernike polynomial: double-index mode,
which uses indices n and m, and single-index mode, which uses index j. The formu-

las (DALI, 2008) to convert from from single to double-index mode are

n = {\/2j+ 1 +0.5J ~1,and

m =25 —n(n—+2),

and the formula to convert from double to single-index mode is

. 4+ 2n+m
T
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Table 2.2: Zernike polynomials and their respective Noll indices and common names

Symbol | Noll | Name
index
Z 1 Piston
Z! 2 Vertical tilt
Z1 3 Horizontal tilt
Zy? 4 Oblique astigmatism
A 5 Defocus
7Z3 6 Vertical astigmatism
Z3? 7 Vertical trefoil
Z3! 8 Vertical coma
Z3 9 Horizontal coma
z3 10 Oblique trefoil
Z* 11 Oblique quadrafoil
Z? 12 Oblique secondary astigmatism
79 13 Primary spherical
Z3 14 Vertical secondary astigmatism
Z3 15 Vertical quadrafoil

Source: The Authors

Single-indices are also known as Noll’s indices. In this text, we use mostly the double-

index representation, and rely on single-index mode for certain stages of the algorithms

presented in Appendix B.

Table 2.2 lists the first fifteen Zernike polynomials, as well as the common aberra-

tions represented by them. Expanded formulas for both polar and Cartesian forms of the

polynomials are shown in Table 2.3, and their respective graphs are plotted on Figure 2.12.

In particular, myopia and hyperopia are modeled by Z3 (defocus), while astigmatism is

modeled by a linear combination of Z} and Z, ' (oblique and vertical astigmatism). The

polynomials’ coefficients, derived from the Seidel series (DAI, 2008), are

-2
C2 -

0

02:

2 _
02_

As a result, defocus-only wavefront aberration is modeled as

2 .
R*C'sin 2g07 2.8)
46
2
_w7 and (2.9)
43
2
RCCOSQQO‘ (2.10)
46
Ws = 378, 2.11)

and the common set of low-order wavefront aberrations (myopia, hyperopia and astigma-
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Table 2.3: Zernike polynomials in polar and Cartesian forms

Symbol | Polar Cartesian
Polynomial Polynomial

70 1

Z7 ! \/le sin 0 \/Zy

le \/é_lp cos 6 Az

Z5? V62 sin 26 V6(2xy)

Z9 V3(2p% - 1) V3(222 + 2> — 1)

7Z32 V6p? cos 20 V6(2? — 9?)

Z5? V/8p? sin 36 V8(3x2y — o)

73t V8(3p* — 2p)sinf V8(32%y + 3y° — 2y)

Z} V8(3p® — 2p) cos V8(3z3 + 3wy? — 27)

z3 V/8p? cos 30 V8(2? — 3xy?)

Z* V/10p* sin 46 V10(42y — 4xy?)

Z2 V10(4p* — 3p?)sin 20 | v/10(8z%y + 8xy® — 6xy)

Z9 V5(6p* — 6p% + 1) V5 (62" + 1222y% 4 6y* — 622 — 6y + 1)
VA V10(4p* — 3p?) cos 20 | V/10(4x* — 4y* — 322 + 3¢?)
Z3 V10p? cos 46 V10(z* + y* — 622y?)

Source: The Authors

tism), as a whole, can be computed by the linear combination

Wscpo = 3225 ° + 97y + 375, (2.12)

2.4 Wave Optics

Electric and magnetic fields are vector fields existing throughout the entire space,
and together they are known as the electromagnetic field. Wave optics regards light as a
disturbance in the electromagnetic field caused by an accelerating charge oscillating with
frequency v, which propagates at speed c as a transverse wave. The first complete math-
ematical description of its nature was given in the 19" century by James Clerk Maxwell,
as he unified and complemented a set of equations of electromagnetism discovered by
various scientists.

When the medium is vacuum, these revised form of these equations (revision per-
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Figure 2.13: An electromagnetic wave propagating in space. Note how the electric (E)
and magnetic (B) fields are orthogonal to each other, and also how their values change as
a sinusoidal function of position. The wavelength \ is depicted as the distance between
points with the same phase.

k
B
Source: The Authors
formed by Oliver Heaviside) can be written in differential form as
V- egE =0, (2.13)
V- 1B =0, (2.14)
0B
VXE:—E,and (215)
OE
VxB= /IJ(]EOE. (216)

In these equations, the electric and magnetic fields are indicated by E and B, respectively,
time is ¢, and the vacuum permittivity and permeability are represented by ey and p,
respectively. The fields E and B are always in phase, orthogonal to each other, and their
magnitudes are related by

IB[| = [|E[[/c.

After applying the curl identity
Vx(VxA)=V(V-A)-V?A
to Equation (2.15), substituting Equations (2.13) and (2.16) and using the relation

c=1/{/1o€o

in the result, one can obtain the wave equation

1 02
(V2 - Eﬁ) u(r,t) =0,
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where position in space is indicated by the vector r, and u(r, t) is the wave function, or
light field, usually regarded as a proxy for the electric field. Reasons for considering the
light field as a scalar rather than a vector field, which is the case for electric and magnetic
fields, are given later in this section.

By setting different initial and boundary conditions, several solutions to this partial
differential equation can be obtained. Two of them in particular are the spherical wave,
given by

Ey .
ug(r,t) = —2edthr=et) (2.17)
r

which represents a point-like object emitting monochromatic light from a finite distance

away, and the plane wave, given by
(7, t) = Eye?*Fr=b, (2.18)

which can be regarded as the disturbance originated from a point source infinitely far
away or an infinite plane source at any distance. In both cases, F) is the base amplitude,

J is the imaginary unit v/—1, w is the angular frequency defined by
w = 27y,

and k is the optical wave number defined as the number of radians per unit distance, or

2 2Ty
/{j:—:—
A c’

where A is the wavelength. The value 7 in the denominator of Equation (2.17) indicates
that the displacement caused by spherical waves fades away as r increases.

At any point in time, the total intensity of the wave is given by the Poynting vector,

1
S=—E x B, (2.19)
Ho

which is orthogonal to both E and B and indicates the direction of energy flow. This
energy depends on the instantaneous value of the displacement of both electric and mag-
netic fields, but since they oscillate in time, the time-average is a much more relevant
quantity. Before calculating the average, the light field oscillation function should be split

into a time-independent and a time-dependent function by writing the scalar field u, with
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arbitrary amplitude A(r), as
u(r,t) = A(r)el* e % = U(r)e ",
where U (r) is a time-independent complex function called phasor, defined as
U(r) = A(r)e’™.

The time-average of the intensity, derived from the instantaneous intensity relation at
Equation (2.19), can be shown to be proportional to the squared magnitude of the com-
plex phasor, since the average of the time-dependent function over a long period of time

approaches 1/2, as shown in

T

. 1 o 1
I(r) = {lIS(r,1)[[) = lim i MR{U(r)e W2t = %|U(r)|2. (2.20)

In this equation, the angular brackets () represent continuous average over time
and R returns the real part of a complex number. This result indicates that any phase
factor present in the final field U(r) can be safely discarded without affecting the result. It
also indicates that a time-independent representation is enough for eventually recovering

intensity, so that Equation (2.17) and Equation (2.18) can be rewritten as the phasors

Ey .
U,(r) = =2 (2.21)
r
and
Uy(r) = Epe’*"
respectively.

Finally, it is important to state that the reason for treating the light field as a
scalar field rather than a vector field are given by Goodman (2005), who argues that a
scalar theory of diffraction renders results very close to the vector results because only
on boundaries the vector characteristics of light will matter. Since the apertures usually
dealt with are far larger than the wavelength of light and considerably distant from the
image plane on that same scale (a very legitimate assumption for the situations presented
in this work), the boundary characteristics will not matter and the results will be consis-
tent. It also should be emphasized that usage of electric field rather than magnetic field

as a proxy for describing u is a common convention in wave optics; the magnetic field is
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Figure 2.14: Optical path of a light ray traversing a thin lens. (a) Side view of the lens.
The radii (R, and R) of the spherical caps are shown with dashed lines. Thickness
and curvature of surfaces are exaggerated when in comparison with actual thins lens, for
a better depiction of the phenomenon. (b) Front view of the lens. All points (A — F)
coincide in this view because the ray is orthogonal to the x. and y. axes.
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Source: The Authors

always present, perpendicular to the electric field, but its intensity is so much lower that
it seems more natural to use the latter. Moreover, by using a scalar theory of diffraction
rather than a vector treatment, the directional differences between magnetic and electric

vectors are already neglected.

2.5 Phase transformation of thin lenses

This section shows, using a demonstration adapted from the one presented in
Goodman (2005), how the characteristics of a thin lens regarded as an optical apparatus
capable of converging light rays into a (virtual or real) focus can be translated into wave
optics, where it acts as a phase transformation device. In order to simplify the analysis of
light propagation, the lens has been split into three objects: a spherical cap on the left with
positive curvature R; and maximum thickness ¢4, a cylinder of thickness ¢,, and a spheri-
cal cap on the right with negative curvature 17, and maximum thickness ¢3 (Figure 2.14a).
An arbitrary light ray crosses each of these objects, in the given order, passing through
points A, B, C, D, E, and F. By the definition of thin lenses, translation between points B
and E is negligible, but phase transformation, which is orders of magnitude smaller than

the lens thickness, should be considered.
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Phase delay depends on the distance traveled inside the lens. For each object
traversed, there is a thickness function, which depends on the (x.,y.) position of the
intersection between the light ray and the lens (Figure 2.14b). Note that we use the ¢
subscript in the continuous domain coordinates x. and y,. to differentiate them from the
discrete domain coordinates = and y in later sections. The thickness function A;(zx., y.)
of the first object struck by the ray gives the distance BC. It is computed by limiting the
sphere equation R? = 22 + 4> + 2?2 using the cap thickness ¢;. Distance (R; — z.) is then

subtracted from t;, which results in

Ay (ze,y) = \/ R% - 562 - ?J? +t — Ry

Pulling 17, out of the square root yields

_retye
Ry

Ay(ze,y.) = Ry /1 +t — Ry

Applying the binomial approximation (Appendix A.1) and simplifying yields

T2+ Yl

Al(xcayc) - 2R1

+ 1. (2.22)

The second object struck by the light ray is a cylinder, which implies that the

thickness CD is given by the constant function

Like the first object, the third and last object struck by the light ray is also a spher-
ical cap, but its radius is negative by definition. In this case, thickness DE is calculated
first, and the distance (— Ry — z) is then subtracted from the sphere cap thickness t3,
resulting in

A3(x07yc> = Rg_xg_yg—i_tB_'_RZ-

Pulling — R, out of the square root yields
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Applying the binomial approximation and simplifying results in

2 + e
2R,

A?) ({L‘c, yc) = + t3' (224)

The total OPL is the sum of the OPLs computed for the three objects, which have
refractive index n, added to AB and EF, which are the distances where the ray crosses the

air (refractive index 1), as indicated in
OPL = tl + (n — 1)A1 + RAQ + t3 + (n — 1)A3 (225)
Plugging Equations (2.22) to (2.24) into Equation (2.25) yields

l'2+y2 x2+y2
OPL =1t —1 ——¢ ¢ 4 ¢ t t —1 < JC 4 ¢ .
L+ n )( 2R, +1)+”2+3+(” )( 2R, +3>

Regrouping common terms results in

1 1 2 2
OPL = (n—1) (E - R—z) (—xc ;y) +n(t +t2 +t3). (2.26)

Plugging Equation (2.3) in Equation (2.26) and dropping the phase shift n(t; + ts + t3)

yields
e+ ye
2f

After embedding Equation (2.27) into the argument of a phasor, it is possible to

OPL = — (2.27)

compute the light field phase transformation caused by a thin lens with focal distance f.

It is the result of multiplying the incoming light field by

Ly(e,yc) = e *ar@itud), (2.28)

2.6 Huygens-Fresnel principle

When light encounters a barrier on its way, and it is no longer traveling a negligible
distance as was the case considered in the previous section, the task of computing the field
displacement at an arbitrary position is no longer trivial. Such cases are influenced by the
phenomenon of diffraction, which takes the leading role in determining the evolution of
the disturbance in space and time.

An important observation made by Christiaan Huygens in the 17" century be-
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Figure 2.15: Huygens-Fresnel principle. Light is emitted by point A and the contribution
of all the wavelets P, centered at the wavefront Y are integrated in order to compute the
field displacement at observation point F.

pM
Source: The Authors

comes very useful in these cases. According to Huygens principle, every point of a wave-
front may be considered as a center of a secondary disturbance in form of a wavelet, and
the wavefront at any later instant may be regarded as the envelope of these wavelets. This
principle is not physically correct, but it is very useful in practice. Schwartz (1987), for
instance, argues that it “(...) gives the right answer for the wrong reasons”, since ‘(...)
light does not emit light; only accelerating charges emit light”. Anyway, Huygens prin-
ciple was a remarkable observation at the time and has been a tremendously useful tool
ever since.

A later addition by Augustin-Jean Fresnel included the necessity of considering
diffraction when calculating the effects of the wavelets, and this modification was so rele-
vant that two combined ideas have been known as Huygens-Fresnel principle (illustrated
on Figure 2.15). According to it, the field displacement at observation point F, can be
obtained by integrating the contribution of an infinite number of spherical wavelets P;

centered along the wavefront X. The integral is written as

1 eJkro
U(R) = — // U(P,) cos 0 ¥, (2.29)
JA < To1

where rg; = Fy — P; and @ is the angle between the wavefront normal at P, and ro;. The
factor 1/(j)\) indicates that the wavelets’ phases are leading the emitter phase by 90° and
experience a reduction in field amplitude inversely proportional to the wavelength. The

inclination factor cos 6 also indicates a field amplitude reduction.
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2.7 PSF generation

This section explains how an optical system generates a point spread function
(PSF) out of an input point light source. The PSF is the image of the point source, and it
indicates how faithfully the system reproduces objects on the image plane. In the case of
a perfect optical system (which does not exist in practice), the PSF is a two-dimensional
Dirac delta. An aberrated system tends to spread out the points on the image plane,
causing the PSF to be blurred, but nevertheless it should be normalized in order to keep
image energy intact. In signal processing jargon, the PSF is the impulse response of a
focused optical imaging system, and the image produced by a lens can be obtained by the
convolution of an image produced by an ideal system with the lens PSF.

Our wave propagation analysis starts on the light emitted by a point A, illustrated
in Figure 2.16. A short time after the spherical wave emerges from it, the wavefront en-
counters an aperture at plane >, and after crossing a lens with focal length A, it reaches
plane I'. Afterwards, it crosses a second lens with focal length f before reaching plane A,
and finally continues propagating towards plane €2, where the image (PSF) is formed by
the contribution of many points (only one of them, represented by B, is shown in Fig-
ure 2.16). Distance from the object A to plane X is d; distance from plane A to plane 2
is f, which is the same as the focal distance for the rightmost lens. Both lenses are con-
sidered thin lenses, so that all properties seen in Section 2.5 apply, and as a consequence
the distance from plane ¥ to plane A is zero.

The propagation of light has been split into three parts. In the first part, propaga-
tion outside the optical system from A to the plane ¥ is described. The second part deals
with the adaptive focus (accommodation) that takes place due to propagation inside the
optical system, from plane Y to plane I'. Finally, in the third part, after a final phase shift
caused by a second lens, from plane ' to plane A — which, in the case of an incident
plane wave (d = h), should turn the planar wavefront into a converging spherical shape
centered at the origin —, the Huygens-Fresnel principle is applied to the light field in
order to compute its convergence from plane A to the final image plane €2, where the
PSF will be registered. Two lenses have been used rather than one, in order to better ex-
plain the accommodation effects (first lens) and the image formation focus (second lens)

separately, but the results are the same if a single lens combining both effects is used.
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Figure 2.16: Image information in an optical system from a point-source on the optical
axis using Fourier optics. Light propagates from point-source A, passing through two
thin lenses between planes ¥ (aperture), I', and A, and producing an image on plane ).
Each point B on the image plane results from the superposition of an infinite number
of wavelets emerging from plane A. The focal lengths of the left and right lenses are h
and f respectively. Note that both lenses and the planes 3., I', and A are on the same
location, but shown at different depths in order to indicate the different stages of the wave
propagation.

(1)

\wANp w/

Source: The Authors



42

2.7.1 Point source illumination

The spherical wave emitted by point A, at a distance d from the aperture (plane X2),
can be described by the phasor at Equation (2.21). In a first approximation, which is
possible because d is much larger than the aperture (paraxial approximation), the value r

in the denominator is replaced by d (GOODMAN, 2005), yielding

Es .
Us(ze, ye) = e’ (2.30)

The same value r in the exponent cannot be approximated by d, and so it is expanded as

r=\/x2+y?+ d>.

Pulling the value d out of the square root yields

22+ y?

r=d pz

+1,
and applying the binomial approximation to the square root results in
2+ y?
=< +d. 2.31
r 57 (2.31)
Replacing Equation (2.31) in Equation (2.30) yields

Us(Te,ye) = oIk (g (2 +y2)+d)
Finally, after dropping the phase shift, the value obtained is

Us (e, o) = eFaa(#+s2), (2.32)

which represents the light field distribution on the aperture 3.

2.7.2 Accommodation and aberrations

In order to calculate the light field on plane I', the one on Y is multiplied by the

phase transformation performed by the leftmost lens (Equation (2.28)), which has focal
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Figure 2.17: The pupil function. It is characterized as a windowing function that assigns
the value 1 inside the (usually circular) aperture and O outside.
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length h, and also by the aberration function Uy, and the pupil function P, yielding

UI‘<xca yc) = UZ (.%’C, yc)Lh(zw yc)UW(xca yc)P(-rm yc)'

When h = d, the phase transformation caused by the light propagation from the object to

the plane is exactly canceled out by the lens phase transformation, resulting in
Us: (e, ye) L (e, ye) = oIk (3 (22+02)) g—ikay (22+y2) _ 1 (2.33)

In practice, this happens when the optical system is focusing the point source A (human
eye accommodation by changing the shape of the crystalline lens). In all other cases,
there will be a vestigial phase transformation that can be considered an accommodation-
induced defocus aberration.

When the aperture is circular, the pupil function (Figure 2.17) can defined as

1 ifz? +y?> < R? or
P(xe,ye) = (2.34)

0 otherwise.

It provides windowing effects by setting the light field to zero outside an aperture of radius
R. The shape of the aperture plays a crucial role on the diffraction effects considered in
the next subsection.

Besides accommodation-induced defocus, any other lens aberration effects can

also be considered at this plane by plugging the wavefront error W (z., y.) into the argu-
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ment of the aberration and obtaining
Up (7, ye) = e IFW (@ese), (2.35)

The complex function Uy, also denoted by PP, is known as the generalized pupil function.

2.7.3 Superposition

After reaching plane I', the wavefront will be subject to another phase transforma-
tion on its way to plane A. This time, it is dictated by a non-aberrated lens with fixed

focal distance f. Thus, the light field on plane A is

2

Un (e, ye) = Pe 9727 w402 (2.36)

Afterwards, light will continue its journey and will eventually reach plane 2. The im-
age on plane € is then calculated as the superposition of the wavelets on the plane A
using the Huygens-Fresnel principle shown in Equation (2.29). The resulting value of the

disturbance on the image plane, calculated for every point B on that plane, is given by

ejk’l“

1 o0
E = - U cy c_d cd 3)
(¢, n) jA// NGNS — dacdy

where the inclination factor cos(f) is assumed to be 1, and r is the distance from the
wavelet at (x., y., f) to every point B on the image plane at (¢,7n,0). The integration
domain can safely be changed from the wavefront surface to the whole R? plane because
the windowing effects of the aperture have already been incorporated by the pupil function

in Ua. Replacing the 7 in the exponent by the Euclidean distance results in

E(¢(,n) = i // Un(z., yc)lejk\/(mc—4)2+(yc—n)2+f2 dz, dy,.
JA r
Using a binomial approximation to get rid of the square root yields

1 f 1 . ) ) )
E((,n) = j_)\ // Ua(z., yc);egk:fej%(<2+n2)6]%(x3+y3)6—3?(mc+ycn) dz, dy,.
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Another approximation is applied by replacing 7 in the denominator by f. In this case,
the approximation is justified by the fact that f is much larger in magnitude than (z. — ()

and (y. — n). The disturbance obtained so far is
kS 02 (Cn?) A A
E(C,n) = % // Un (e, yo )& 2r FEtvR) g =d § @eltven) g gy (2.37)
J

Replacing Equation (2.36) in Equation (2.37) yields the final phase transformation on
plane €2, which is

GhF 2 (Cn?) , , ,
BiGm) = % //P(%,yc)e]213‘(5”3”3)6]2@(563*93)6]’;(”CC“’C") dz. dye..

The quadratic factors on (., y.) cancel out, yielding

ekl 35

(4% pp .
E(Gm —f// P, ye)e 03 TV dy dy,. (2.38)

JA
The factor 5 = A\ f shows up at various places in Equation (2.38) and can be regarded as

a scaling factor. For compactness, one can group the factors outside the integral using

M= % exp(j2m f /A + ju/B(C + 1) — ju/2).

Aside from the factor M, the integral resembles the continuous Fourier transform of the

light field at plane I" with a scaling factor of 1//:

E(C,n) =M // Pz, ye)e ™ B e g dy.. (2.39)

2.7.4 Discretization

The discretization step involves some careful choices that might affect the ex-
pected results in important ways. The pixel pitch of the generalized pupil function is
arbitrary, and affects the quality of the resulting details. It is the ratio between the exit
pupil diameter 2R and the n pixels that the diameter should correspond to.

The pixel pitch of the PSF is also arbitrary, but for our usage cases it should be
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equal to the pixel pitch of the camera sensor (or any pixel discretization desired for the
retina). The pixel pitch of the image is p. A mapping from continuous dimensions to

pixels is given by the functions

F(u,v) = E (pu, pv) (2.40)
and
2R 2R
U(z,y) =P (—x, —y) (2.41)
n n
After discretizing the integral in Equation (2.39) using Equations (2.40) and (2.41), one
obtains .
Lz _ 2w 2R Tu v 2R 2
F(u,v) = MZZU(x,y) [ %P vty )} %
=0 y=0
Moving the constant factor out of the summation yields
2R 9 n—1n-—1 _
Plu,v) = 22 Uz, y)e 705 v, (2.42)
n
=0 y=0

The scaling factor « takes into account the various parameters and is defined by

B N

243
S 2R (2.43)

where N if the f-number (ratio between the focal length f and the exit pupil diameter
2R). After replacing Equation (2.43) in Equation (2.42), one obtains the a-scaled discrete

Fourier transform multiplied by a complex factor:

,_.

—1 n—

3

2

2R)?
F(u,v) = Ux,y)e ~J o (uty) :M( 2)

Il
o

z=0 y

When « > 1, computing F,{U} can be accomplished by enlarging the n x n do-
main of U to an x an with zero-filling before calculating F{U }. Otherwise, no previous
enlargement of the domain should be done, but the result should be downscaled by 1/cv.

Using Equation (2.20), it is possible to find the intensity of the light at every spot
of the PSF with the formula

1 2

2p0C

A 20

n?

I(u,v) = F AU}

The result can be cropped as necessary, taking into account that the pixel pitch of the
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resulting image corresponds to p.
After calculating the intensity, the PSF should be normalized in order to ensure
that the energy on the original picture stays the same when using the PSF as a convolution

kernel. After normalization the multipliers are eliminated, yielding

PSF(u,v) = |Fa{U}P/ (Z !fa{U}P(u,v)) , (2.44)
Yu,v
which shows that the discrete PSF is the normalized a-scaled power spectrum of the
discrete generalized pupil function.
Depending on the sensor pixel pitch, the PSF may convey visible diffraction pat-
terns, as shown in Figure 2.18. This is a representation of the impulse response of a

diffraction-limited optical system with wavelengths

A = 700 nm,
Ag = 510 nm, and (2.45)
Ay = 440 nm,

as recommended by Krueger, Oliveira and Kronbauer (2016), for the simulation of PSFs
for color images. Each one, known as an Airy pattern, can be computed using Equa-
tion (2.44) with U representing the generalized pupil function of a plane wave, for a cam-
era with a huge pixel density (roughly 2,888 pixels/mm). The pattern is mathematically
described by

2.Jy(m7/(AN)) ) ? | (2.46)

I(r) = Eo ( 7/ (AN)

where r is the radial distance from the center to each point of the pattern, Ej is the
maximum central intensity, and .J; is the Bessel function of the first kind of order one.

The first zero of this function can be shown to occur at
r =~ 1.22\N, (2.47)

which is defined as the radius of the central bright circle, known as Airy disk.
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Figure 2.18: PSF Airy patterns of a plane wave for three different wavelengths. They
correspond to the usual RGB color channels, and their differences in size and intensity
are notorious. The image plane where they are formed is assumed to be an idealized
camera sensor with pixel density of roughly 2,888 pixels/mm. Focal length of the camera
lens is set to 18 mm. The units of the sensor plane (horizontal axes) are in pum, and
the vertical axis indicates the dimensionless normalized PSF weights. In an actual real
CCD, the Bayer filter colors are not exactly red, green and blue. Even if they were,
their corresponding PSFs would still differ slightly from those presented here, due to
each band-pass filter sensitivity spectrum spanning a certain finite interval of wavelengths,
rather than being limited to its peak wavelength sensitivity.

410 .10 -0 .10 <10 .10

(@) \r = 700 nm (red) and (b) Ay = 510 nm (green) and (c) Ay, = 440 nm (blue) and
a, = 10.0649 ag = 7.3330 ap = 6.3265

Source: The Authors

2.8 Partial occlusion effects

A very challenging aspect of realistic vision simulation is dealing with partial
occlusion effects. This issue is illustrated in Figure 2.19, which presents a scene with
rosebuds in the foreground (occluder object) and a sunflower in the background. When
the foreground is in focus (Figure 2.19a), it blocks the view of the background object.
However, when the background is in focus (Figure 2.19b), there is a see-through effect
throughout all the foreground, and the background sunflower becomes almost completely
visible; in this case, one says that the background is partially occluded.

Figure 2.20 shows a schematic side view of this scene’s structure. The background
plane stands for the sunflower, and the occluding plane are the rosebuds. Note that, when
focusing on the foreground plane (Figure 2.20a), a large finite region on the background
reflects light rays that contribute to the formation of a single point on the image plane.
This is the reason for the background to be blurry, since the colors of several points are
averaged together. On the other hand, a single point on the occluding plane reflects several
rays that contribute to the formation of a single point on the image plane (Figure 2.20b).
This is why the foreground is sharp. In this case, there is no color mixing between back-

ground and foreground.
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Figure 2.19: Partial occlusion effects. (a) When the foreground is in focus, rosebuds
appear sharp and the background is blurry. (b) When the sunflower on the background is
in focus, parts of it that were occluded on (a) become visible and the foreground appears
to be translucent.

(b)

Source: Zannoli et al. (2016)

When focus is switched to the background, the situation is shown in Figure 2.20c.
Now, a single point on the background is reflecting several rays that form a single point
on the image plane. Yet, at the same time, a finite area on the occluding plane also re-
flects several rays that contribute to the formation of that very same point. This time,
background and foreground colors mix together, and that is the reason for the apparent
translucency of the occluding plane. In any case, it is important to notice that, if infor-
mation from the entire scene is available, all these effects could be simulated using ray

tracing.

2.9 Summary

This chapter provided some background on fundamental concepts related to both
geometric and wave optics that are important for understanding this thesis. This included
the Zernike polynomials, which are used to characterize low-order aberrations, and a
derivation of the Fourier transform produced by a lens, geared towards the Computational
Photography community using the Huygens-Fresnel principle. It also presented an intu-
ition behind partial-occlusion effects, which play a major role on the decisions leading to

development of our two different simulation techniques.
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Figure 2.20: Schematic view of partial occlusion under the geometric optics model. This
is a side-view representation of the scene shown in Figure 2.19. The background plane
represents the sunflower and the foreground occluding plane are the rosebuds. (a) Finite
area on the background emitting rays that form a single image point. (b) Single point on
the foreground forming a single image point. (c) Both a single point on the background
and a finite region on the foreground contribute to the formation of the same image point.
(a,b) occur when the foreground plane is in focus, while (c) occurs when the background
plane is in focus.

A
J

background plane occluding plane lens plane image plane
(a)
A
background plane occluding plane lens plane image plane
(b)
A
background plane occluding plane lens plane image plane

(©
Source: The Authors
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3 RELATED WORK

Vision simulation techniques that include optical phenomena like depth of field
fall into two major categories: object-based and image-based algorithms. The former uses
computer graphics techniques to render 3D scenes, producing accurate results as in the
case of distribution ray tracing (COOK; PORTER; CARPENTER, 1984), and, more re-
cently, in real-time simulation of human vision through eyeglasses (NIEBNER; STURM,
2012), and human eye chromatic aberration (CHOLEWIAK et al., 2017). Image-based
techniques manipulate RGB-D data, leading to faster approaches and supporting the use
of actual photographs as input. In turn, they tend to suffer from artifacts due to the limited
amount of scene information available in a single RGB-D image. Our techniques and all
the other methods discussed in this section are image-based approaches. Our new light-
gathering tree data structure (described in Chapter 5) significantly minimizes the impact

of missing data when producing realistic vision simulations.

3.1 First techniques

The first developed image-space methods were able to produce a depth-dependent
circle of confusion for every pixel with the goal of simulating blurriness (POTMESIL;
CHAKRAVARTY, 1982). This technique, however, neglects partial occlusion effects and
is prone to artifacts which can be seen on Figure 3.1b.

In an attempt to offer a solution to this problem, Scofield (1992) proposed to clas-
sify the scene objects into foreground and background fields, filtering them separately
using a PSF appropriate for the distance, and finally compositing the blurred sub-images
with alpha blending. This process solves the partial occlusion issue but it only allows a
single level of blur per object.

The ray distribution buffer (RDB) approach provided a solution to those errors by
averaging the contribution of several rays over a pixel and treating occlusion based on the
ray direction (SHINYA, 1994). Before ray tracing starts, the buffers are reset to maximum
distance. Every time a ray traced into the scene hits an object, the ray direction and the
object’s color and distance are recorded in the RDB, provided the distance is less then
the previously stored for the respective direction. When tracing is finished, the buffer

associated to every pixel is averaged in order to compute the final color (Figure 3.1c).



52

Figure 3.1: Comparison between linear filtering and ray distribution buffer techniques.
(a) Sharp image input. (b) Linear filtering technique applied to input image. (c) Ray
distribution buffer algorithm applied to input image.

l I ’ l | g
g
(b) (©

(a)

Source: Shinya (1994)

3.2 Vision-realistic rendering

Barsky et al. use optical information from a human subject, supplied by a Shack-
Hartmann aberrometer, to model a wavefront that characterizes the subject’s visual sys-
tem (BARSKY et al., 2002; BARSKY et al., 2003). Rays cast from a central point on a
virtual retina are bent by a virtual lens and then affected by the subject’s wavefront aber-
ration before entering the scene. A set of planes regularly spaced in diopters is placed
in the scene (Figure 3.2). Each such plane is associated with a histogram registering the
number of rays intersecting it in different rectangular sub-regions. When normalized,
each histogram is turned into a so-called depth point spread function (DPSF). Given an
input RGB-D image, disjoint sub-images are created using pixels whose depth is clos-
est to each plane. The sub-images are then convolved with their respective DPSFs and
re-combined with alpha compositing. Unfortunately, simply compositing the convolved
sub-images produces undesirable artifacts at the edges of objects (Figure 3.3). The cause
of these artifacts is illustrated in 2D in Figure 3.4, where a foreground scene object (red)
partially occludes a background object (blue). The scene is projected onto some image
plane producing an image I (Figure 3.4a). As the image content is reprojected into the
scene (Figure 3.4b), the region of the background object marked with R is missing. As
this sub-image is convolved with the DPSF corresponding to its plane, the missing infor-
mation is improperly treated as zero (black) producing dark regions around edges in the

resulting composited image /. (Figure 3.4c). Note that, given the missing information,
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Figure 3.2: A set of planes regularly spaced in diopters.
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Source: Barsky (2004)

Figure 3.3: Rendering artifacts produced by the technique of Barsky, when not properly
corrected using the object identification solution. (a) Sharp input image. (b) Blurred
image with border artifacts. When compared to the sharp input image (a), note how the
blurred result (b) presents dark bands separating its parts on different planes.

(a) (b)
Source: Barsky et al. (2003)

one should have used normalized convolution (KNUTSSON; WESTIN, 1993) instead of
linear convolution. Similar artifacts result when an object spans more than one plane
(Figure 3.4d). In this case, an object that should look contiguous presents dark bands sep-
arating its parts on different planes. The workaround of Barsky et al. (2002) for the case
shown in Figure 3.4c is to convolve the original image with a Gaussian kernel and use
some of the resulting pixels to extend the background pixels in occluded regions touched
by the DPSF kernel. For the case shown in Figure 3.4d, Barsky (BARSKY, 2004) uses an
object identification solution to force pixels belonging to the same object into the same
sub-image, regardless of the object’s depth span, which results in incorrect results. Barsky

et al. (BARSKY et al., 2002; BARSKY, 2004) demonstrated their techniques using syn-
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Figure 3.4: A Top-view of a scene containing a red and a blue objects located at two
planes. (a) RGB-D image I corresponding to the view of a pinhole camera system at L,
with region R occluded. (b) Reprojected scene from 7, with missing information shown in
black. (c) Planar blue sub-image convolved with its corresponding DPSF, and composited
on the final image /.. (d) Same as (c), but with a single object spanning the two planes.
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Source: The Authors

thetic RGB-D images rendered using computer graphics.

Since one’s eye wavefront changes as a function of accommodation (HE; BURNS;
MARCQOS, 2000), the DPSFs should be re-created in the case of focus change. However,
obtaining wavefront measurements for different accommodation conditions is not practi-
cal with current aberrometers. Barsky et al. (2002) try to approximate changes in focus

by re-indexing the original DPSFs.

3.3 Other techniques

Some techniques related to ours employ pyramidal image processing in order
to recover occlusion information (KRAUS; STRENGERT, 2007), with satisfactory re-
sults (simulation shown in Figure 3.5), although they involve depth-of-field only, and
thus are not applicable to arbitrary aberrations like ours. Other methods use depth peel-
ing in order to access occluded scene information (LEE; EISEMANN; SEIDEL, 2010;
SCHEDL; WIMMER, 2012), and so only work with synthetic images or specific scene
acquisition methods that register depth and color information for occluded pixels. (results
shown in Figures 3.6 and 3.7 respectively).

Krueger, Oliveira and Kronbauer (2016) applied Zernike polynomials to recon-
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Figure 3.5: Depth-of-field rendering using pyramidal image processing for occluded in-
formation recovery.

Source: Kraus and Strengert (2007)

Figure 3.6: Real-time lens blur effects and focus control. (a) Focus on blue statue. (b)
Extension to physical model allowing focus on two different distances (blue and orange
statues).

(b)

Source: Lee, Eisemann and Seidel (2010)

Figure 3.7: A layered depth-of-field method for solving partial occlusion.

Source: Schedl and Wimmer (2012)



56

struct the wavefront error resulting from low-order aberrations, using information directly
available in spectacles prescriptions rather than relying on data from aberrometers. Con-
straining the scene to a single plane at a predefined distance, they used Fourier optics to
obtain convolution kernels and perform personalized vision simulations of a planar tex-
tured surface (e.g., an eye chart). Given a pupil size, the aberrated view was efficiently
computed. Defocus simulations were validated against ground-truth data captured with
a DSLR camera with low-order aberrations induced by the use of extra lenses placed in
front of the original ones.

Xiao et al. (2018) used convolutional neural networks to obtain real-time simula-
tion of depth of field, an important aspect for depth cues in virtual reality applications.
Ziegler, Croci and Gross (2008) used several planes to evaluate the complex-valued func-
tion of electromagnetic field for light propagation inside a cone of light. Their work
considers diffraction and thin lens effects on images, all using Fourier optics.

Previous vision simulation techniques are either limited to a single pre-defined
depth (KRUEGER; OLIVEIRA; KRONBAUER, 2016), only handle simulation of posi-
tive defocus (XIAO et al., 2018), or require specialized data acquired from aberrometers
and lack precision when dealing with partially occluded objects (BARSKY, 2004). In
contrast, our more robust approach provides a solution for interactive rendering of realis-
tic vision simulation for arbitrary depths, considers the various kinds of low-order aber-
rations (e.g., myopia, hyperopia, and astigmatism), and properly models the propagation

of light rays around obstacles.

3.4 Summary

In this chapter, we presented the works closely related to our techniques. All
of them are image-based algorithms. The techniques presented include depth of field
effects of Scofield (1992), ray distribution buffer (SHINYA, 1994), vision realistic ren-
dering (BARSKY et al., 2002; BARSKY et al., 2003), personalized vision simulation of
low-order aberrations of the human eye (KRUEGER; OLIVEIRA; KRONBAUER, 2016)
usage of convolutional neural networks (XIAO et al., 2018), and simulations using several
planes to evaluate the complex-valued function of the electromagnetic field (ZIEGLER;

CROCI; GROSS, 2008).
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4 SIMULATING LOW-ORDER ABERRATIONS USING WAVE OPTICS

This chapter presents a technique based on Fourier optics for simulating aberration-
aware human vision restricted to scenes with a single depth. It is is based on the work
done by Krueger, Oliveira and Kronbauer (2016) and also relies on low-order parameters
to perform wavefront reconstruction through Zernike polynomials.

The following sections describe the method employed as well as the reasoning
behind our algorithm. Section 4.1 presents the rationale behind the technique. Section 4.2
derives the formula used to simulate depth of field for objects on different distances.
Section 4.3 briefly mentions the need of applying gamma decoding. Section 4.4 describes
the implemented algorithm. Finally, Section 4.5 exposes an important limitation of the

technique, which will only be overcome by the approach presented in Chapter 5.

4.1 Rationale of the wave optics approach

The process of producing realistic human vision simulation requires complete real-
world information, such as the position and intensity of every point in the scene that con-
tributes for the final image formation. However, obtaining such data in all is complexity
is a very difficult task. A possible workaround for this issue is to use sharp images with
depth information associated to every pixel; nevertheless, one still has to deal with infor-
mation that will be missing due to occlusions (such issue is exemplified on Figure 4.1,
where occlusion causes trees to cast shadows of missing information over the building
facades).

One possible way of simulating vision is using Fourier optics, a formal and rigor-
ous tool. However, handling partial occlusions under such light propagation model is not
a trivial task. As shown in Figure 4.2, when a single point on the background plane emits
a spherical wave, windowing effects on the occluding plane disturb the wavefront shape,
and this adds a level of significant complexity to the simulation. Besides that, the com-
bination of the effects of wavefronts emitted from different scene points, including both
occluded regions and occluders, renders the correct prediction of the results an intractable
problem for real-time applications. For this reason, we will be limiting our simulations to
single-depth scenes and avoid partial occlusions entirely.

The overview of our Fourier-optics single-depth algorithm is shown in Figure 4.3.

Given a reconstructed wavefront error W using Zernike polynomials, the generalized
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Figure 4.1: Trees occluding building facades on Lidar point cloud. Although this is not
the same method we use to acquire scene information, the cause of missing information
on occluded regions is the same.

Source: (CURA; PERRET; PAPARODITIS, 2018)

Figure 4.2: Windowing effects in Fourier optics approach. Note how the wavefronts emit-
ted from a partially occluded point on the background plane are affected by the occluder.
They are combined with the wavefronts emitted from the occluding plane, and the overall
light field in the lens plane results from all these effects, causing the precise simulation
outcome to be difficult to compute.

)y ¢

background plane occluding plane lens plane image plane

Source: The Authors
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Figure 4.3: Wave optics approach overview. (a) Zernike polynomials are used to build
the wavefront error 11/, which is used as an argument for the complex generalized pupil
function [P; by means of the power spectrum of that function, one obtains the PSE. (b)
Simulated result is obtained by the convolution of the sharp input image with the PSF.
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pupil function PP is generated using a phasor, and the PSF is obtained by means of the
power spectrum of that function. The PSF is then convolved with a sharp input image,
producing the result. In this case, depth information is used to set the appropriate coeffi-

cients for the Zernike polynomials, as explained in Section 4.2.

4.2 Object position and accommodation

The key observation for performing the computation of accommodation and depth-
aware PSF using Fourier optics is to notice the similarity between the coefficient corre-
sponding to the defocus Zernike polynomial and the accommodation phase transforma-
tion. When the aberration transformation presented in Equation (2.35) is used to model

defocus (shown in Equation (2.11)), it becomes

U (e, ye) = eIFea72(eve), (4.1)
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The relevant Zernike polynomial listed on the fifth row of Table 2.3 and its corresponding

coefficient shown in Equation (2.9) are

Z9(xe,y.) = V3(22%2 4+ 23> — 1) and (4.2)
S
9 = NG (4.3)

C

Note that the quadratic radius factor R? has been removed from c) because the input
coordinates used here are in spatial domain rather than in the dimensionless unit disk.
The cylinder power C' has also been removed because we are only modeling defocus in
this phase (astigmatism will be simulated in a different stage). By plugging Equation (4.2)

and Equation (4.3) into Equation (4.1), it can be written as

U (e, ) = &/ 730 VIR, (4.4)
By disregarding the phase shift and performing some additional simplification, one ob-

tains

U (e, ye) = 792540, 4.5)

On the other hand, by rewriting Equation (2.33) assuming that d # h, the cancellation

does not occur anymore, resulting in

Us: (e, ye) Ln(2e, ye) = oIk (57 (22402)) g=ikgy (22+y2) _ e—a‘%[d{dﬁ}(m%yf), (4.6)

which models a spherical wave propagation with distance d combined with accommoda-

tion h. Finally, by making Equation (4.5) to be equal to Equation (4.6) results in

=== 4.
S iR 4.7)

which means that we can simulate an object viewed from a distance d, while focusing at
a distance h, by setting S = (d — h)/(hd) diopters (an induced defocus). This result is
properly validated in Section 6.4.
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4.3 Gamma correction

Human vision is more sensitive to changes in low-light intensity levels than to
changes in high-intensity levels. The perception is nonlinear, and can be modeled using
a power function (usually P oc I'/7, where P measures subjective perception and I is
light intensity). The value for v is usually 2.2 and this process is called gamma encoding.
By coincidence, the light intensity emitted by old CRT monitors is also nonlinear; it
is a power function applied to the input signal that matches the inverse of human light
intensity perception (/I o V7, where V is the signal voltage). This process is called
gamma decoding, and it also happens on newer monitors, which mimic the CRT behavior
for compatibility reasons.

In order to prevent visible artifacts on lower-light intensities and to avoid wasting
storage space on high intensities, color intensity data are usually gamma encoded when
stored in image files. As a consequence, the consecutive tasks of reading an image file
into memory and displaying it do not involve any conversion, since the gamma-encoded
image will be automatically gamma-decoded by the video monitor.

However, when the task involves light manipulation before image display, it is
essential to consider the nonlinearity of stored data. It is therefore necessary to apply a
gamma correction to linearize the data, perform any desired manipulation, and then apply
the inverse function before image output. This process is thereby crucial in the case of

image blurring, and so it is used on both techniques presented in this thesis.

4.4 Implementation

The simulation of low-order aberrations using Equation (4.6) was developed in
MATLAB. It adapts the PSF computation function employed by Krueger, Oliveira and
Kronbauer (2016), which in turn is a modified version of the monochromatic PSF genera-
tion function described by Dai (2008). After the adaptations, it is able to generate DPSFs
for arbitrary low-order aberrations, considering any focus of interest and object distance.

It is important to notice that two features of the human eye present in the orig-
inal algorithm are not modeled in our simulation: Stiles-Crawford effect (non-constant
directional sensitivity of cone cells) and chromatic aberration. The former was removed
because it cannot be objectively validated using DSLR cameras. The latter follows the

same reasoning, but its removal is also justified by the fact that the human brain adapts to
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chromatic aberration (HAY; PICK; ROSSER, 1963), and so there is no need to simulate
it for human perception either. We did, however, include compensation for the chro-
matic aberration caused by external lenses during the experiments. Such formulation is
described in Section 6.3.

Our algorithm consists of two phases. In the first phase, the PSF of the optical sys-
tem is computed according to the objects distances, as well as optical system parameters
(e.g., pupil size and focus of interest) and aberration information. The second phase in-
volves blurring the input image using the PSF as a convolution kernel. The photographed
object is assumed to be a flat surface orthogonal to the optical axis. This limitation, de-
scribed on Section 4.5, led to the development of the technique described in Chapter 5.

The input image is also assumed to be in focus (sharp). The need of using a sharp
in-focus image as input should be obvious, as any blurring in the final image is expected

to be computed by the algorithm.

Algorithm 4.1: Generation and application of PSF using wave optics.

input : Object distance d, gazing focus distance h, sharp image |, lens
aberration (S, C, ¢), sensor pixel pitch p, camera f-number N .

output: Resulting (blurred) image B.

Sy +— S+ (d—h)/(hd);

a<— AN/p;

W <— WavefrontError(Ss, C,¢);

P<+— EnlargeWithZeroFill(Pexp(jkW), max(1,«));

PSF +— Normalize(Resize(||F{P}||?, min(1,)));

B «— (I"x PSF)'/7;

A B AW N -

The procedure shown in Algorithm 4.1 is applied individually to each color chan-
nel by setting A to the corresponding wavelength listed in Equation (2.45). Starting on
line 1, defocus is adjusted according to Equation (4.7) to take into account the object dis-
tance and gazing focus. Then, on line 2, the scaling factor o shown in Equation (2.43) is
computed. On line 3, function WavefrontError computes the wavefront aberration
corresponding to the input data. This is accomplished by multiplying the Zernike poly-
nomials Z9, Z} and Z, ' by the corresponding coefficients indicated in Equations (2.8)
to (2.10) and adding them, as shown in Equation (2.12). The generalized pupil function
[P is computed on line 4 by inserting the wavefront error function IV in the argument of a
phasor and multiplying it by the pupil function P. Function EnlargeWithZeroFill
enlarges the domain of the result with zero-filling up to a factor of o, whenever av > 1.
On line 5, the PSF is calculated as the power spectrum of P. The result is downscaled

by a factor «, if @ < 1, and finally normalized through function Normalize. At last,
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on line 6, the output (blurred) image is computed as the convolution of the sharp input
image with the PSF. Gamma decoding and re-encoding are properly performed in order to
guarantee that the convolution happens in linear color space. After the algorithm finishes,
the results for the three color channels are combined forming the final blurred image.

Appendix B presents the MATLAB code that implements this simulation process.

4.5 Artifacts due to missing information

Image artifacts at object borders caused by missing information due to occlusions
(Figure 3.4c) are a major challenge for the technique presented in this chapter. For this
reason, the approach described in this chapter deals only with single-depth images, where
no information is missing due to the absence of occlusions. We address the multi-depth
issue using a different technique (light-gathering trees), presented in the following chap-

ter.

4.6 Summary

This chapter presented a technique based on Fourier optics for simulating aber-
rated human vision in scenes restricted to a single depth. We derived a formula used to
simulate depth of field for objects on different distances. We have also shown the im-
portance of applying gamma decoding, the internal workings of the algorithm and some

important limitations of this technique.
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S SIMULATING LOW-ORDER ABERRATIONS WITH LIGHT-GATHERING TREES

As already stated in Section 2.8, partial occlusion effects emerge naturally from
a ray tracing approach, so that is the method that we will be employing in the technique
presented here. Nevertheless, we still need to deal with missing information.

In order to be able to perform ray tracing in real-time, some compromises have to
made. We use input images with depth information (RGB-D images) and discretize this
depth into planes regularly spaced in diopters. This is shown in Figure 5.1a, where the
pixels in the image presented in Figure 1.2 are classified according to the closest plane
(with closeness function also operating in the dioptric domain).

Rays are cast from the lens plane and into scene (a gathering process). Note how-
ever that the ray tracing will only take place for the formation of a single on-axis point
on the image plane (central output pixel shown in Figure 5.1b). For the other image
points, we reuse the same process adopted for the central pixel. This is supported by
the fact that the human eye has an approximately circular retinal region (fovea) with
approximately 1 degree in diameter that does not exhibit significant changes in aberra-
tions (BEDGGOQD et al., 2008). Thus, measuring the PSF only for a single on-axis
point can be justified by the fact that due to the fovea’s small area, the human visual sys-
tem builds a mental picture of their surroundings by systematically scanning the scene.
Therefore, the most prominent perceived aberrations will be those registered at the fovea.
As such, we assume that the PSF is the same across the visual field, even though it tends
to vary slightly with the direction of the incoming wavefront. This is known as the isopla-
natic assumption (BEDGGOOD et al., 2008). Other researchers make a similar assump-
tion (KRUEGER; OLIVEIRA; KRONBAUER, 2016), albeit implicitly.

The following sections describe the technique in more details. Section 5.1 presents
the rationale behind the technique. Section 5.2 explains the construction of the LGTs.
Section 5.3 covers the usage of the LGTs. Section 5.4 describes some important op-
timizations that allow the technique to run in interactive times. Section 5.5 shows the
algorithm used to compute ray directions for low-order aberrations. Finally, Section 5.6

offers a very high-level idea of the algorithm.
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Figure 5.1: Plane-discretized scene and the isoplanatic assumption. (a) Pixels are classi-
fied into planes according to their dioptric distance to each plane. (b) Rays are only cast
for the formation of a single on-axis output pixel, and reused for the formation of all other
points (isoplanatic assumption).
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5.1 Rationale of the light-gathering trees approach

The intuition behind using a tree to emulate ray-tracing is shown on the sequence
illustrated in Figure 5.2. If a large amount of rays were be cast into the scene as shown
in Figure 5.2a, a considerable amount of them would end up traversing the same plane-
pixels (or cells). We replace such groups of rays by arrows, as shown in Figure 5.2b,
where weights indicate the number of rays represented by each arrow. This hierarchical
sequence of arrows define a tree structure (a light-gathering tree). It is now evident that
ray tracing should be equivalent to traversing this tree it from root to each one of the
leaves. Furthermore, this tree can be precomputed and reused for all the other image
points due to the isoplanatic assumption.

If an occluder is present at a certain plane and a group of rays would end up
on a region behind it where information is missing (Figure 5.2c), dark artifacts would
be produced for the reasons previously discussed. We overcome this issue by accessing
color information beneath the previous traversed cell (Figure 5.2d) and using that as the
missing color. It should be emphasized, however, that although we are illustrating this
issue using rays, this process takes place during runtime, when the tree has already been
created (it is being used to emulated the ray tracing process).

The tree’s nodes are defined based on the scene content, subject’s low-order aber-
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Figure 5.2: Intuition behind using a tree for performing a gathering process. (a) Several
rays cast into scene. (b) Tree structure where weights on arrows indicate number of rays
in bundles. (c) Occluder causing missing information. (d) Color information used to fill
occluded pixels.
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Figure 5.3: 2-D representation of the light-gathering tree concept. (a) The scene space
is discretized using a set of planes placed at distances corresponding to several dioptric
powers covering the intended simulation depth range. Scene sampling rays emerging
from the sensor pixel are bent by a lens and converge to a focus (black dot) along the
optical axis of the lens, and diverge after passing through it. (b) A regular grid defines the
sampling positions on the lens.
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rations, focal distance, and pupil size. Rather than casting rays into the scene in the tradi-
tional way during runtime, we traverse the tree structure and sample the data required to

simulate the subject’s vision.

5.2 Light-gathering tree construction

Human blur discrimination is approximately linear in diopters. Thus, we place
planes at distances corresponding to the several dioptric powers along the range of dis-
tances to be used for vision simulation (Figure 5.3a). As such, the spacing between ad-
jacent planes increases from planes closer to the viewer to far away ones. Inter-plane
boundaries (shown as dashed blue lines in Figure 5.3a) are positioned half-way consec-
utive planes, subdividing the space and classifying objects as belonging to each plane
subspace. Thus, the spacing between them are small for planes closer to the viewer and
large for far away ones. The number of planes, as well as the distances of the closest and
farthest planes (in diopters) are user-supplied parameters.

A light-gathering tree (LGT) is defined by nearest and farthest plane distances,

number of planes, focal distance, pupil size, number of traversal rays, and low-order
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Figure 5.4: Three rays cast into a virtual scene (not shown) and the tree nodes built
during each step of the process. Colors red, green, and blue are used for discriminating
between first, second and third rays (and the nodes created by them), respectively. Arrows
indicate parent-child relationship between nodes. A node intersected by n rays coming
from different parent nodes is considered as n different nodes, but a node intersected by &
rays coming from the same parent node is considered as single node (see Figure 5.8). The
value inside each node indicates the number of intercepted rays. The root note is shown
as a black rectangle containing a light-blue lens.
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aberration parameters (S, C, ¢). Thus, for a given subject the nodes of an LGT may
need to be updated when the focal distance changes, as this may lead to a change in
accommodation (i.e., a change in the dioptric power of the crystalline lens). Updating the
nodes of an LGT can be done at interactive rates. For instance, for a typical LGT with 14
planes and a million rays it takes approximately one second on a Core i5 2.8 GHz CPU
using nonoptimized C# code.

A grid of cells is laid over each plane, representing a bijection between cells and
input image pixels (Figure 5.3a). Each plane corresponds to a level of the LGT. Cells
crossed by the optical axis, indicated by a thick outline, are called center cells. Fig-
ure 5.3b shows a regularly spaced grid over a disk representing the subject’s pupil. The
grid crossings are the starting positions of rays traced into the scene towards a point along
the optical axis. In Figure 5.3 such point is indicated by a large dot between planes 1
and 2.

The process of building an LGT is illustrated in Figure 5.4, where only three rays
are shown for simplicity. We call tree width the maximum number of plane cells spanned
horizontally or vertically by any level of a given LGT. Thus, the width of the LGT shown
in Figure 5.4 is 5. When the first ray is cast (step 1), one tree node is created inside each
cell traversed by the ray. Nodes are all linked from parent to child. Each node stores the

following information: number of intercepted rays, cell position, and parent node’s cell
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position. All positions are stored as 2D coordinates relative to the center cell. Note that
the root node is on the pupil plane. In the example shown in Figure 5.4, every node is
traversed by a single ray, causing the ray count on all nodes to be one. Figure 5.8 depicts a
situation where a node is intercepted by three rays, all from the same parent node, leading
to node reuse.

The intended simulated blurred image results from the gathering process described
in Section 5.3, where the contributions of each portion of the scene hit by rays are inte-

grated into the final color for the output pixels.

5.3 Light-gathering tree usage

The use of an LGT requires three supporting maps, all with the same dimensions
as the input image: a plane index (PI) map, a nearest potentially reachable plane (NPRP)
map, and a farthest potentially reachable plane (FPRP) map. The PI map stores, for each
pixel of the input RGB-D image, the index of the closest scene-discretization plane to
that pixel. Both NPRP and FPRP maps are constructed from the PI map, by considering
at each cell of the PI map a neighborhood of size LGT width x LGT width. The NPRP
map stores in each of its cells the smallest plane index in the neighborhood centered at its
corresponding cell in the PI map. Likewise, the FPRP map stores in each of its cells the
largest plane index in its corresponding neighborhood in the PI map. When considering
neighborhoods on the PI map, only cells inside the map are considered. Figure 5.6 shows
examples of PI, NPRP, and FPRP maps computed for a simple scene containing three
objects (color rectangles) shown in Figure 5.5, whose LGT width is 5.

The usage of the LGT constructed for the scene in Figure 5.5 is illustrated in
Figure 5.7. By following the tree from its root towards the leaves, one emulates a beam of
rays cast into the scene. Step 1 is performed when the leftmost branch is taken. The first
(Ieftmost) red node, corresponding to plane p = 1, indicates that the pixel immediately to
the left of the center cell should be analyzed (Figures 5.7a and 5.7b). The corresponding
(third) entry on the plane index map (Figure 5.6a) shows the presence of an object on plane
p = 1, issuing a stop condition because the ray has hit an obstacle. The pixel’s output
color is updated by accumulating the color stored in the input image pixel indicated by the
current node multiplied by some weight (the reciprocal of the number of rays leaving the
parent node) (Figure 5.7b). In this example, the parent node is the root node from which

three rays have been traced. Thus, each of these rays has a weight of 1/3.
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Figure 5.5: Top-view of a simple scene with three objects (blocks). Pixels are colored
according to the object nearest to them. Labels on the pixels indicate the optimization to
be applied: Two-plane (7), single-plane (S), or default algorithm (D).
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Step 2 corresponds to a beam of rays cast through the center cell, which is ac-
complished by following the green branch of the LGT (Figures 5.7a and 5.7¢). The stop
condition will only be met at the third level of the tree, when it is verified that the num-
ber on the fourth entry of the plane index map (Figure 5.6a) is equal to the current plane
(p = 3). Once again, the colors of the reached pixels in the image are averaged, weighted,
and added to the color of the output pixel.

Step 3 is defined by the blue nodes (Figures 5.7a and 5.7d). Similarly to the
previous step, the nodes are followed until the third level. However, this time the value
in the third entry of the plane index map shows "1", which is closer to the observer (root
node) than the current plane (p = 3). This indicates that information about the exact hit
location is missing, and it is the source of partial occlusion artifacts common in image-
based vision simulation methods discussed in Chapter 3. Our technique addresses this
situation by using the parent node’s position (fourth element of the plane index map)
instead, resulting in a pink color contribution. That is the reason why we store the parent’s
index in each node. As in the previous steps, the returned color is multiplied by the current

node’s weight (1/3) and accumulated into the final pixel color (Figure 5.7d).

5.4 Runtime optimizations

The algorithm described in Section 5.3 is adequate for modeling the actual spread-

ing of the light beams over the scene, but the number of nodes traversed can be very large
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Figure 5.6: Maps used for defining which planes to look at during LGT traversal. They
have the same resolution as the input image and guide the traversal of the associated LGT.
This example was created for a hypothetical 7-pixel image representing the scene depicted
in Figure 5.5. (a) Map showing which plane each pixel belongs to. (b) and (c¢) Maps used
to decide which (optimized) algorithm to use on each input pixel.

(a) Plane Index map (PI map)

1 1 1 3 3 2 2

(b) Nearest Potentially Reachable Plane map (NPRP map)

1 1 1 1 1 2 2

(c) Farthest Potentially Reachable Plane map (FPRP map)
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Figure 5.7: Light-gathering tree usage example. (a) The tree used in the example. (b,c,d)
The three steps taken to fully produce the output pixel. Each one of them will return a
color in the scene (read from the input color image), multiplied by a weight. The final
output color, shown in (c), is the color that will be shown in the final blurred image.
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depending on the tree configuration. It is possible to significantly reduce the number of
LGT nodes that need to be visited for a given ray by considering only a subset of the
LGT layers. Combining a complete LGT (i.e., a tree built with all planes/layers) with
smaller two-layer trees built for pairs of adjacent planes, one can perform vision simu-
lation in real-time. An LGT considering only adjacent planes a and b is called an a-b
tree. Figure 5.8 shows an example of a 1-2 tree. Once an LGT is created, a-b trees are
automatically created for each pair of adjacent planes. During runtime, when computing
the color of a given pixel of the output image, if its nearest and farthest intersected planes
(stored in the NPRP and FPRP maps) are adjacent, we select the corresponding a-b tree
instead of the full tree to speed up the simulation process.

If the closest and farthest planes are the same, as shown in the first entry of the
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Figure 5.8: Example of a 1-2 tree. Its central cell (node) is intercepted by several rays, all
from the same parent node.
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maps in Figures 5.6b and 5.6¢, one can apply an even further optimization and get rid of
the trees entirely. In this case, we use the (normalized) number of rays that hit each LGT
cell on the plane as the weight to be multiplied by the respective pixel color. The output
pixel color is obtained by summing all these contributions. This is equivalent to locally
applying a convolution kernel.

We call these optimizations two-plane and single-plane optimizations, respec-
tively. In Figure 5.5, pixels where two-plane optimization is applied are indicated by
the letter 7', and those where single-plane optimization applies are indicated by the letter

S. The ones for which the complete LGT is applied are marked with D.

5.5 Determining ray directions

So far, we have shown simplified examples, using a single point of interest for
eye accommodation. The actual algorithm supports two focal points in order to simulate
astigmatism (Figure 5.9). We adopt a left-handed coordinate system, as shown in Fig-
ure 5.10. The cylinder axis lies on the xy plane making an angle ( with the horizontal
axis (Figure 5.10d). For each ray, its starting position (z,ys,0) and direction (A,,A,,1)
are obtained using Equations (5.1) and (5.2):

Ts cosy —sin x
= |7 (5.1)

Ys sing  cosy | |y,
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Figure 5.9: Illustration of an astigmatic optical system with ¢ = 0°. A bundle of rays on
the horizontal plane is related to focal point 1 at distance 1/S, while a bundle of rays on
the vertical plane is related to focal point 2 at distance 1/(S + C).

point on retina bundle of rays
/ on vertical plane

focal point 2 \

focal point 1

bundle of rays
on horizontal plane

L IL
image space object space (scene)
Source: The Authors

Figure 5.10: Ray casting for an astigmatic optical system using a left-handed coordinate
system. Each ray is defined by a starting position (z,,y,,0) and direction (A,,A,,1), given
by Equations (5.1) and (5.2), respectively. (a) Top view (xz plane) of the scene. (b) Side
view (yz plane) of the scene. (c) Back view (xy plane) of the scene when o = 0. (d)
Back view (xy plane) of the scene when ¢ # 0.
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Source: The Authors



74

A, CoS —sin A/
_ ¥ 2 2| (5.2)
A, sing  cosp A}

where (27,y.,0) and (A, A}, 1) correspond to the ray starting position and direction for
the case of an axis-aligned grid (i.e., ¢ = 0°) (Figure 5.10c). The values of A} and A}

are computed as

/

Al = —1I/SS = —2/ - Sand
/ (5.3)
A/ — _ ys — _y/ . S
YT 1/8, s e

where S,c = S + C' is the sum of the spherical (.S) and cylindrical (C') powers.

5.6 General LGT algorithm

The general algorithm used for simulation using LGTs consists of two different
stages. During the offline stage, the following sequence of steps is taken for each possible
tree (considering all £—plane optimizations):

e Trace rays from pupil plane into virtual scene.
e Group rays into weighted beams.
e Build a tree from beams (root node on lens plane).

The runtime stage, for instance, executes these two main steps for each output
pixel:

e Choose tree based on planes nearby screen area.

e Follow every path from root to leaf.

The collection of output pixels will then form the result of the simulation.

5.7 Summary

This chapter presented our second and more robust technique, used to simulate ac-
commodation and low-order aberrations of the human eye in scenes with multiple depths

and partial occlusions. We showed the definition, construction and usage of a tree data
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structure that allows us to visualize the scene under low-order aberrations at interactive
rates. We also showed how we provide a solution for artifacts (due to missing informa-

tion) by caching the parent’s tree node.
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6 EXPERIMENTS AND RESULTS

This chapter presents experimental results related to the theoretical aspects intro-
duced in Chapter 2, as well as validation and results of the two techniques presented in
this work (Chapters 4 and 5). All pictures in the experiments were captured using a Canon
Rebel T6 DSLR camera.

Section 6.1 shows a comparison of the Airy pattern predicted by the theory and the
one obtained with the camera. Section 6.2 describes the support device we have crafted to
use in the camera experiments on the subsequent tests. Section 6.3 discusses some adjust-
ments required to allow comparisons of our results with ground-truth images. Section 6.4
presents validation for the formula deduced in Section 4.2 relating objection position,
gazing focus and defocus aberration, achieving structural similarity (SSIM) values above
0.93 and peak signal-to-noise ratio (PSNR) above 31.0. Section 6.5 presents a quantita-
tive evaluation of low-order aberrations produced by both techniques (implemented as a
MATLAB script) using SSIM and PSNR metrics. Section 6.6 shows the results of the
LGT technique (implemented as a Unity compute shader) applied to real scenes with var-
1ous depths, acquired from a publicly available dataset. Section 6.7 addresses some of the
limitations and issues in our techniques.

The results of these experiments show that both techniques produce quite realistic
simulations of accommodation and low-order aberrations, achieving SSIM values above

0.94 and PSNR above 32.0 in all objective evaluations.

6.1 Airy pattern validation

In this section, we perform a comparison of the Airy pattern predicted by theory
(Section 2.7.4) with the PSF of a point source captured by the camera, in order to verify
the correctness of the scaling factor o derived in Equation (2.43). We have employed the
method shown in Trantham and Reece (2015) to measure the Airy pattern generated by
some far away mercury-vapor and sodium-vapor street lights visible at night. Given the
large distance from the lights to the camera, they can be considered as being at infinity,
and treated as point-like light sources.

For comparison, we have generated the PSF for infinitely distant point light sources
by modeling a plane wavefront, using the strongest peak on the line spectrum of both

elements in the green region as their corresponding wavelengths. Due to its higher reso-
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Figure 6.1: Night time picture of town landscape with mercury-vapor and sodium-vapor
lamps displaying the Airy pattern. Picture is down-cropped to 4,549x1,705 pixels, fol-
lowed by 25% downscaling. Camera settings: ISO 100, exposure 15 s, f = 300 mm,

f/45.

Source: The Authors

Table 6.1: Comparison of photographed, simulated and computed diameter of Airy disk.
Airy disk diameter (px)
Element | X\ (nm) | Picture | Simulation | Predicted
Sodium 5890 | 16+£05 | 16£0.5 15.509
Mercury | 546.1 | 14+0.5 | 14£0.5 14.379
Source: The Authors

lution on the Bayer filter pattern, only the green color channel from the pictures is used.
The wavelengths values used to simulate the corresponding PSFs are A = 589 nm and
A =546.1 nm (JENKINS; WHITE, 2001), since they are the most prominent lines found
in the frequency spectrum of, respectively, Sodium-vapor and Mercury-vapor lamps (Fig-
ure 6.2).

The camera’s RAW file metadata informs that uncropped pictures are 5,344 pix-
els wide. Along with the known sensor width of 22.3 mm (obtained from the camera’s
specifications), this results in a pixel pitch of 4.17 um. Applying the pixel pitch to Equa-
tion (2.43), it is possible to compute the factor to be used to scale the PSF obtained
through the Fourier optics approach, and compare it to the expected value given by Equa-
tion (2.47). The comparison of the generated PSFs with ground-truth pictures is shown on
Figure 6.2 and objectively measured on Table 6.1, demonstrating that the radii of both the
photographed disk and the one generated through Fourier optics using the scaling factor
are in agreement with the radius expected by Equation (2.47) within a margin of error of

+0.5 pixel.
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Figure 6.2: Details of Airy pattern seen on the PSF of point light source shown in Fig-
ure 6.1. (a) and (b) Sodium-vapor lamps, with respective green channel isolated in (c) and
(d), respectively. (e) Our simulation of point-source impulse response for A = 589 nm. (f)
and (g) Mercury-vapor lamps, with respective green channel isolated (h) and (i), respec-
tively. (j) Our simulation of point-source impulse response for A = 546.1 nm.

(a) (b) (c) (d) (e)
() (2 (h) (1) (),
Source: The Authors

6.2 Camera holding device

With the goal of ensuring precise lens positioning during the tests, a support device
was crafted out of polystyrene and medium-density fiberboard (MDF) sheets, with a tight-
fitting area for inserting the camera. A tripod quick release plate was attached to the
camera to ensure steadiness. The device’s surface, made out of MDF, was designed to fit
the plate without gaps, in an effort to prevent looseness and conserve camera positioning
between shots even when the camera is removed and later reattached to the device.

For each lens, a cardboard sheet was cut into a rectangular card and a round aper-
ture was carved out from its middle. The lens was glued to the aperture. A slot was cut
out of the polystyrene structure, right in front of the device and orthogonal to the camera
optical axis, to be used for inserting the lens cards. The distance from the camera lens

mount to the lens slot was set to 101 mm (Figure 6.4).
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Figure 6.3: Camera mounted on custom supporting device. (a) Back view of device with
camera pointing to Snellen chart. (b) Lens inserted into the device slot.

(b)

Source: The Authors

Figure 6.4: Camera holding device scheme. Distance from the entrance pupil to the
camera zoom lens fixation base (d.) was measured to be 47 mm. Distance from the
external lens to the camera zoom lens fixation base was fixed at d;, = 101 mm.

d, = 47 mm |_|/ \|

dr, = 101 mm
Source: The Authors
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6.3 Optical power and image adjustments

Given the distance v from the camera lens to the external lens, known as vertex

distance, the resulting anisotropic magnification due to astigmatism is given by

1 1
and M .

M, - -
v 1—’()Spc’

* T 1-0S

6.1)

where M, and M. are, respectively, the magnification factors along the directions that
make angles ¢ and ¢ + 90° with the horizontal axis, and S and S, are the spherical and
the sum of spherical and cylindrical powers as discussed in Section 5.5. In the absence of
astigmatism, the magnification is isotropic, with M, = M,.. The effective optical power
is then obtained as S|, = SM,, and S:Dl =SM,..

Image magnification may introduce incorrect values due to interpolation. Thus,
when comparing our results to ground-truth, rather than magnifying a smaller dimension
to match a larger, we downscale the larger to match the smaller. One should note, however,
that magnification is a function of vertex distance and vanishes when v = 0. Thus,
magnification and its compensation have only been used for the sake of the validation
experiment that uses an external lens. This is not a stage of the techniques themselves,
which are geared towards the simulation of scenes as seen by a naked eye.

Likewise, brightness adjustment is required to compensate for some amount of
light that is reflected/absorbed by the extra lens, effectively not reaching the camera sen-
sor. The images captured with the extra lens tend to be darker than ones captured without
it. To perform brightness adjustment, for each different external lens, a small white patch
is taken from the same area in images captured with and without the additional lens.
The ratio between the average intensities from the darker and brighter patches was used
to modulate the images simulated with our technique, making them exhibit brightness
similar to the ground-truth images. This is important when performing quantitative com-
parisons using metrics such as SSIM and PSNR (Figures 6.5 to 6.8 and Tables 6.2 to 6.5).

Chromatic aberration due to the external lens is given by

S:o(/% - 1)
Hy — 1

S;,L(:uc -1)
py — 1

1! 1!
Spe = and  S_.. = ,
where 57, and Sg 1, are the resulting aberrated powers (in diopters) for wavelength A., S,
and S’ | are the effective optical powers due to the vertex distance v, . is the lens refrac-
© P p 1%

tive index for wavelength A., and p,, = 1.5085 is the reference refractive index, which is
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usually on the yellow region of the spectrum. For our experiments, we used the following
indices of refraction for red, green, and blue, respectively: i, = 1.4998, 11, = 1.5085, and
1y = 1.5152, which were obtained from an online refractive index database (POLYAN-
SKIY, 2019), and correspond to wavelengths A, =700 nm, A\, =510 nm, and A\, =440 nm
(Equation (2.45)).

6.4 Object defocus compensation using an extra lens

This experiment shows that observing an object at a certain distance d while si-
multaneously focusing at a distance h can be simulated by a single lens with optical power
given by Equation (4.7). On each of the four performed tests, we took a picture of an eye
chart positioned in front of the camera with distance /. We used the camera auto focus to
make sure it was focusing exactly on the eye chart. We locked the focus and took a sharp
picture of the eye chart. We then moved the chart to a distance d from the camera and
took another picture, which appears out of focus. Then, we put an extra lens in front of
the camera in order to allow it to focus again on the chart at distance d from the camera,
and took another picture.

The results of this experiment are shown in Figures 6.5 to 6.8. The SSIM and
PSNR values shown in the captions measure the similarity between lens-corrected defocus
images (column b) and ground-truth in-focus images (column ¢). In all cases, they indicate
quantitatively that the deduced formula is indeed correct. The small qualitative divergence
(slight defocus) observed in Figure 6.8b is due to imprecision on measurements occurring

in a low-tolerance and low depth-of-field region in the vicinity of the external lens.

6.5 Quantitative evaluation

For the quantitative evaluation, we took a set of pictures from two eye charts using
the DSLR camera with extra lenses placed 54 mm in front of the camera’s original lens to
induce low-order aberrations. The charts were placed 7.0 m (approximately 23.96 feet)
away from the camera. We used external lenses with various spherical (.5) and cylindrical
(C) powers, as well as astigmatism axes (Tables 6.2 to 6.4). The acquired ground-truth
images (JPEG, 5,184 x3,456 pixels) were compared against our simulations for the cor-

responding low-order aberrations using the SSIM and PSNR objective metrics. Since the
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Figure 6.5: Induced myopia corrected with extra lens. Object distance d = 6,047 mm.
PSNR = 37.2334 and SSIM = 0.9664. (a) Camera focus at f = 943 mm (myopia). (b)
Camera focus at f = 943 mm. Hyperopic extra lens with S = -1.00 D. (c) Camera focus
at f = d = 6,047 mm (ground-truth).

(a) (b) (©

Source: The Authors

Figure 6.6: Induced myopia corrected with extra lens. Object distance d = 6,047 mm.
PSNR = 37.6544 and SSIM = 0.9616. (a) Camera focus at f = 469 mm (myopia). (b)
Camera focus at f = 469 mm. Hyperopic extra lens with S = -2.50 D. (c) Camera focus
at f = d = 6,047 mm (ground-truth).

(a) (b) (©)

Source: The Authors
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Figure 6.7: Induced hyperopia corrected with extra lens. Object distance d = 864 mm.
PSNR = 36.2875 and SSIM = 0.9491. (a) Camera focus at f = 6,047 mm (hyperopia).
(b) Camera focus at f = 6,047 mm. Hyperopic extra lens with S = +1.00 D. (¢) Camera
focus at f = d = 864 mm (ground-truth).

(a) (b) (©

Source: The Authors

Figure 6.8: Induced hyperopia corrected with extra lens. Object distance d = 414 mm.
PSNR = 31.2921 and SSIM = 0.9367. (a) Camera focus at f = 6,047 mm (hyperopia).
(b) Camera focus at f = 6,047 mm. Hyperopic extra lens with S = +2.25 D. (¢) Camera
focus at f = d = 414 mm (ground-truth).

(a) (b) (©)

Source: The Authors
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eye charts are planar, these experiments take advantage of the single-plane optimization.
The use of an external lens introduces changes to the camera’s optical system, re-

sulting in changes in magnification, brightness, and chromatic aberrations of the captured

ground-truth images. Such changes need to be compensated for in our synthesized results

using the methods described in Section 6.3 for proper comparisons.

6.5.1 Objective validation

We validated our technique by performing some quantitative evaluation of low-
order aberrations (myopia, hyperopia, and astigmatism) with and without considering
chromatic aberrations.

Figure 6.9a shows three pictures of an eye chart captured with the following cam-
era settings: ISO 100, exposure 1/40 s, f = 20 mm, and f/5. Figure 6.9b shows the
pictures in Figure 6.9a after anisotropic minification and brightness correction. Such
minification was performed using MATLAB’s interpolation function interp2. Fig-
ure 6.9c shows the ground-truth pictures captured by placing a lens whose parameters
are described in the corresponding rows of Tables 6.2 and 6.3. Figures 6.9d and 6.9¢
show the simulated results produced by both of our techniques (Fourier optics and LGT
respectively) using Figure 6.9b as input and not taking chromatic aberration into account.
Note how similar they are to the corresponding ground-truth images. Tables 6.2 and 6.3
show SSIM and PSNR values for the results shown in Figures 6.9d and 6.9¢e respectively.
SSIM values are above 0.94 and PSNR values are above 32.4 for all simulated results,
both with or without considering chromatic aberration (CA). The metric values obtained
when considering CA were just slightly higher than without considering it. The results
are visually indistinguishable. Including CA in the simulations does not seem to improve
the results to justify its additional computation. Thus, in this thesis, we only show pictures
of simulated results without considering CA.

Figure 6.10a shows pictures of an eye chart captured under a shorter exposure.
The camera settings are: ISO 100, exposure 1/125 s, f = 18 mm, and f/5. Again, the
two images were taken by placing extra lenses 54 mm in front of the original camera lens.
The spherical (S) and cylindrical (C') powers, as well as the corresponding ¢ cylinder
axis angle of the extra lens used to capture each picture of this experiment are shown in
Tables 6.4 and 6.5. Figure 6.10c shows the ground-truth image captured by placing a lens

with parameters described in the corresponding row of Tables 6.4 and 6.5. Figures 6.10d
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Figure 6.9: Inducing low-order aberrations (hyperopia and astigmatism) by placing exter-
nal lenses in front of a camera’s original lens (v = 54 mm). Camera settings: ISO 100,
exposure 1/40 s, f =20 mm, f/5. (a) Picture taken without extra lens. (b) Anisotropic
minification and brightness adjustment applied to (a). (c) Ground-truth image obtained
with an external lens in front of the camera. (d) Simulated results produced by the Fourier
optics technique. (e) Simulated results produced by the LGT technique. Lens’ parame-
ters, SSIM and PSNR values for comparison of (c), (d) and (e) are in Tables 6.2 and 6.3.
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and 6.10e show our simulated results. Again, note how similar they are to the correspond-
ing ground-truth images. Tables 6.4 and 6.5 show the corresponding SSIM and PSNR
values, which are higher than 0.98, and 42.2, respectively, indicating strong agreement

with the ground-truth.

6.6 Qualitative evaluation

For the qualitative experiments, we use a set of RGB-D images whose depth ranges
cover several diopters. Thus, the simulations discussed in the section use combinations of
complete LGTs and a-b trees, as well as the process in single-plane optimization. The

set of RGB-D images was obtained from a stereo online dataset that offers 23 color
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Table 6.2: Extra lens parameters, SSIM and PSNR values for the simulation results of
Fourier optics approach in Figure 6.9. Results are shown both with (CA) and without
(NCA) considering chromatic aberration. "Row" is the row number in Figure 6.9.

Lens CA NCA
Row S C @ | SSIM | PSNR | SSIM | PSNR
0D -1D 86° | 0.959 | 34.318 | 0.959 | 34.296

0D -0.5D | 82° | 0.944 | 32.465 | 0.944 | 32.445
-0.25D | -225D | 69° | 0.953 | 36.500 | 0.951 | 36.430

Source: The Authors

(SN SR

Table 6.3: Extra lens parameters, SSIM and PSNR values for the simulation results of
LGT approach in Figure 6.9. Results are shown both with (CA) and without (NCA)
considering chromatic aberration. "Row" is the row number in Figure 6.9.

Lens CA NCA
Row S C @ | SSIM | PSNR | SSIM | PSNR
0D -1D 86° | 0.959 | 34.426 | 0.959 | 34.401

0D -0.5D | 82° | 0.942 | 32.434 | 0.942 | 32.411
-0.25D | -225D | 69° | 0.952 | 36.382 | 0.950 | 36.312

Source: The Authors

W N =

Figure 6.10: Inducing low-order aberrations (myopia) by placing external lenses in front
of a camera’s original lens (v = 54 mm). Camera settings: ISO 100, exposure 1/125 s,
f =18 mm, f/5. (a) Picture taken without the extra lens. (b) Minification and brightness
applied to (a). (c) Ground-truth image obtained by placing an external lens in front of the
camera. (d) Simulated results produced by the Fourier optics technique. (e) Simulated
results produced by the LGT technique. Lens’ parameters, SSIM and PSNR values for
comparison of (c), (d) and (e) are in Tables 6.4 and 6.5.

(a) (b) () (d) (e)

Source: The Authors

+1 D C=0 D p=0°
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Table 6.4: Extra lens parameters and SSIM and PSNR values for the simulation results
of Fourier optics approach shown in Figure 6.10. Results are shown both with (CA)
and without (NCA) considering chromatic aberration. "Row" is the row number in Fig-
ure 6.10.
Lens CA NCA
Row S C | ¢ | SSIM | PSNR | SSIM | PSNR
+1D | 0D |0°|0.986 | 42.013 | 0.987 | 42.165
2 | 4225D | 0D | 0° | 0.991 | 42979 | 0.991 | 43.078

Source: The Authors

—

Table 6.5: Extra lens parameters and SSIM and PSNR values for the simulation results
of LGT approach shown in Figure 6.10. Results are shown both with (CA) and without
(NCA) considering chromatic aberration. "Row" is the row number in Figure 6.10.
Lens CA NCA
Row S C | ¢ | SSIM | PSNR | SSIM | PSNR

1 +1D [ 0D |0° | 0.986 | 42.220 | 0.987 | 42.370

2 | 4225D | 0D | 0° | 0.991 | 43.204 | 0.991 | 43.078

Source: The Authors

images with corresponding disparity maps, which can be converted to depth informa-
tion (SCHARSTEIN et al., 2014). The per-pixel depth values expressed in meters were

computed as:

7 - bx f/(d+ dpp)
1000 ’

(6.2)
where b is the camera baseline, f is camera’s focal length in pixels, d is the pixel disparity
value, and dpp is the x-difference of principal points (SCHARSTEIN et al., 2014). All
these values are available in the files accompanying each image in the dataset. One should
note that some of the depth values computed by this procedure are not properly aligned
to the color pixels or do not correspond to a valid distance. In those cases, we manually
adjusted the depth map using the distance from objects that were correctly registered
and roughly correspond to the same depth. Early tests have shown that even slightly
misplaced depth values can result in noticeable artifacts, such as the introduction of light
or dark auras around objects, similar to the one shown in Figure 6.11.

Figure 1.2 demonstrates the use of our technique for simulating the view of a
myopic subject (0.5 D) focusing at scene objects located at different depths. In Figure 1.2a
the subject is focusing on the game box, causing the white and blue flower to appear
blurry. In Figure 1.2b the focus has moved to the white and blue flower, making the game
box to look defocused. Figure 6.12 illustrates the view of a hyperopic subject (-0.3 D)
observing the same scene showing in Figure 1.2. Note how closer objects appear blurrier

than far away ones
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Figure 6.11: Light aura around handrail due to misplaced depth values. (a) Aura is present
due to wrong depth values. (b) After fixing some depth values on the top-left border of
the handrail, the aura is absent on that region, but still present on the other regions.

(b)

Source: The Authors

Figure 6.13 shows a scene containing an Adirondack chair. The input color and
depth images are shown in Figures 6.13a and 6.13b. The scene’s plane index map is
illustrated in Figure 6.13c, where each color indicates a different plane numbered from
0 (closest) to 13 (farthest) according to Table 6.6. Figures 6.14a and 6.14b compare the
results of myopic simulations for 1.5 D and 0.75 D, respectively. These correspond to
focusing at the two armrests (red and blue insets), which are located approximately at
0.67 m and 1.33 m from the observer. Please note that only one armrest appears in focus
in each image. The white book is closer to the farthest armrest in diopters and, as such,
its image appears sharper in Figure 6.14b compared to its appearance in Figure 6.14a.

Figure 6.15 illustrates the combined simulation of myopia and astigmatism (S = 1D,
C=3D, ¢ =20°). Note that the anisotropic blurriness on the book cover and on the mug
handle (red inset) is more pronounced at 110°, a direction perpendicular to ¢. Along such
direction, the dioptric power is given by S+C =4 D.

Figure 6.16 shows a scene containing a backpack on the foreground (approxi-
mately 0.91 m from the viewer) and a wardrobe and a broom on the background (ap-
proximately 1.54 m from the viewer), both presenting high and low-frequency content.
Figure 6.17a illustrates the simulated view of a myopic subject with S = 1.1 D, thus fo-
cusing on the backpack (see red and green insets), while the background looks blurry
(blue inset). Figure 6.17b shows another simulation, this time for a myopic subject with
S = 0.65 D, thus focusing on the broom (blue inset), while the backpack appears blurry
(red and green insets). Figure 6.17b simulates the view of a subject with myopia and

astigmatism (S = 0.65 D, C =0.45 D, and ¢ =90°).
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Table 6.6: Plane indices and their encoded colors.

|7 REN 10 | 11 [SRRISY

Source: The Authors

Figure 6.18 shows a scene where various objects span several planes in terms
of depth range (Figure 6.18c), and illustrates how our technique can produce realistic
simulations without exhibiting inter-plane artifacts. Figure 6.19a simulates the view of an
observer focusing on the moose puppet (blue inset) (0.52 m away), causing other elements
to go increasingly out of focus as the distance from the viewer increases (green and red
insets). Figure 6.19b illustrates the view of the scene when the focus is on the back of
the green bucket located 0.87 m away from the observer (red inset). Finally, Figure 6.19¢
simulates the view of an individual with myopia and astigmatism (S =1.10 D, C=0.85 D,
and p =75°).

Our project website provides some supplementary materials', including a video?
captured in real time, illustrating the use of our technique. They also provide a user
interface that can be used to explore high-resolution versions of the results shown in this

work.

6.7 Discussion and Limitations

Our technique assumes a constant PSF across the entire visual field (isoplanatic
assumption), even though it should slightly vary according to the direction of the in-
coming wavefront relative to the optical axis. It also does not take into account any of
the high-order aberrations, which can be represented by a linear combination of Zernike
polynomials.

Wavefront errors are a function of accommodation, meaning that when a sub-
ject changes focal distance, aberrations might change as well (HE; BURNS; MARCOS,
2000). Remarkably, defocus is not affected because it is already determined by the change
in the focus of interest. Astigmatism, on the other hand, might be affected. He et al. re-
port a wavefront error of roughly 0.5 pum for each of the astigmatism coefficient in the
Zernike polynomials (HE; BURNS; MARCOS, 2000). Our techniques disregard such

minor effects.

'Supplementary materials: http://www.inf.ufrgs.br/ oliveira/pubs_files/VS/SM/
2Video: http://www.inf.ufrgs.br/ oliveira/pubs_files/VS/SM/VS_video.mp4


http://www.inf.ufrgs.br/~oliveira/pubs_files/VS/SM/
http://www.inf.ufrgs.br/~oliveira/pubs_files/VS/SM/VS_video.mp4
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Figure 6.12: Simulated view of a hyperopic subject (-0.3 D). Note how closer objects
appear blurrier than far away ones. The pairs of sub-images compare simulated (left) and
original (right) patches.

Source: The Authors
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Figure 6.13: Adirondack chair. (a) Reference image. (b) Field discretization plane set.
(c) Depth image.

(a) Reference

(b) Depth

(c) Planes

Source: The Authors
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Figure 6.14: Myopic simulations of Figure 6.13. Myopic simulations for 1.5 D (a) and
0.75 D (b), which correspond to focusing at the two armrests (red and blue insets), which
are located approximately at 0.67 m and 1.33 m from the observer. The white book (green
inset) is closer to the farthest armrest and, therefore, appears sharper in Figure 6.14b.
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(a) S=

(b) $=0.75 D d=1.33 m

Source: The Authors
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Figure 6.15: Myopic and astigmatic simulations of Figure 6.13. Simulation of myopia
and astigmatism: S=1D, C =3 D, ¢ =20°.

Source: The Authors
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Figure 6.16: Backpack and broom on the background. (a) Reference image of an Back-

d a broom. (b) Depth image. (c) Field discretization plane set.
[T T :

pack an

-

(a) Reference

(b) Depth

(c) Planes

Source: The Authors
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Figure 6.17: Myopic and astigmatic simulations of Figure 6.16. A backpack (0.91 m from
the viewer) and a wardrobe and a broom on the background (1.54 m from the viewer). (a)
Simulated view of a myopic subject with S = 1.1 D. (b) Simulated view of a myopic sub-
ject with S = 0.65 D. (c¢) Simulation of myopia and astigmatism (S = 0.65 D, C =0.45 D,
© =90°).

1.1Dd=091m

(a) S=

0.65 D d=1.54 m

) S

=0.45 D p=90°

(c) S=0.65D C
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Figure 6.18: Scene with most objects spanning several planes in terms of depth range.
(a) Reference image. (b) Depth image. (c) Field discretization plane set.

(a) Reference

(b) Depth

(c) Planes

Source: The Authors
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Figure 6.19: Myopic and astigmatic simulations of Figure 6.18. (a) View of a subject is
focusing on moose puppet (0.52 m away). (b) View of a subject is focusing on the bucket
back rim (0.87 m away). (c) Simulated view of a subject with myopia and astigmatism
(S=1.10D,C=0.85D, ¢ =75°).

1.90 D d=0.52 m

(b)S

=0.87 m

1.15Dd

(a) S=

0.85 D (=75°

1.10 D C=

©)S

Source: The Authors
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The disocclusion (missing information recovery) technique we employ involves
color extending and assumes that the color pattern around the occlusion border will persist
across the occluded interior. Deep learning techniques could be used in order to attempt a
more elaborated guess, but nevertheless they fall into the same category, in the sense that

it is impossible to recover missing information with 100% accuracy.

6.8 Summary

This chapter described some experimental results of the techniques and formulas
presented in this thesis. We performed an Airy pattern measurement to test a scaling
factor predicted by theory in Fourier optics. We also validated the formula used in our
wave optics technique, and performed various quantitative evaluation experiments for
both techniques. A set of qualitative evaluation experiments were done to test the LGT
technique. The results showed that both techniques produce quite realistic simulations of

accommodation and low-order aberrations.
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7 CONCLUSIONS AND DISCUSSION

We presented two practical solutions for simulating accommodation and low-order
aberrations of the human eye, considering real scenes. The first technique, using Fourier
optics, included the derivation of a formula for computing the equivalence between defo-
cus aberration and the combination of object position and gazing focus distance. However,
the lack of information due to partial occlusions among objects in arbitrary scenes pre-
cludes the use of such technique in general, limiting its use to scenes containing flat or
concave depth values. This led to the development of our second method.

Our second technique is based on a new data structure called light-gathering tree
(LGT), built from an RGB-D image and low-order aberration parameters (S, C, ), focal
distance, and pupil size. The use of an isoplanatic assumption and a set of auxiliary maps
(PI, NPRP, and FPRP) leads to a light data structure that only needs to store the paths of
rays traced through few tree nodes.

We validated the results of our techniques using quantitative and qualitative ap-
proaches. Quantitative validation was performed against ground-truth data (captured us-
ing a DSLR camera coupled with external lenses) for single-depth scenes using metrics
such as SSIM and PSNR. For astigmatic optical configurations, our results achieved SSIM
and PSNR values above 0.94 and 32.4, respectively. In the case of defocus-only, the
SSIM and PSNR values are above 0.98 and 42.2, respectively. Such results indicate a
strong agreement with the ground-truth images. Overall, the results obtained showed that
the geometric optics approach does produce results compatible with wave optics in the
human vision simulation domain. The only obvious divergence are on the diffraction pat-
terns, but they were only observed on the Airy pattern measurement because an extremely
long focal length was used, and that is obviously unrealistic for human vision simulation.
Qualitative evaluation was performed using RGB-D images of real scenes as input.

Our techniques can be used in eye care areas where realistic human vision simu-
lation is important. This includes providing doctors with concrete representations of how
their patients see the world; explaining the benefits of refractive surgery to patients, con-
trasting their current vision with the corrected one, considering potential residual errors;

and as training tool for medical students.
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7.1 Future work

An interesting direction for future exploration is to consider microscopic environ-
ments by designing LGTs that can handle diffraction effects using Wigner functions (LUIS,
2007) to represent rays using the Huygens-Fresnel principle. The use of a separable bokeh
technique (NIEMITALO, 2011; GARCIA, 2017) could further improve the algorithm’s
performance. However, this would probably be limited to myopia and hyperopia, since
the astigmatic bokeh is not circularly symmetrical. Finally, one could implement higher-
order aberrations replacing ray direction determination by sampling along the wavefront

normals.
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APPENDIX A — MATHEMATICAL BACKGROUND

A.1 Binomial approximation

Binomial approximation is a mathematical tool used to approximate powers of the
binomial (1+4z), where = happens to be a small number. Whenever |z| < 1 and |az| < 1,
where x, o € C, one can truncate the Maclaurin series of the binomial to the second term,

yielding the approximation
o 1 2 1 3
(1+2) :1+a$+§a(a—1)x +6a(a—1)(a—2)x...%1+ax.

As acorollary, 1 +z ~ 1+ /2.
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APPENDIX B — MATLAB SOURCES

This appendix provides the source code for the approach described in Chapter 4,
along with the adjustments described in Section 6.3. It consists of a setup code, listed
in Appendix B.1, which is used to define the optical system properties, perform any
necessary adjustments in the image (chromatic aberration, magnification, and brightness
changes) and call the function gen_PSF, defined in Appendix B.2. Both of these algo-
rithms issue calls to the other helper functions, listed in Appendices B.3 to B.15.

In case one does not wish to simulate effects caused by external lenses, the variable
bpar.extralens (1) .present should be setto 0, and bpar.ab_S,bpar.ab_C
and bpar.ab_angle should be adjusted according to the low-order aberration param-

eters (S, C, p) respectively.

B.1 Setup code

% These constants are the wavelengths in nanometers in vacuum for each of the RGB
% channels, plus an extra ’'White’ channel centered on yellow frequency to use in
% grayscale simulations

nm = 550; % "White" wavelength is mean value of human sensitivity

bpar.iterate_pupil_pixels =1; % Whether to iterate over better size in
% pixels for pupil. If not iterating,
% the size in pixels is fixed
bpar.sensor_pixel_scale =1; % Set <> 1 if you wish to have different
% sized sensor pixels
bpar.use_wave_optics =1;
bpar.num_components = 3; % RGB are the three components
bpar.f = 18; % This is the camera zoom lens focal
% length in mm
bpar.Fnum ='5.0"; % This is the camera F number
bpar. frame = 112; % This is the number of pixels in the

o

frame minus one
Brightness to use

o

bpar.brightness =0
bpar.ignore_vertex_distance = 0;
bpar.new_mode =1
bpar.apply_chromatic_aberration =1

o\

If 1, then chromatic aberration will
be applied to external lens

o

bpar.psf_magnification =1; % (internal use) the magnification to be
% applied to PSF before returning it to
% caller
numerical_validation_with_linear = 0;

% These field should be eliminated

bpar.doapply = 0; %

bpar.scale = 0; %

bpar.entrance_pupil_pos = 47; % distance (in mm) from camera lens
% mount to entrance pupil

bpar.gaze_objdist = 0; % distance (in mm) from camera lens
% mount to object to be observed

bpar.gaze_focus = 0; % distance (in mm) from camera lens

o

mount to gazing focus point
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71
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bpar.extralens_ove

bpar.ab_S = 0;
bpar.ab_C = 0;
bpar.ab_angle = 0;

bpar.extralens (1)
bpar.extralens (1)
bpar.extralens (1)
bpar.extralens (1)

bpar.extralens (1)
bpar.extralens (1)
bpar.extralens (1)
bpar.extralens (1)
bpar.extralens (1)
bpar.extralens (1)
bpar.extralens (1)
bpar.extralens (2)
bpar.extralens (2)
bpar.extralens (2)
bpar.extralens (2)
bpar.extralens (2)
bpar.extralens (2)
bpar.extralens (2)
bpar.extralens (2)
bpar.extralens (2)

bpar.extralens (2)

bpar.extralens(2) .

MAX_EXTRA_LENSES =

it is assumed to
(bpar.num_compo
bpar.RGB_nm =
else
bpar.RGB_nm =
end

© o0 o o

H
Hh

FL_crop_dx = 0;
FL_crop_dy 0;

rall_astig_angle

.present

.thin_S

.thin_C
.astig_angle

.pos

.thickness

.n
.raw_back_x_power
.raw_back_y_power
.raw_front_x_power
.raw_£front_y_power
.present

.thin_S

.thin_C
.astig_angle

.pos

.thickness

.n
.raw_back_x_power

.raw_back_y_power

.raw_front_x_power

raw_front_y_power

2;

be one,

nents == 3)

[R_nm, G_nm, B_nm];
[W_nm, W_nm, W_nm];

. oNe oNe

o O O O
~

101;

. o~

o O O O
~

111;

o° o° o

o0 o o d° A° A0 A0 o o o o° o

o o o° o° o° o° o o° o° o° o° o°

Set up experimen

o o o

t for astigmatism

bpar.apply_chromat

bpar.gaze_objdist
bpar.gaze_focus =
% Base path for al
bpar.base_path =

bpar.extralens(1l) .
bpar.extralens (1) .
bpar.extralens (1) .

crop_x = 2620;

ic_aberration

= 6490 + 25;
6490 + 25;

1 input images
present = 1;

1
thin_S = 0;
thickness = 0;

(JPG and DNG)
"E:/ufrgs/experiments/2019_02_13/";

S (spherical)
C (cylinder)

in diopters
in diopters

axis angle in degrees

distance

(in mm)

from camera lens

mount to extra lens back surface

extra lens
extra lens
extra lens
direction
extra lens
direction
extra lens
direction
extra lens
direction

distance

(in mm)

center thickness
refractive index
back surface power in x

(in mm)

back surface power in y

front surface power in x

front surface power in y

from camera lens

mount to extra lens back surface

extra lens
extra lens
extra lens
direction
extra lens
direction
extra lens
direction
extra lens
direction

RGB_nm is a 3-element vector containing the wavelength
in nanonmeters for each color channel.

extra lens center thickness

center thickness
refractive index
back surface power in x

(in mm)

back surface power in y
front surface power in x

front surface power in y

If number of components is not 3,
indicating grayscale image processing

If 1 then extra lens is present

(in mm)
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crop_y = 1538;

crop_w = 113;

crop_h = 113;

% Base file name for to-be-blurred image (image A)
bpar.fname_A = "IMG_0197’;

bpar.f = 20; % This is the camera zoom lens focal length in mm
bpar.brightness = 0;

bpar.extralens(l) .thin_C = -2.25;

bpar.extralens(l) .thin_S = -0.25;

bpar.extralens (l) .astig_angle = 69;

FL_crop_dx = 5; % cropping adjustments due to magnification affecting
FL_crop_dy = -5; % position of off-axis objects

bpar.fname_C = "IMG_0196";

crop_w = 113 * 2;
crop_h = 113 x 2;

gt_crop_dx = FL_crop_dx;
gt_crop_dy = FL_crop_dy;

border_x = crop_w;
border_y = crop_h;

% Load the images

[meta_info, raw] = simply_load_dng(strcat (bpar.base_path, bpar.fname_A, ’.dng’));

clear raw;

warning off MATLAB:imagesci:png:libraryWarning

full image_A = unapply_gamma (im2double (imread (strcat (bpar.base_path, bpar.fname_ A,
".dpg’))))

full_image_C = unapply_gamma (im2double (imread (strcat (bpar.base_path, bpar.fname_C,
".Ipg’)))) g

% Convert images to grayscale if using only one channel
if bpar.num_components ==

full_image_A = rgb2gray (full_image_A);

full_image_C = rgb2gray(full_image_C);
end

if strcemp(meta_info.Model, ’Canon EOS Rebel T3')
bpar.sensor_pixels = 4278;
bpar.sensor_width 0.0222;

elseif strcmp (meta_info.Model, ’Canon EOS Rebel T6')

bpar.sensor_pixels = 5344;

bpar.sensor_width = 0.0223;
else

error (' UNKNOWN CAMERA’)

end

Defocus added to wave optics in order to simulate observing light-emitting object at
distance ’d’, while focusing at distance ’f’
bpar.wave_defocus = 0;

o
g
o
S

% If object or gazing have been set (not zero), then we compute the actual values for
% defocus and plane
if (bpar.gaze_objdist ~= 0) && (bpar.gaze_focus ~= 0)

% proper relative distance and conversion to meters

gf = (bpar.gaze_focus - bpar.entrance_pupil_pos) * 0.001;
% proper relative distance and conversion to meters
od = (bpar.gaze_objdist - bpar.entrance_pupil_pos) * 0.001;

% This variable is used by wave optics. This formula is based on our derivation in
% the dissertation
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end

num_

for

end

bpar.wave_defocus = (od - gf) / (od * gf);

clear gf;
clear od;

extralenses = 0;

lens_i = 1:MAX_EXTRA_LENSES

if (bpar.extralens(lens_i) .present == 1)
num_extralenses = num_extralenses + 1;

end

magnification_angle = 0;
x_magnification = 1;

y_magnification

1;

if num_extralenses > 0

for lens_i = 1:MAX_EXTRA_LENSES
if bpar.extralens(lens_i) .present == 0
continue;
end

sin_theta = sin(deg2rad(bpar.extralens(lens_1i).astig_angle));
cos_theta = cos(deg2rad (bpar.extralens(lens_1i) .astig_angle));

o

Compute the magnification caused by extra lens

oo o

extralens_distance = (bpar.extralens(lens_i).pos - bpar.entrance_pupil_pos)
« 0.001;
if bpar.extralens(lens_1i) .thickness == 0

extralens_raw_x_power = bpar.extralens(lens_i).thin_S;

extralens_raw_y_power = bpar.extralens(lens_i).thin_S +
bpar.extralens (lens_i) .thin_C;

x_power_factor = 1 / (1 - extralens_distance x extralens_raw_x_power);

y_power_factor = 1 / (1 - extralens_distance » extralens_raw_y_power);

o

% Formula derived to apply a rotated scaling

this_x_magnification = (1 » x_power_factor);
this_y magnification = (1 * y_power_factor);
if (this_x_magnification ~= this_y_magnification)

if magnification_angle ~= 0
error (' Competing astigmatism angles’)
end
magnification_angle = bpar.extralens(lens_i).astig_angle;
end
if bpar.extralens(lens_1i) .thin C ~= 0
if bpar.extralens_overall astig_angle ~= 0
error (' Competing astigmatism angles’)
end

bpar.extralens_overall_astig_angle = bpar.extralens(lens_i) .astig_angle;

end
x_magnification = x_magnification % this_x_magnification;
y_magnification = y_magnification x this_y magnification;
clear extralens_rot_raw_thin_x_power;
clear extralens_rot_raw_thin_y_power;
end
end

clear sin_theta;
clear cos_theta;

o

% Each channel will have its own chromatic-aberration-dependent S
if bpar.num_components == 3
for i_lambda = 1 : bpar.num_components
bpar.nd_S (i_lambda) = 0;
bpar.nd_C(i_lambda) = 0;
for lens_i = 1 : MAX_EXTRA_LENSES
if bpar.extralens(lens_i) .present == 1
extralens_distance = (bpar.extralens(lens_1i) .pos
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- bpar.entrance_pupil_pos) % 0.001;

ca_S = f_CalcChromaticDiopter (bpar.extralens (lens_i).thin_S,
i_lambda, 0, bpar);
bpar.nd_S(i_lambda) = bpar.nd_S(i_lambda) + f_CalcNewDiopter (
ca_S, extralens_distance = 1000);
ca_C = f_CalcChromaticDiopter (bpar.extralens (lens_i).thin_C,
i_lambda, 0, bpar);
bpar.nd_C(i_lambda) = bpar.nd_C(i_lambda) + f_CalcNewDiopter (
ca_C, extralens_distance % 1000);
end
end
end
else
for i_lambda =1 : 3
bpar.nd_S(i_lambda) = 0;
bpar.nd_C(i_lambda) = 0;
for lens_i = 1 : MAX_EXTRA_LENSES
if bpar.extralens(lens_i) .present == 1
extralens_distance = (bpar.extralens(lens_1i) .pos
- bpar.entrance_pupil_pos) % 0.001;
bpar.nd_S(i_lambda) = bpar.nd_S(i_lambda) + f_CalcNewDiopter (
bpar.extralens (lens_1i) .thin_S, extralens_distance % 1000);
bpar.nd_C(i_lambda) = bpar.nd_C(i_lambda) + f_CalcNewDiopter (
bpar.extralens (lens_1i) .thin_C, extralens_distance x 1000);
end
end
end
end
clear ca_S;
clear ca_C;
else
x_magnification = 1;

y_magnification 1;

for i_lambda = 1 : 3
bpar.nd_S(i_lambda) = 0;
bpar.nd_C (i_lambda)

end

I
o

Positive lens causes magnification (m > 1)

We should shrink the PSF and shrink the ground truth blurred image
if x_magnification > 1

PSF_x_scale = 1 / x_magnification;

gtruth_x_magnification = 1 / x_magnification;
input_image_x_magnification = 1;

do oo

o

Negative lens causes demagnification (m < 1)

don’t do this!! We should enlarge the PSF and shrink the already-convolved image
We should shrink the yet-to-be convolved image

elseif x_magnification < 1

PSF_x_scale = 1;

oo oo oo

gtruth_x_magnification = 1;
input_image_x_magnification = x_magnification;
% No magnification at all
else
PSF_x_scale = 1;
gtruth_x_magnification = 1;
input_image_x_magnification = 1;

end

Positive lens causes magnification (m > 1)

We should shrink the PSF and shrink the ground truth blurred image
if y magnification > 1

PSF_y_scale = 1 / y_magnification;

gtruth_y_magnification = 1 / y_magnification;
input_image_y_magnification = 1;

oo oo

o

Negative lens causes demagnification (m < 1)

don’t do this!! We should enlarge the PSF and shrink the already-convolved image
We should shrink the yet-to-be convolved image

elseif y_magnification < 1

do oo e
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PSF_y_scale = 1;
gtruth_y_magnification = 1;
input_image_y magnification = y_magnification;
% No magnification at all
else
PSF_y_scale = 1;
gtruth_y_magnification = 1;
input_image_y_magnification = 1;
end

o

% Perform input image downscaling if necessary
if (input_image_x_magnification ~= 1) || (input_image_y_magnification ~= 1)
image_A_is_resized = 1;

resized_image_A = apply_anisotropic_magnification(full_image_A, magnification_angle,

input_image_x_magnification, input_image_y_magnification, 0, 0);
resized_image_A = max(0,min(resized_image_A,1));
else
image_A_is_resized = 0;
resized_image_A = full_image_A;
end

o

% Perform ground-truth image downscaling if necessary
if (gtruth_x magnification ~= 1) || (gtruth_y_magnification ~= 1)
image_C_is_resized = 1;

resized_image_C = apply_anisotropic_magnification(full_image_C, magnification_angle,

gtruth_x_magnification, gtruth_y_magnification, 0, 0);
resized_image_C = max(0,min (resized_image_C,1));
else
image_C_is_resized = 0;
resized_image_C = full_image_C;
end

o9

%% auto brightness code - these coordinates lead to a small white patch on the image

bright_sample_A = imcrop (resized_image_A, [crop_x - 340,
crop_y, ..
64, 641);
bright_sample_C = imcrop (resized_image_C, [crop_x + gt_crop_dx - 340,
crop_y + gt_crop_dy,
64, 641);
for i_lambda = 1 : bpar.num_components
channel_brightness_scale = mean2 (bright_sample_A(:, :, i_lambda)) /
mean2 (bright_sample_C(:, :, i_lambda));
resized_image_C(:, :, i_lambda) = resized_image_C(:, :, i_lambda) =

channel_brightness_scale;
end

image_A_x
image_A_y = crop_y;

Crop_x;

cropped_image_A = imcrop (resized_image_A, [image_A_x - border_x,
image_A_y - border_y,
crop_w + 2 * border_x,
crop_h + 2 x border_yl);

image_C_x = image_A_Xx;
image_C_y = image_A_y;

im_U = apply_gamma (imcrop (full_image_A, [crop_x,

crop_y,
crop_w, crop_hl));
cropped_image_C = imcrop (resized_image_C, [image_C_x + gt_crop_dx, image_C_y +

gt_crop_dy, crop_w, crop_hl);

w_out = gen_PSF (0, bpar);
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% Resize the PSF and compute OTF for each channel

w_OTF = zeros (size (cropped_image_A));
g_OTF = zeros (size (cropped_image_A));
for i_lambda = 1 : bpar.num_components
unresized_PSF = w_out.PSF(:, :, i_lambda);
if (PSF_x_scale ~= 1) || (PSF_y_scale ~= 1)
resized_PSF = apply_anisotropic_magnification(unresized_PSF,

PSF_x_scale, PSF_y_scale, 0, 0);

resized_PSF = max(0,min(resized_PSF,1));
else

resized_PSF = unresized_PSF;
end
PSF = zeropad_newsize (resized_PSF, size (cropped_image_A));
PSF = PSF / sum(sum(PSF));
w_OTF(:, :, i_lambda) = psf2otf (PSF);

end

o

g
% Convolution in spacial domain is the same as multiplication in fre

w_convolved_rgb = zeros (size (cropped_image_A), ’'double’);
for i_lambda = 1 : bpar.num_components
w_convolved_rgb(:, :, i_lambda) = ifft2 (££ft2 (cropped_image_A(:,:
w_OTF (:, :, i_lambda));
end
g_convolved_rgb = zeros (size (cropped_image_A), ’double’);
for i_lambda = 1 : bpar.num_components
g_convolved_rgb(:, :, i_lambda) = ifft2 (fft2 (cropped_image_A(:, :
g _OTF (:, :, i_lambda));
end

.
S

% Remove borders and apply gamma encoding

linear_im_A = (imcrop (cropped_image_A, [border_x, border_y, crop_w,
im_A = apply_gamma (linear_im_A);

linear_im_BW = imcrop (w_convolved_rgb, [border_x, border_y, crop_w,
im_BW = apply_gamma (linear_im_BW) ;

linear_im_C = cropped_image_C;
im_C = apply_gamma (linear_im_C);

if image_A_is_resized ==
total_images = 4;
spl=subplot (1, total_images, 1);
imshow (im_U) ;
title(’ [Original] Sharp input image’);
else
total_images = 3;
end
sp2=subplot (1, total_images, total_images - 2);
imshow (im_A) ;
if image_A_is_resized ==
title(’ [Resized] Sharp input image’);
else
title(’ [Original] Sharp input image’);
end
sp3=subplot (1, total_images, total_images - 1);
imshow (im_BW) ;
title (' WO-Blurred image’);
spb=subplot (1, total_images, total_images);
imshow (im_C) ;

if image_C_is_resized == 1
title (’ [Resized] Ground truth’);
else
title(’ [Original] Ground truth’);
end

if numerical_validation_with_linear ==
w_SSIM = ssim(linear_im_ BW, linear_im_C)
w_PSNR = psnr (linear_im_BW, linear_im_C)
else

111

magnification_angle

quency domain

,1_lambda)) .=
,i_lambda)) .=
crop_hl));

crop_hl);
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w_SSIM = ssim(im_BW, im_C)
w_PSNR = psnr (im_BW, im_C)
end

B.2 PSF generation function
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oo oo

Generate a PSF

function out = gen_PSF (in_rgb, bpar)

% Convert the F-Number from string to integer
Fnumber = str2double (bpar.Fnum);

% D is the pupil diameter in mm
D = bpar.f / Fnumber;

% pupil_radius is the pupil radius in mm
pupil_radius = D/2;

final side is the number of pixels on each dimension of the final PSF image.
We add one because bpar.frame should always be even, and so final_side will
always be odd.

to produce
something similar to a dirac delta when the wavefront is aberration-free
final_side = bpar.frame + 1;

o0 o0 o o d° oe

Q_alpha is a 3-element vector containing, for each channel, the alpha scaling
factor needed
to obtain the desired PSF resolution.

_alpha = [0, 0, 0];

oo oo oo

10

pupil_frame is a 3-element vector containing, for each channel, the number of
pixels in each dimension

of the general pupil function domain minus one (even).

pupil_frame = [0, 0, O0];

o oo oo

% out.pupil_frames is a copy of pupil_frame that is exported to the user
out.pupil_frames = [0, 0, O0];

of pixels in each dimension
of the alpha-zero-padded general pupil function domain minus one (even).

the Fourier Transform
that computes the PSF.
pupil_scaled_frame = [0, 0, O0];

o0 o o oo do oo

sensor_pixels is the horizontal number of pixels in the camera sensor. This value

% can be obtained from the web (https://www.digicamdb.com/specs/canon_eos-rebel-t6/,
% https://www.digicamdb.com/specs/canon_eos-rebel-t3/) .
sensor_pixels = bpar.sensor_pixels » bpar.sensor_pixel_scale;

% sensor_width is the horizontal width of the camera sensor in meters. This value
% can be obtained from the web.

sensor_width = bpar.sensor_width;

% out.expected_unit contains the units for every pixel in the final PSF

out .expected_unit = 107 (6) * sensor_width / sensor_pixels;

units (in nanometers) for each pixel in the final PSF. Ideally all 3 channels

function does not allow arbitrary frequency multipliers and (2) our imresize
function does not allow non-integer dimensions.

o oo oo do oe

We want odd pixel dimensions because this way we can center the convolution kernel

pupil_scaled_frame is a 3-element vector containing, for each channel, the number

We pad zeros around the pupil domain in order to obtain the desired frequencies in

out.actual_units is a 3-element vector containing, for each channel, the computed

should have the same units, but this is not currently possible because (1) our FFT
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61 % These values should be as close as possible to out.expected_unit.
62 out.actual_units = [0, 0, 0];

63

64 % Calculating alpha (Q)

65 % alpha = sensor_pixels x lambda * Fnumber / sensor_size

66 for i_lambda = 1 : bpar.num_components

67 Q = sensor_pixels * (bpar.RGB_nm(i_lambda) * 107(-9)) * Fnumber / sensor_width;
68 [pf, pfs] = best_pupil_pixel_size (bpar, Q);

69 unit = 1 / ((pfs + 1) / (pf + 1));

70 unit = unit » bpar.RGB_nm(i_lambda) % Fnumber * 10" (-3);

71 Q_alpha (i_lambda) = Q;

72 pupil_frame (i_lambda) = pf;

73 pupil_scaled_frame (i_lambda) = pfs;

74 out.actual_units (i_lambda) = unit;

75 out.pupil_frames (i_lambda) = pf + 1;

76 end

77 lin_srgb = zeros (size(in_rgb));

78 OTF = zeros (size(in_rgb));

79 out .PSF = zeros([final_side, final_side, 3]);

80 for i_lambda = 1 : bpar.num_components

81 lambda = bpar.RGB_nm(i_lambda) * 10" (-3);

82 k = (2xpi) / lambda;

83 pupf = pupil_frame (i_lambda) ;

84 [X, Y] = meshgrid((-1:2/pupf:1l), (1:-2/pupf:-1)); % from -1 to 1, steps of 2/n
85 r = sqrt(X.”2 + Y."2); % calulate radius

86 coeff = [0; getZernikeFromPrescription( pupil_radius,

87 bpar.nd_S(i_lambda) + bpar.wave_defocus + bpar.ab_S,
88 bpar.nd_C(i_lambda) + bpar.ab_C,

89 bpar.extralens_overall_astig_angle + bpar.ab_angle)];
90 WavefrontPhaseError = my_ZernikeSurface (pupf,X,Y,r,coeff);

91 if i_lambda == 1

92 out .WE_R = WavefrontPhaseError;

93 elseif i_lambda == 2

94 out .WE_G = WavefrontPhaseError;

95 elseif i_lambda ==

96 out .WE_B = WavefrontPhaseError;

97 end

98 S = exp( 1i * k » WavefrontPhaseError);

99 S(r > 1) = 0; % circular aperture
100 oldside = pupf + 1;

101 new_side = pupil_scaled_frame (i_lambda) + 1;

102 if new_side > oldside

103 S = zeropad_newsize (S, [new_side, new_sidel);

104 end

105 PSF = fft2(S); % amplitude impulse response
106 PSF = PSF .x conj(PSF); % square magnitude
107 PSF = real (fftshift (PSF)); % real part

108 if new_side < oldside

109 PSF = imresize (PSF, [new_side, new_side]);

110 end

111 if final_side > new_side

112 PSF = zeropad_newsize (PSF, [final_side, final_side]);

113 elseif final_side < new_side

114 PSF = zerocut_newsize (PSF, [final_side, final_side]);

115 end

116 smallPSF = PSF / sum(sum(PSF)); % Scale so that PSF sums to unity.
117 out.PSF(:, :, 1_lambda) = smallPSF;

118 end

119

120 if (bpar.num_components == 1)

121 OTF (:, :, 2) = OTF(:, :, 1);

122 OTF (:, :, 3) = OTF(:, :, 1);

123 end

124

125 % from -1 to 1, steps of 2/n

126 [out.X, out.Y] = meshgrid (linspace (-1, 1,bpar.frame+l),linspace(-1,1,bpar.frame+l));
127 unit = (bpar.frame + 1) / 2;

128

129 out.X = out.X * unit;

130 out.Y = out.Y x unit;

131 |end
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B.3 Zernike coefficients generation

]

S, C, theta)

% getZernikeFromPrescription (pupil_r,

Zernike coefficients generation

function [coeffs] = getZernikeFromPrescription (pupil_r, S, C, theta)
coeffs = zeros (20,1);
R = pupil_r;
% ¢c3 = y-astigmatism 2,-2
% c4 = defocus 2, 0
% c5 = x-astigmatism 2, 2
syms c3; % microns +1.05
syms c4; % microns -3.55
syms c5; % microns -0.98
% S in diopters
% C in diopters
% t in radians
% R in mm
T_rad = deg2rad(theta);
eqnl = c3 == (R"2xCxsin(2+T_rad)) / (4xsqrt(6));
eqn2 = c4 == - ( (R"2%(S+(C/2))) / (4+sqrt(3)) );
egn3 = c5 == (R"2xCxcos (2+xT_rad)) / (4+sqrt(6));
tmpl = solve(eqnl, c3);
tmpl = vpa (tmpl);
tmpl = double (tmpl);
tmp2 = solve(eqn2, c4);
tmp2 = vpa (tmp2) ;
tmp2 = double (tmp2);
tmp3 = solve(eqn3, cb);
tmp3 = vpa (tmp3) ;
tmp3 = double (tmp3) ;
c3 = tmpl;
c4 = tmp2;
cS5 = tmp3;
coeffs (3) = c3;
coeffs(4) = c4;
coeffs (5) = c5;
end

B.4 Wavefront phase error surface generation

% This function calculates the wavefront based on a set of Zernike
% coefficients z to get frame size (nn+l)x(nn+l).

function [S] = my_ZernikeSurface(nn, X, Y, r, z)
terms = length(z)-1;
Theta = atan2 (Y, X);
S = zeros (nn+l);
for i = O:terms
[n, m] = single2doubleZ (i) ;
if (m == 0)
pa = sqrt(n+l);
else
pa = sqrt (2+ (n+l));
end
coef = pa;
Surf = zeros(nn+l);
for s = 0: (n-abs(m))/2
cl = n-s;
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c2 = (n+m)/2-s;
c3 = (n-m)/2-s;
Surf = Surf + (-1)"s*factorial(cl)/factorial(s)
/ factorial (c2)/factorial (c3) *power (r, n-2+*s);
end
if (m < 0)
Surf = Surf.ssin(abs (m) *Theta);
elseif (m > 0)
Surf = Surf.xcos (m*xTheta);
end
S =S 4+ z(i+1l)*coefxSurf;
end
S(r > 1) = NaN;

end

115

B.5 Zernike’s single to double-index conversion

% This function converts single->double index in Zernike polynomials
% Source: [DAI, G. Wavefront Optics for Vision Correction]
function [n, m] = single2doubleZ (j7j)
n = floor(sqgrt (2x3j+1)+0.5)-1;
m = 2+«jj-n*(n+2);
end

B.6 Fitting pupil size in pixels

% Find closest integers that generate the best approximation for pupil frames
function [pupil_frame, pupil_scaled_frame] = best_pupil_pixel_size (bpar, Q)
attempts = 360;
pupil_frame = 112 x 1 + attempts * 2;
try_pupil_frame = pupil_frame + 2;
best_diff = 1000;
if bpar.iterate_pupil_pixels ~= 1
attempts = 1;
try_pupil_frame = 112 + 2;
end
for i = l:attempts
try_pupil_frame = try_pupil_frame - 2;
new_side_float = (try_pupil_frame + 1) % Q;
new_side_ceil = ceil (new_side_float);
new_side = floor (new_side_float);
if (bitand(new_side_ceil, 1) == 1)
new_side = new_side_ceil;
end
this_diff = new_side / new_side_float;
if this_diff < 1
this_diff = new_side_float / new_side;
end
if this diff < best diff
best_diff = this_diff;
pupil_frame = try_pupil_ frame;
pupil_scaled_frame = new_side - 1;
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end
end
end

B.7 Matrix dimensions splitting

matsplit

version 1.3.0.0 (568 Bytes) by Matthew Eicholtz

available at https://www.mathworks.com/matlabcentral/fileexchange/48439-matsplit
function varargout = matsplit (A,dim)

$MATSPLIT Split matrix elements into separate variables.

VARARGOUT = MATSPLIT (A) returns each element of the array A in a

separate variable defined by VARARGOUT.

o o o o

VARARGOUT = MATSPLIT (A,DIM) only splits the matrix in one dimension. If
DIM=1, each column vector is assigned to an output variable. If
DIM=2, each row vector is assigned to an output variable.

A o0 AP A° A0 o0 o o o

MRE 11/12/14 (last updated 11/13/14)
if nargin==
varargout = num2cell (A);
else
varargout = num2cell (A,dim);
end
end

B.8 Cropping a given surface

zerocut_newsize (W, newsize)

do oo oo

o

This function zero-pads the frame to be alpha times as large.

function S = zerocut_newsize (W, newsize)

[p, 9] = size(W);

[n, m] = matsplit (newsize);

S = W((p—n)/2+1:(p+n)/2, (q—-m) /2+1: (q+m) /2) ;
end

B.9 Zero filling a given surface

o

zeropad_newsize (W, newsize)

o° oP

This function zero-pads the frame to be alpha times as large.
function S = zeropad_newsize (W, newsize)

oldsize = size (W) ;

n = oldsize(l);
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m = oldsize (2);

p = newsize(l);

g = newsize(2);

pn = int32(p - n);

if (bitand(pn, 1) == 1)

vl = (p-n+l)/2;
y2 = (ptn-1)/2;

else
yl = (p—n)/2+1;
y2 = (p+n)/2;
end
agm = int32 (g - m);
if (bitand(gm, 1) == 1)
x1 = (g-m+l)/2;
x2 = (g+m-1)/2;
else
x1 = (g-m)/2+1;
x2 = (g+m)/2;
end
if ndims (W) ==
S = zeros(p, 9);
S(yl:y2,xl:x2) = W;
else
S = zeros(p, g, 3);
S(yl:y2,x1:x2, :) = W;
end

end
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B.10 Gamma encoding

% Gamma Correction

function rgb = apply_gamma (in_rgb)
rgb = in_rgb.”(1/2.2);

end

B.11 Gamma decoding

% Gamma Correction

function rgb = unapply_gamma (in_rgb)
rgb = in_rgb.”(2.2);

end

B.12 Applying anisotropic magnification
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o

apply_anisotropic_magnification(in_rgb, angle, x_scale, y_scale, x_add, y_add)

do oo

o

Apply anisotropic magnification

function rgb = apply_anisotropic_magnification(in_rgb, angle, x_scale, y_scale, x_add,
y_add)
% extract image dimensions
[nr nc channels] = size(in_rgb);

o

% create a grid running from -0.5 to 1.0 in both directions

= linspace(-0.5, 0.5, nc);
1 = linspace(-0.5, 0.5, nr);
= flipud(yl);
X, Y] = meshgrid(x, y);

compute sine and cosine for the reverse angle

rotation and magnification in a way similar to how we compute all the reverse
transformations when creating a view camera matrix in OpenGL)

sin_theta = sin(-deg2rad(angle));

cos_theta = cos(-deg2rad(angle));

% Rotate (this is a standard rotation algorithm)

Ao o0 de do — KX

P_r = X+cos_theta+Y*xsin_theta; Q_r = -X*sin_theta+Yxcos_theta;

% Scale (we use the reciprocal of scaling because this is a reverse (camera)
% transformation

P_sr = P_r = (1 / x_scale); Q_sr = Q_r = (1 / y_scale);

% Unrotate (this is the inverse matrix of a standard rotation)

= P_srxcos_theta - Q_srxsin_theta + x_add / nc; Q = P_sr*sin_theta + Q_sr =
cos_theta + y_add / nr;

% apply interp2 to all channels

rgb=zeros (size (in_rgb));

lav)

if channels == 3
rgb(:,:,1) = interp2 (X,Y,in_rgb(:, :, 1),P,Q,’linear’,0);
rgb(:,:,2) = interp2(X,Y,in_rgb(:, :, 2),P,Q,’linear’,0);
rgb(:,:,3) = interp2 (X,Y,in_rgb(:, :, 3),P,Q,’linear’,0);
else
rgb = interp2(X,Y,in_rgb,P,Q,’linear’,0);
end

end

B.13 Computing chromatic aberration diopters

% f_CalcChromaticDiopter (D_lens, i_lambda, lambda, bpar)

% Compute diopters for chromatic aberration

function [N] = f_CalcChromaticDiopter(D_lens, i_lambda, lambda, bpar)
.4998;

.5085;

mu_r =
mu_g =
mu_b = 1.5152;
mu_y = 1.5085;
if (bpar.num_components == 3) && (bpar.apply_chromatic_aberration == 1)
if i_lambda == 1
n_t = mu_r;
elseif i_lambda == 2
n_t = mu_g;
elseif i_lambda == 3
n_t = mu_b;

=R e

end
N = (n_t - 1) = D_lens / (mu_y - 1);
else
N = D_lens;
end
end

(we use reverse angle here because we have to simulate how a camera would view the
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3
3
% Recompute diopters considering vertex distance

function [N] = f_CalcNewDiopter (D_lens, vd)
d = vd; % vertex distance in mm
N = D_lens / (1 - (d » 0.001) % D_lens);
end

B.15 Loading DNG image files

% Read a .DNG file

function [meta_info, raw] = simply_load_dng(filename)
warning off MATLAB:imagesci:tiffmexutils:libtiffWarning
warning off MATLAB:imagesci:tiffmexutils:libtiffErrorAsWarning

warning off MATLAB:imagesci:tifftagsread:badTagValueDivisionByZero

t = Tiff(filename,’'r’);

offsets = getTag(t,’SubIFD’");

setSubDirectory (t,offsets(1));

raw = read(t);

close (t);

clear t;

meta_info = imfinfo (filename);
end
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