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“Profound study of nature is the most fertile source of mathematical discoveries.”
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ABSTRACT

In this work, we present two practical solutions for simulating accommodation and low-

order aberrations of optical systems, such as the human eye. Taking into account pupil size

(aperture) and accommodation (focal distance), our approaches model the corresponding

point spread function and produce realistic depth-dependent simulations of low-order vi-

sual aberrations (e.g., myopia, hyperopia, and astigmatism). In the first solution, we use

wave optics to extend the notion of Depth Point Spread Function, which originally relies

on ray tracing, to perform the generation of point spread functions using Fourier optics. In

the other technique, we use geometric optics to build a light-gathering tree data structure,

presenting a solution to the problem of artifacts caused by absence of occluded pixels in

the input discretized depth images. As such, the resulting images show seamless transi-

tions among elements at different scene depths. We demonstrate the effectiveness of our

approaches through a series of quantitative and qualitative experiments on images with

depth obtained from real environments. Our results achieved SSIM values above 0.94

and PSNR above 32.0 in all objective evaluations, indicating strong agreement with the

ground-truth.

Keywords: Visual simulation. low-order aberrations. partial occlusion artifacts. Fourier

Optics. Zernike polynomials.



Simulação de acomodação e aberrações de baixa ordem do olho humano

usando árvores de coleta de luz

RESUMO

Neste trabalho, apresentamos duas técnicas de simulação de acomodação e aberrações

de baixa ordem de sistemas ópticos, tais como o olho humano. Nossos algoritmos lan-

çam mão de determinadas informações, tais como o tamanho da pupila e a acomodação

(distância focal), com o objetivo de modelar a função de espalhamento pontual (point

spread function) do sistema, resultando na produção de simulações realistas de aberra-

ções de baixa ordem (p.e., miopia, hipermetropia e astigmatismo). Nossas simulações

levam também em consideração as distâncias dos objetos que compõem a cena a fim de

aplicar o borramento apropriado. A primeira técnica estende o conceito de Função de

Espalhamento Pontual com Profundidade (Depth Point Spread Function), originalmente

construída mediante o traçado de raios (ray tracing), que passa então a ser gerada por

meio de métodos da óptica de Fourier. A segunda técnica, por sua vez, utiliza-se da óp-

tica geométrica para construir uma estrutura de dados em forma de árvore. Esta árvore

é então utilizada para simular a propagação da luz no ambiente, gerando os efeitos de

borramento esperados, e de quebra soluciona o problema de artefatos visuais causados

pela ausência de informação na imagem original (provocada pela oclusão parcial entre

elementos da cena). Nós demonstramos a efetividade de nossos algoritmos por meio de

uma série de experimentos quantitativos e qualitativos em imagens com profundidade ob-

tidas de ambientes reais. Nossos resultados alcançaram valores de SSIM superiores a 0,94

e valores de PSNR superiores a 32,0 em todas as avaliações objetivas, o que indica uma

expressiva concordância com as imagens de referência.

Palavras-chave: Simulação visual. Aberrações de baixa ordem. Artefatos de oclusão

parcial. Óptica de Fourier. Polinômios de Zernike.



LIST OF ABBREVIATIONS AND ACRONYMS

CA Chromatic aberration

CCD Charge-coupled device

CRT Cathode-ray tube

DPSF Depth point spread function

DSLR Digital single-lens reflex camera

FOV Field of view

GPL Geometrical path length

LGT Light-gathering tree

MDF Medium-density fiberboard

OPD Optical path difference

OPL Optical path length

NPRP Nearest potentially reachable plane

FPRP Farthest potentially reachable plane

PI Plane index

PNG Portable network graphics

PSF Point spread function

PSNR Peak signal-to-noise ratio

SSIM Structural similarity

RDB Ray distribution buffer

RGB Red, green, blue

RGB-D Red, green, blue - depth



LIST OF FIGURES

Figure 1.1 Simulation of astigmatism using Fourier optics. ...........................................15
Figure 1.2 Simulation of accommodation and low-order aberrations using our tech-

nique........................................................................................................................16

Figure 2.1 Snell’s Law.....................................................................................................19
Figure 2.2 Convergent and divergent lenses. ..................................................................20
Figure 2.3 Lens maker relation. ......................................................................................20
Figure 2.4 Aperture stop, entrance and exit pupils. ........................................................21
Figure 2.5 Wavefront and Gaussian reference sphere. ....................................................22
Figure 2.6 Wavefront error map for an aberrated optical system with S = -1 D,

C = 2.5 D, and ϕ = 25◦............................................................................................23
Figure 2.7 Effects of refractive errors on vision. ............................................................24
Figure 2.8 Myopia and hyperopia in the human eye.......................................................25
Figure 2.9 Astigmatic optical system showing the two images formed..........................26
Figure 2.10 Eye meridians used to indicate cylindrical axis...........................................27
Figure 2.11 Eyeglass prescription. ..................................................................................27
Figure 2.12 The first fifteen Zernike polynomials on the unit circle domain. ................29
Figure 2.13 An electromagnetic wave propagating in space. .........................................33
Figure 2.14 Optical path of a light ray traversing a thin lens..........................................36
Figure 2.15 Huygens-Fresnel principle...........................................................................39
Figure 2.16 Image information in an optical system from a point-source on the

optical axis using Fourier optics. ............................................................................41
Figure 2.17 The pupil function. ......................................................................................43
Figure 2.18 PSF Airy patterns of a plane wave for three different wavelengths. ...........48
Figure 2.19 Partial occlusion effects. ..............................................................................49
Figure 2.20 Schematic view of partial occlusion under the geometric optics model. ....50

Figure 3.1 Comparison between linear filtering and ray distribution buffer techniques.52
Figure 3.2 A set of planes regularly spaced in diopters. .................................................53
Figure 3.3 Rendering artifacts produced by the technique of Barsky, when not

properly corrected using the object identification solution.....................................53
Figure 3.4 A Top-view of a scene containing a red and a blue objects located at

two planes. ..............................................................................................................54
Figure 3.5 Depth-of-field rendering using pyramidal image processing for occluded

information recovery. ..............................................................................................55
Figure 3.6 Real-time lens blur effects and focus control. ...............................................55
Figure 3.7 A layered depth-of-field method for solving partial occlusion......................55

Figure 4.1 Trees occluding building facades on Lidar point cloud.................................58
Figure 4.2 Windowing effects in Fourier optics approach. .............................................58
Figure 4.3 Wave optics approach overview.....................................................................59

Figure 5.1 Plane-discretized scene and the isoplanatic assumption................................65
Figure 5.2 Intuition behind using a tree for performing a gathering process..................66
Figure 5.3 2-D representation of the light-gathering tree concept. .................................67
Figure 5.4 Three rays cast into a virtual scene (not shown) and the tree nodes built

during each step of the process. ..............................................................................68
Figure 5.5 Top-view of a simple scene with three objects (blocks). ...............................70
Figure 5.6 Maps used for defining which planes to look at during LGT traversal. ........71



Figure 5.7 Light-gathering tree usage example...............................................................71
Figure 5.8 Example of a 1-2 tree.....................................................................................72
Figure 5.9 Illustration of an astigmatic optical system with ϕ = 0◦................................73
Figure 5.10 Ray casting for an astigmatic optical system using a left-handed coor-

dinate system...........................................................................................................73

Figure 6.1 Night time picture of town landscape with mercury-vapor and sodium-
vapor lamps displaying the Airy pattern. ................................................................77

Figure 6.2 Details of Airy pattern seen on the PSF of point light source shown in
Figure 6.1. ...............................................................................................................78

Figure 6.3 Camera mounted on custom supporting device.............................................79
Figure 6.4 Camera holding device scheme. ....................................................................79
Figure 6.5 Induced myopia corrected with extra lens. ....................................................82
Figure 6.6 Induced myopia corrected with extra lens. ....................................................82
Figure 6.7 Induced hyperopia corrected with extra lens. ................................................83
Figure 6.8 Induced hyperopia corrected with extra lens. ................................................83
Figure 6.9 Inducing low-order aberrations (hyperopia and astigmatism) by placing

external lenses in front of a camera’s original lens (v = 54 mm)............................85
Figure 6.10 Inducing low-order aberrations (myopia) by placing external lenses in

front of a camera’s original lens (v = 54 mm). .......................................................86
Figure 6.11 Light aura around handrail due to misplaced depth values. ........................88
Figure 6.12 Simulated view of a hyperopic subject (-0.3 D). .........................................90
Figure 6.13 Adirondack chair..........................................................................................91
Figure 6.14 Myopic simulations of Figure 6.13..............................................................92
Figure 6.15 Myopic and astigmatic simulations of Figure 6.13. ....................................93
Figure 6.16 Backpack and broom on the background. ...................................................94
Figure 6.17 Myopic and astigmatic simulations of Figure 6.16. ....................................95
Figure 6.18 Scene with most objects spanning several planes in terms of depth range..96
Figure 6.19 Myopic and astigmatic simulations of Figure 6.18. ....................................97



LIST OF TABLES

Table 2.1 Cylinder transposition of S = 3 D, C = 1 D, ϕ = 150◦. ...................................28
Table 2.2 Zernike polynomials and their respective Noll indices and common names ..31
Table 2.3 Zernike polynomials in polar and Cartesian forms .........................................32

Table 6.1 Comparison of photographed, simulated and computed diameter of Airy
disk............................................................................................................................77

Table 6.2 Extra lens parameters, SSIM and PSNR values for the simulation results
of Fourier optics approach in Figure 6.9...................................................................86

Table 6.3 Extra lens parameters, SSIM and PSNR values for the simulation results
of LGT approach in Figure 6.9. ................................................................................86

Table 6.4 Extra lens parameters and SSIM and PSNR values for the simulation
results of Fourier optics approach shown in Figure 6.10. .........................................87

Table 6.5 Extra lens parameters and SSIM and PSNR values for the simulation
results of LGT approach shown in Figure 6.10. .......................................................87

Table 6.6 Plane indices and their encoded colors. ..........................................................89



CONTENTS

1 INTRODUCTION.......................................................................................................13
1.1 Thesis structure.......................................................................................................17
2 BACKGROUND..........................................................................................................18
2.1 Geometric optics......................................................................................................18
2.1.1 Refraction...............................................................................................................18
2.1.2 Refractive errors.....................................................................................................23
2.1.3 Defocus ..................................................................................................................25
2.1.4 Ophthalmic astigmatism ........................................................................................26
2.2 Eyeglass prescriptions.............................................................................................27
2.3 Zernike polynomials ...............................................................................................28
2.4 Wave Optics .............................................................................................................32
2.5 Phase transformation of thin lenses ......................................................................36
2.6 Huygens-Fresnel principle .....................................................................................38
2.7 PSF generation ........................................................................................................40
2.7.1 Point source illumination .......................................................................................42
2.7.2 Accommodation and aberrations ...........................................................................42
2.7.3 Superposition .........................................................................................................44
2.7.4 Discretization .........................................................................................................45
2.8 Partial occlusion effects ..........................................................................................48
2.9 Summary..................................................................................................................49
3 RELATED WORK .....................................................................................................51
3.1 First techniques .......................................................................................................51
3.2 Vision-realistic rendering .......................................................................................52
3.3 Other techniques .....................................................................................................54
3.4 Summary..................................................................................................................56
4 SIMULATING LOW-ORDER ABERRATIONS USING WAVE OPTICS...........57
4.1 Rationale of the wave optics approach..................................................................57
4.2 Object position and accommodation.....................................................................59
4.3 Gamma correction ..................................................................................................61
4.4 Implementation .......................................................................................................61
4.5 Artifacts due to missing information.....................................................................63
4.6 Summary..................................................................................................................63
5 SIMULATING LOW-ORDER ABERRATIONS WITH LIGHT-GATHERING

TREES ..................................................................................................................64
5.1 Rationale of the light-gathering trees approach...................................................65
5.2 Light-gathering tree construction .........................................................................67
5.3 Light-gathering tree usage .....................................................................................69
5.4 Runtime optimizations............................................................................................70
5.5 Determining ray directions ....................................................................................72
5.6 General LGT algorithm .........................................................................................74
5.7 Summary..................................................................................................................74
6 EXPERIMENTS AND RESULTS.............................................................................76
6.1 Airy pattern validation ...........................................................................................76
6.2 Camera holding device ...........................................................................................78
6.3 Optical power and image adjustments..................................................................80
6.4 Object defocus compensation using an extra lens................................................81
6.5 Quantitative evaluation ..........................................................................................81
6.5.1 Objective validation ...............................................................................................84



6.6 Qualitative evaluation.............................................................................................85
6.7 Discussion and Limitations ....................................................................................89
6.8 Summary..................................................................................................................98
7 CONCLUSIONS AND DISCUSSION ......................................................................99
7.1 Future work...........................................................................................................100
REFERENCES.............................................................................................................101
APPENDIX A — MATHEMATICAL BACKGROUND .........................................104
A.1 Binomial approximation......................................................................................104
APPENDIX B — MATLAB SOURCES ....................................................................105
B.1 Setup code .............................................................................................................105
B.2 PSF generation function ......................................................................................112
B.3 Zernike coefficients generation ...........................................................................114
B.4 Wavefront phase error surface generation ........................................................114
B.5 Zernike’s single to double-index conversion ......................................................115
B.6 Fitting pupil size in pixels ....................................................................................115
B.7 Matrix dimensions splitting.................................................................................116
B.8 Cropping a given surface .....................................................................................116
B.9 Zero filling a given surface ..................................................................................116
B.10 Gamma encoding................................................................................................117
B.11 Gamma decoding................................................................................................117
B.12 Applying anisotropic magnification..................................................................117
B.13 Computing chromatic aberration diopters ......................................................118
B.14 Computing vertex-distance adjusted diopters.................................................119
B.15 Loading DNG image files...................................................................................119



13

1 INTRODUCTION

Vision is arguably our most important sense. As a process used to sense the en-

vironments through luminous stimuli, it produces a personal experience influenced by

intrinsic characteristics of one’s visual system. Thus, achieving faithful simulation for

a given individual would require, in principle, a large amount of information from a

wide variety of areas, ranging from optics and physiology to psychology and neuro-

science (KRUEGER; OLIVEIRA; KRONBAUER, 2016; SCHWARTZ, 2010). However,

obtaining such data tends to be impractical and this level of precision might not be justi-

fiable.

Among the optical aberrations, the so-called low-order ones, which include reg-

ular astigmatism as well as both positive and negative defocus (myopia and hyperopia,

respectively), are by far the most frequent cause of diminished visual acuity. They are

responsible for approximately 90% of the aberration in the eye (LOMBARDO; LOM-

BARDO, 2010). With a considerable impact in quality of life, it is estimated that between

one and two billion individuals worldwide are affected by refractive errors, but the actual

prevalence depends upon the surveyed population; it varies from roughly 25% in Europe

to over 80% in some Asian countries (DENNISTON; MURRAY, 2014).

Even though most patients end up using glasses or contact lenses for correcting

such aberrations, a considerable number of them undergo refractive surgery as a means

of correcting their sight or minimizing the errors. In light of potential risks and benefits

of the surgery, it is desirable that patients could preview their post-operation sight, taking

into account potential residual refractive errors, and thus make a better informed decision.

This can be achieved by simulating the patient’s vision before and after the surgery, using

pictures and videos blurred in a controlled way. Such simulations should also help doctors

and medical students in better understanding the patients’ conditions.

We approach the problem of simulating vision in two forms. In the first approach,

it is treated using the mathematical rigor of Fourier optics; some unfortunate aspects

related to missing information due to partial occlusion, however, led us to address the

theoretical aspects of a simplified version of the problem, where the scene is composed

of elements that do not occlude each other. This simplification makes the problem easier

because the scene is constrained to a unique depth with a convex structure, and the issue

derived from different blurring methods for adjacent pixels is mitigated.

In the second approach, we overcome the inconvenience imposed by occlusions;
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but in order to make this problem tractable at interactive times, some simplifications are

applied to the scene such as its discretization into a set of parallel planar regions. Further-

more, the introduction of a new data structure (light-gathering trees) associated to such set

of planes results in simulations that are able to resolve the partial occlusion problem. Nev-

ertheless, our technique produces interactive personalized realistic simulations of how an

individual would perceive real scenes considering accommodation and low-order aber-

rations (e.g., myopia, hyperopia, and astigmatism), pupil size, and focal distance. By

taking into account pupil size, our simulations naturally produce realistic depth-of-field

effects. All these parameters can be dynamically changed during the simulation. Existing

techniques that perform similar tasks are either limited to a single depth (KRUEGER;

OLIVEIRA; KRONBAUER, 2016), positive defocus (XIAO et al., 2018), or lack preci-

sion when dealing with partially occluded objects (BARSKY, 2004).

Figure 1.1 illustrates a simulation result produced using our Fourier optics tech-

nique for a real scene (captured by a DSLR camera) containing an object (eye chart)

at a single distance seen by an astigmatic individual. The astigmatism (S = 0 diopters,

C = -1 diopters, and ϕ = 86◦) was induced by an external lens placed in front of the cam-

era lens. Figure 1.1a shows a portion of the original photograph captured without the

external lens. Figure 1.1b shows the image obtained after applying anisotropic minifica-

tion and brightness adjustment to Figure 1.1a to compensate for the use of the external

lens. Figure 1.1c depicts the ground-truth astigmatic image obtained using the external

lens in front of the camera. Figure 1.1d presents the simulated result produced by our

Fourier optics technique taking Figure 1.1b as input. Note the similarity between the

ground truth and our simulated result.

Figure 1.2 illustrates the use of our second technique for simulating accommoda-

tion and low-order aberration on a scene containing elements at various distances from

the observer. Such distances are represented in Figure 1.2c. The white and blue flower,

the red flower, and the game box are approximately 0.5 m, 1 m, and 2 m away from the

observer, respectively. Figure 1.2a shows a simulated view of a myopic subject with 0.5

diopters and no accommodation (thus focusing 2.0 m away). Note that the texture of

the game box, which is located at approximately 2 m, exhibits a relatively sharp texture.

As the distance decreases towards the red, and then the white and blue flower, blurring

increases. In particular, note the blurry blue petal against the sharp game box texture.

The corresponding reference sub-images are shown at the bottom of Figure 1.2c, where

all elements appear sharp regardless of their relative depths. Figure 1.2b shows a simu-
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Figure 1.1: Simulation of astigmatism using Fourier optics. Aberration parameters:
S = 0 diopters, C = -1 diopters, ϕ = 86◦. (a) Picture taken without extra lens. Cam-
era settings: ISO 100, exposure 1/40 s, f = 20 mm, f/5. (b) Anisotropic minification and
brightness adjustment applied to (a) to compensate for the use of an external lens used to
induce astigmatism. (c) Ground-truth image obtained with an external lens in front of the
camera. (d) Simulated result produced by the Fourier optics technique.

(a) (b)

(c) (d)
Source: The Authors
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Figure 1.2: Simulation of accommodation and low-order aberrations using our technique.
It is applied to a scene containing elements whose approximate distances to the observer
are: white and blue flower, 0.5 m; red flower, 1 m; and game box 2 m. (a) Simulated view
of a myopic subject with 0.5 diopters and no accommodation. Note that starting from a
relatively sharp game box texture, the amount of blur progresses as the distance decreases
towards the white and blue flower. Note the blurry blue petal against the sharp game box
texture. The corresponding reference (sharp) sub-images are shown at the bottom of (c).
(b) Simulated view of the same myopic individual this time accommodating at the white
and blue flower, which now appears sharp while the game box texture becomes blurry. (c)
Scene depth (top) and reference sub-images (bottom).
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lated view of the same myopic individual focusing (i.e., accommodating) at the white and

blue flower. Such flower now appears sharp while the game box texture becomes blurry.

In both examples, the red flower (located at an intermediate depth) shows some relative

defocusing with respect to its reference image.

The goal of this work is to provide a method for interactive vision simulation

considering real scenes and low-order optical aberrations and accommodation.

The contributions of this thesis include:

• An interactive technique for producing realistic simulations of the human vision un-

der low-order aberrations, accommodation, and variable scene depth (Chapter 5).

Our technique provides smooth transitions among scene elements located at differ-

ent depths.

• A tree data structure used for light gathering that allows the handling of partial

occlusions among objects in the presence of a finite pupil (Chapter 5). Such new

data structure allows us to provide a practical solution to a long-standing problem

related to vision simulation of real environments.

• A derivation of the Fourier transform performed by convex thin lenses geared to-

wards the Computational Photography community (Sections 2.4 to 2.6).

• A mathematical formulation for computing the coefficients of the Zernike polyno-

mials in order to model how one would perceive an object at an arbitrary distance

while (s)he is focusing at a different distance (Chapter 4).

1.1 Thesis structure

This thesis is structured as follows. Chapter 2 reviews some geometric and wave

optics concepts, including Fourier optics, required for understanding the development of

the thesis. Chapter 3 discusses works closely related to ours. In Chapter 4 presents a vi-

sion simulation technique based on Fourier optics. Chapter 5 describes our second vision

simulation technique, which is based a tree data structure built using geometric optics to

perform light gathering. Chapter 6 describes the experiments performed to validate both

techniques, as well as the obtained results. Chapter 7 summarizes this thesis contributions

and presents some guidelines and ideas for future exploration.
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2 BACKGROUND

This chapter presents a physics background regarding some aspects of the phe-

nomenon of light which are necessary to understand both simulation techniques presented

in this work. Light propagation itself can be explained using three different models: light

rays in geometric optics; perturbation of the electromagnetic field in wave optics; and

evolution of a complex probability density function in quantum mechanics. While the

latter gives the most precise, and currently the most extensive known explanation for the

light phenomenon, it adds an unnecessary layer of complexity; as a consequence, only the

models of geometric and wave optics will be considered.

Section 2.1 explains the ray propagation model for light, which serves as a basis

for the understanding of the bending of light and refractive errors. Section 2.2 shows in

a glimpse how eyeglass prescriptions are organized. Section 2.3 tackles Zernike polyno-

mials, which are used to mathematically model wavefront errors. Section 2.4 introduces

some aspects of wave optics; together with Section 2.5, which shows the phase transfor-

mation of thin lenses, and the Huygens-Fresnel principle presented in Section 2.6, they

form the basis for understanding Fourier optics, derived in Section 2.7. Partial-occlusion

effects are described in Section 2.8.

2.1 Geometric optics

In the geometric optics model, it is assumed that light in a homogeneous medium

travels in straight lines called light rays. Besides normal propagation, light can also be

absorbed, reflected, or even bent in some circumstances, which are analyzed on the next

subsection. Note that, in accordance with the convention used in this work, the light

source will always be illustrated on the left and the resulting image will be produced on

the right; thus, light is assumed to propagate from left to right.

2.1.1 Refraction

When light rays strike the interface between different media, they are either re-

flected, absorbed or transmitted. In the case of transmittance, the propagation veloc-

ity of light can change due to a phenomenon that can only be properly explained by
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Figure 2.1: Snell’s Law. Interface between the two surfaces is represented by the vertical
line, and the normal to the interface is the dashed horizontal line. The refractive indices
of the left and right media are n1 and n2 respectively. In this example, n2 > n1. Light ray
is represented by red arrow.

interface

normal

n1 n2

θ1

θ2

Source: The Authors

wave optics or quantum mechanics. The ratio between the speed of light in vacuum

c = 299,792,458 m/s and its speed v in a given medium is called index of refraction,

usually indicated by

n =
c

v
.

If both sides of the interface have different refractive indices (n1 and n2), the ray will

bend according to those indices and the angle formed by the incoming ray direction and

the interface normal (θ1). This relationship (Figure 2.1) is summarized by Snell’s law,

which states that

n1 sin θ1 = n2 sin θ2. (2.1)

Lenses, which consist of especially designed transparent materials with curved

surfaces, are devices that use the phenomenon of refraction to bend light in a controlled

way and produce images. Convergent (convex) lenses focus parallel light rays coming

from object space to a single point in image space (Figure 2.2a). Divergent (concave)

lenses diverge parallel light rays coming from object space, giving the impression that

they diverge from a single point in object space (Figure 2.2b). In the former case, a real

inverted image of the object is formed; in the latter case, the image is virtual and right

way up.

A matter of the utmost importance is to consider the distance between the object

and the lens (So) and that between the object’s image and the lens (Si). They are related

to each other, and can be computed by

1

So
+

1

Si
= (n− 1)

(
1

R1

+
1

R2

)
. (2.2)
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Figure 2.2: Convergent and divergent lenses. (a) Convergent lens, where parallel light
rays converge to a single point on the right of the lens. (b) Divergent lens, where parallel
light rays appear to diverge from a single point on the left of the lens.

(a) (b)

Source: The Authors

Figure 2.3: Lens maker relation. Distance from object to the lens is So. Distance from
image to the lens is Si. The radii of the intersecting spheres that form the left and right
lens surfaces are R1 and −R2 respectively. The distances are measured from the central
lens plane (represented by a dotted vertical line segment), since we are dealing with thin
lenses.

−R2

R1So

Si

Source: The Authors

The value of So is always positive, while Si is positive when the image is real (on the

opposite side as the object) and negative otherwise. The radii of both surfaces of the lens

are indicated by R2 and R1. The adopted sign convention imposes that R1 is positive and

R2 is negative.

Every optical system has an imaginary line crossing its geometrical center (rota-

tion axis), called optical axis. All light rays parallel to the optical axis crossing the lens

meet at the same point at a distance f , which is the most important feature of the lens.

Known as focal distance, it can be found by setting So =∞ in Equation (2.2) and solving
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Figure 2.4: Aperture stop, entrance and exit pupils. Entrance pupil (a) is the virtual image
of the aperture stop as seen from object space. Exit pupil (b) is the virtual image of the
aperture stop as seen from image space.
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Source: The Authors

for f = Si, yielding
1

f
= (n− 1)

(
1

R1

+
1

R2

)
. (2.3)

The focal distance is positive for converging lenses and negative for diverging lenses.

Magnification is another important feature of the optical phenomenon which mea-

sures the ratio between the size of the image and the size of the respective object, as

indicated by

M = −Si
So

.

A negative magnification indicates that the image is upside-down, and that is usually the

case in the applications considered in this work.

Aperture stop is the physical hole that determines the maximum conic solid angle

of the bundle of light rays through an optical system. Two notable examples are the

physical pupil of the human eye and the camera shutter. The image of the aperture as seen

from the object plane is known as entrance pupil (Figure 2.4a). Conversely the image

of the pupil as seen from the image plane is known as exit pupil (Figure 2.4b). Both

are virtual images, thus their sizes do not usually match the actual aperture size due to

magnification. The entrance pupil is closely related to the f-number of an optical system,

given by

N =
f

2R
, (2.4)

where f is the system’s focal length and R is the radius of entrance pupil. It is common

to indicate the f-number preceded by “f/”. Its value tells the lens “speed”, or image

brightness, which is inversely proportional to the square of the f-number.
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Figure 2.5: Wavefront and Gaussian reference sphere. The OPD between wavefront and
reference sphere, shown in red, is known as wavefront error.

Wavefront
Reference sphere

OPD

Source: The Authors

The optical path length (OPL) is obtained by summing the geometric path length

(GPL) traversed by light in each medium (which is the actual distance traveled by light

rays in that medium) multiplied by the refractive index of the corresponding medium (HECHT,

2002):

OPL =
m∑
i=1

ni ×GPLi.

The difference between two OPL is the optical path difference (OPD), defined by

OPD = n1GPL1 − n2GPL2. (2.5)

Besides its relevance in geometric optics, the OPD also plays a meaningful role when

dealing with the wave characteristics of light, because it is directly related to the oscilla-

tion phase difference and results in important optical effects (shown in Section 2.5).

Surfaces containing points sharing the same OPL are known as wavefronts (Fig-

ure 2.5). When the optical system is not aberrated, the wavefronts formed in image space

by incoming rays that were parallel to the optical axis in object space are shaped as a

Gaussian reference sphere centered at the lens focal point (Figure 2.5). On the other

hand, in an aberrated optical system, the same wavefronts deviate from the reference

sphere; the OPD between the actual wavefront and the expected ideal reference sphere is

known as wavefront error. The map of wavefront errors between the wavefront and the

reference sphere, when both are tangent to the exit pupil, is known as wavefront error

map (Figure 2.6).
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Figure 2.6: Wavefront error map for an aberrated optical system with S = -1 D, C = 2.5 D,
and ϕ = 25◦. Exit pupil diameter is 3 mm. Each point on the map represents the wavefront
deviation (in µm) from a Gaussian reference sphere centered on the ideal focal point
(where the optical axis intersects the image plane).

Source: The Authors

2.1.2 Refractive errors

Refractive errors (or optical aberrations) comprise a class of monochromatic op-

tical aberrations (as opposed to chromatic aberrations). They occur when a point light

source is not properly focused into a single image point due to aberrations in the shape

of the lens (and more specifically the human eye), causing light to bend incorrectly. This

causes a divergence between the image that would be produced by an ideal system and

the actual obtained image.

The two types of aberrations relevant to this work are defocus (Figures 2.7b and 2.7c)

and ophthalmic astigmatism (Figure 2.7d). Among other definition methods, they are also

characterized by the wavefront error, which can be described by first and second order

Zernike polynomials (introduced in Section 2.3), and as such are also called low-order

aberrations.



24

Figure 2.7: Effects of refractive errors on vision. (a) Emmetropic vision. (b) Myopic
vision. (c) Hyperopic vision. (d) Astigmatic vision (left) compared to vision without
astigmatism (right).

(a) (b) (c)

(d)

Source: (a,c,b) Lee Hung Ming eye centre; (d) Oakland Eye Care
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Figure 2.8: Myopia and hyperopia in the human eye. In myopia, the focal point for
parallel rays is shorter than expected, and the patient is unable to focus on distant objects.
On the other hand, the focal point is longer in hyperopia, and the patient is unable focus
on close objects.

(a) Myopia (nearsightedness). (b) Hyperopia (farsightedness).

Source: The Authors

2.1.3 Defocus

Defocus comprises myopia (nearsightedness) and hyperopia (farsightedness). It

happens when the image is formed on a plane different from the focal plane. This error

is easily fixed with a simple translation of the lens (or the focal plane). The mathemat-

ical formulation for this aberration stems from the OPD of a smaller circle tangent to a

larger circle. Note that defocus should not be confused with spherical aberration, which

originates from the OPD of a parabola tangent and inscribed into a circle.

Myopia (Figure 2.8a) occurs when either the eye shape is longer than normal along

the optical axis or the intrinsic properties of the cornea cause light to bend more than

expected. Either way, the image is formed on a plane shifted towards the lens. Hyperopia

(Figure 2.8b), on the other hand, occurs when the eye’s axial length is shorter than normal,

or when the cornea is more planar than usual. In these situations, the light rays converge

to a point beyond the retina. Both myopia and hyperopia are quantified with a single

number: the lens power required to cause the shift between the expected image plane and

the plane where image is perfectly focused. This value is defined by

S =
1

f
,

and has units of m−1, also known as diopters (D). Positive optical power denotes myopia;

negative indicates hyperopia. As one should expect, in order to compensate for the aber-

rated vision, hyperopic lenses are prescribed to nearsighted patients and myopic lenses

are prescribed to farsighted patients.
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Figure 2.9: Astigmatic optical system showing the two images formed. Rays on the
sagittal plane (shown in light green) meet at a point on the primary image (a vertical line
segment). Conversely, rays on the meridional plane (shown in pink) meet at a point on the
secondary image (a horizontal line segment). As a result, there is no single focal point.

primary image

secondary image
meridional plane

sagittal plane
Source: The Authors

2.1.4 Ophthalmic astigmatism

Ophthalmic astigmatism is caused by an irregular curvature in the cornea (corneal

astigmatism) or in the lens (lenticular astigmatism). In both cases, the shape of the eye

is not curved equally in all meridians, and as a consequence, rather than a point at a

single focal plane, two ellipsis-shaped spots, called primary and secondary images, are

formed at different planes. An example can be seen in Figure 2.9, where these spots are

represented by a vertical and a horizontal line respectively.

Due to the anisotropic nature of astigmatism, a direction is used to define the

meridian perpendicular to the aberration. This is called cylinder, since this is the shape

of a lens with zero optical power on the meridian coinciding with the cylinder axis, and

maximum power on the orthogonal meridian. Thus, unlike defocus, ophthalmic astigma-

tism needs two numbers to be characterized: optical power (indicated by letter “C”, in

diopters), and axis angle (indicated by the symbol “ϕ”, in degrees). The angle is used to

define the direction of the cylinder axis, and the optical power indicates the curvature of

the cylinder (always perpendicular to the axis). The eye meridians are measured according

to the angle formed between the cylinder axis and the horizontal line in counter-clockwise

direction, as seen in Figure 2.10.

Ophthalmic astigmatism should not be confused with another type of astigma-

tism, known as oblique astigmatism, which is a third-order aberration that occurs even on

perfectly symmetrical lens when objects are off-axis. Ophthalmic astigmatism does not

depend on the object’s distance to the optical axis. It is usually classified according to the

simultaneous occurrence of defocus on the same optical system as myopic, hyperopic,

and mixed. In mixed astigmatism, one meridian is nearsighted and the other is farsighted.

In myopic astigmatism, on the other hand, one meridian is nearsighted and the other is
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Figure 2.10: Eye meridians used to indicate cylindrical axis. The convention used in
this work states that meridians are measured counter-clockwise on both eyes as if one is
viewing the patient’s eye straight on and, using a clock as reference, the hour hand is on
0◦ at three o’clock position.
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Source: Adapted from <https://openclipart.org/detail/23899>

Figure 2.11: Eyeglass prescription.
SPH CYL AX

O.D. -0.50 1.75 40
O.S. -0.70 DS

Source: The Authors

nearsighted or flat. In hyperopic astigmatism, one meridian is farsighted and the other is

farsighted or flat. In all cases, it can be compensated for with a toric lens with the same

cylindrical axis but opposite powers with respect to those of the eye.

2.2 Eyeglass prescriptions

Spectacle prescriptions are usually written in a form similar to the one presented

in Figure 2.11. The abbreviations O.D. and O.S. stand for the Latin terms “oculus dexter”

and “oculus sinister”, which translate to right eye and left eye, respectively. The headlines

“SPH”, “CYL” and “AX” lay out the optical parameters for sphere, cylinder, and axis.

Sphere indicates the correction in diopters used to compensate defocus. Cylinder tells the

astigmatic maximum correction power in diopters on the meridian perpendicular to the

given axis. The two letters “DS” written on the cylinder column of the left eye stand for

diopter sphere and indicate absence of astigmatism on that eye.

Two different notations are used to indicate astigmatism: plus-cylinder and minus-

cylinder. They differ only on the sign of cylindrical power and are remnants of the meth-

ods used for constructing lenses (either adding or subtracting a given power from a base

lens). Both notations are equivalent and can be easily converted into each other through a

https://openclipart.org/detail/23899
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Table 2.1: Cylinder transposition of S = 3 D, C = 1 D, ϕ = 150◦.
Step Description Operation Current values

1 Add spherical and S←− S + C S = 4 D, C = 1 D, ϕ = 150◦

cylindrical powers to
obtain the new

spherical power.
2 Change sign of cylinder. C←− -C S = 4 D, C = -1 D, ϕ = 150◦

3 Add 90◦ to the axis angle. ϕ←− ϕ + 90◦ S = 4 D, C = -1 D, ϕ = 240◦

4 Ensure axis angle lies ϕ←− ϕ(mod 180◦) S = 4 D, C = -1 D, ϕ = 60◦

in range (0◦, 180◦).

Source: The Authors

process known as cylinder transposition. In order to perform the conversion, the cylindri-

cal and spherical powers should be added to obtain the new spherical power. After that,

the sign of the cylindrical power is changed and 90◦ should be added to the cylinder axis

angle; the final angle should be adjusted to stay inside the range 0◦ to 180◦. An example

of cylinder transposition for the prescription S = 3 D, C = 1 D, ϕ = 150◦, from plus-

cylinder to minus-cylinder notation, is shown in Table 2.1. The same algorithm applies to

transposition from minus-cylinder to plus-cylinder notation.

There are different approaches to measure cylinder axis angles currently in usage

by optometrists and ophthalmologists. It is assumed in this work that all angles are mea-

sured as if one is viewing the patient’s eye straight on and, using a clock as reference, the

hour hand is on 0◦ at three o’clock position. Angles increase counter-clockwise and are

only counted up to 180◦, as shown on Figure 2.10.

2.3 Zernike polynomials

In order to describe wavefront errors, it is important to define functions that map

every point on the pupil plane to the respective deviation from a perfect plane wave. The

domain of such functions is commonly a dimensionless subset of R2, extending from -1

to 1 in both dimensions. Considering that optics is usually based on circular apertures, a

special subsetD of this domain is usually used instead, and it is known as closed unit disk.

It can be mathematically described as the set of points Q ∈ R2 for which the distance to

the origin (0, 0) is less than or equal to one:

D = {Q : |Q| ≤ 1}.
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Figure 2.12: The first fifteen Zernike polynomials on the unit circle domain. Colors
indicate the value of the function, ranging from -1 (blue) to 1 (red), as shown in the color
bar.
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Zernike polynomials, introduced by the optical physicist Frits Zernike in 1934,

are a class of orthogonal polynomials useful for characterizing wavefront errors on the

closed unit disk. Initially used in phase contrast microscopy for quantifying wavefront

aberrations in circular mirrors, over the years they saw widespread usage and became “one

of the most popular orthonormal polynomials over circular pupils” (DAI, 2008). They are

formed by the product of a radial factor and an angular factor. Since their natural domain

is the unit circle, they are more naturally expressed using polar coordinates and may be

used to describe any real function on the pupil plane.

It is useful to distinguish between even and odd polynomials. Even polynomials

are obtained by the expression

Zm
n (ρ, ω) = Nm

n R
m
n cos(mω), (2.6)

where ω is the polar angle (ranging from 0 to 2π) and n,m are non-negative integers. The

index n indicates the highest power of ρ in the polynomial, and therefore is called order.

The value m stands for azimuthal frequency, and denotes the frequency of the angular

repeating pattern (Figure 2.12). Magnitude ρ is used to calculate the radial coefficient
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Rm
n . Note that it uses an even function (cosine). Odd polynomials, on the other hand, are

defined by

Z−mn (ρ, ω) = Nm
n R

m
n sin(mω), (2.7)

and use an odd function (sine).

The normalization factor Nm
n is defined by

Nm
n =

√
2(n+ 1)

1 + δm0

,

where δm0 is the Kronecker delta (its value is 1 when m = 0, and 0 otherwise).

Finally, the radial part is given by the polynomial

Rm
n (ρ) =

(n−m)/2∑
k=0

(−1)k(n− k)!

k!(n+m
2
− k)!(n−m

2
− k)!

ρn−2k.

Important features of Zernike polynomials include orthogonality over the closed

unit disk and rotational symmetry. By the former, additions of new terms to the poly-

nomial do not disrupt the surface (coefficients are independent). Furthermore, when in

orthonormal form, the coefficients of the polynomial terms represent their standard devia-

tions. The latter allows Zernike polynomials to be expressed as products of radial factors

and functions of angle, like R(ρ)G(ω). Note that G(ω) is a continuous periodic function

with period 2π; as a corollary, the coordinate system can be rotated by an angle α without

changing the form of the polynomial (WYANT; CREATH, 1992). In other words,

G(ω + α) = G(ω)G(α).

There are two ways of referencing a Zernike polynomial: double-index mode,

which uses indices n and m, and single-index mode, which uses index j. The formu-

las (DAI, 2008) to convert from from single to double-index mode are

n =
⌊√

2j + 1 + 0.5
⌋
− 1, and

m = 2j − n(n+ 2),

and the formula to convert from double to single-index mode is

j =
n2 + 2n+m

2
.
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Table 2.2: Zernike polynomials and their respective Noll indices and common names
Symbol Noll Name

index
Z0

0 1 Piston
Z−1

1 2 Vertical tilt
Z1

1 3 Horizontal tilt
Z−2

2 4 Oblique astigmatism
Z0

2 5 Defocus
Z2

2 6 Vertical astigmatism
Z−3

3 7 Vertical trefoil
Z−1

3 8 Vertical coma
Z1

3 9 Horizontal coma
Z3

3 10 Oblique trefoil
Z−4

4 11 Oblique quadrafoil
Z−2

4 12 Oblique secondary astigmatism
Z0

4 13 Primary spherical
Z2

4 14 Vertical secondary astigmatism
Z4

4 15 Vertical quadrafoil
Source: The Authors

Single-indices are also known as Noll’s indices. In this text, we use mostly the double-

index representation, and rely on single-index mode for certain stages of the algorithms

presented in Appendix B.

Table 2.2 lists the first fifteen Zernike polynomials, as well as the common aberra-

tions represented by them. Expanded formulas for both polar and Cartesian forms of the

polynomials are shown in Table 2.3, and their respective graphs are plotted on Figure 2.12.

In particular, myopia and hyperopia are modeled by Z0
2 (defocus), while astigmatism is

modeled by a linear combination of Z1
2 and Z−1

2 (oblique and vertical astigmatism). The

polynomials’ coefficients, derived from the Seidel series (DAI, 2008), are

c−2
2 =

R2C sin 2ϕ

4
√

6
, (2.8)

c0
2 = −R

2(S + C/2)

4
√

3
, and (2.9)

c2
2 =

R2C cos 2ϕ

4
√

6
. (2.10)

As a result, defocus-only wavefront aberration is modeled as

WS = c0
0Z

0
0 , (2.11)

and the common set of low-order wavefront aberrations (myopia, hyperopia and astigma-
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Table 2.3: Zernike polynomials in polar and Cartesian forms
Symbol Polar Cartesian

Polynomial Polynomial
Z0

0 1 1

Z−1
1

√
4ρ sin θ

√
4y

Z1
1

√
4ρ cos θ

√
4x

Z−2
2

√
6ρ2 sin 2θ

√
6(2xy)

Z0
2

√
3(2ρ2 − 1)

√
3(2x2 + 2y2 − 1)

Z2
2

√
6ρ2 cos 2θ

√
6(x2 − y2)

Z−3
3

√
8ρ3 sin 3θ

√
8(3x2y − y3)

Z−1
3

√
8(3ρ3 − 2ρ) sin θ

√
8(3x2y + 3y3 − 2y)

Z1
3

√
8(3ρ3 − 2ρ) cos θ

√
8(3x3 + 3xy2 − 2x)

Z3
3

√
8ρ3 cos 3θ

√
8(x3 − 3xy2)

Z−4
4

√
10ρ4 sin 4θ

√
10(4x3y − 4xy3)

Z−2
4

√
10(4ρ4 − 3ρ2) sin 2θ

√
10(8x3y + 8xy3 − 6xy)

Z0
4

√
5(6ρ4 − 6ρ2 + 1)

√
5(6x4 + 12x2y2 + 6y4 − 6x2 − 6y2 + 1)

Z2
4

√
10(4ρ4 − 3ρ2) cos 2θ

√
10(4x4 − 4y4 − 3x2 + 3y2)

Z4
4

√
10ρ4 cos 4θ

√
10(x4 + y4 − 6x2y2)

Source: The Authors

tism), as a whole, can be computed by the linear combination

WS,C,ϕ = c−2
2 Z−2

2 + c0
2Z

0
2 + c2

2Z
2
2 . (2.12)

2.4 Wave Optics

Electric and magnetic fields are vector fields existing throughout the entire space,

and together they are known as the electromagnetic field. Wave optics regards light as a

disturbance in the electromagnetic field caused by an accelerating charge oscillating with

frequency ν, which propagates at speed c as a transverse wave. The first complete math-

ematical description of its nature was given in the 19th century by James Clerk Maxwell,

as he unified and complemented a set of equations of electromagnetism discovered by

various scientists.

When the medium is vacuum, these revised form of these equations (revision per-
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Figure 2.13: An electromagnetic wave propagating in space. Note how the electric (E)
and magnetic (B) fields are orthogonal to each other, and also how their values change as
a sinusoidal function of position. The wavelength λ is depicted as the distance between
points with the same phase.
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B

Source: The Authors

formed by Oliver Heaviside) can be written in differential form as

∇ · ε0E = 0, (2.13)

∇ · µ0B = 0, (2.14)

∇× E = −∂B
∂t
, and (2.15)

∇×B = µ0ε0
∂E

∂t
. (2.16)

In these equations, the electric and magnetic fields are indicated by E and B, respectively,

time is t, and the vacuum permittivity and permeability are represented by ε0 and µ0,

respectively. The fields E and B are always in phase, orthogonal to each other, and their

magnitudes are related by

||B|| = ||E||/c.

After applying the curl identity

∇× (∇×A) = ∇(∇ ·A)−∇2A

to Equation (2.15), substituting Equations (2.13) and (2.16) and using the relation

c = 1/
√
µ0ε0

in the result, one can obtain the wave equation(
∇2 − 1

c2

∂2

∂t2

)
u(r, t) = 0,
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where position in space is indicated by the vector r, and u(r, t) is the wave function, or

light field, usually regarded as a proxy for the electric field. Reasons for considering the

light field as a scalar rather than a vector field, which is the case for electric and magnetic

fields, are given later in this section.

By setting different initial and boundary conditions, several solutions to this partial

differential equation can be obtained. Two of them in particular are the spherical wave,

given by

us(r, t) =
E0

r
ej(kr−ωt), (2.17)

which represents a point-like object emitting monochromatic light from a finite distance

away, and the plane wave, given by

up(r, t) = E0e
j(kr−ωt), (2.18)

which can be regarded as the disturbance originated from a point source infinitely far

away or an infinite plane source at any distance. In both cases, E0 is the base amplitude,

j is the imaginary unit
√
−1, ω is the angular frequency defined by

ω = 2πν,

and k is the optical wave number defined as the number of radians per unit distance, or

k =
2π

λ
=

2πν

c
,

where λ is the wavelength. The value r in the denominator of Equation (2.17) indicates

that the displacement caused by spherical waves fades away as r increases.

At any point in time, the total intensity of the wave is given by the Poynting vector,

S =
1

µ0

E×B, (2.19)

which is orthogonal to both E and B and indicates the direction of energy flow. This

energy depends on the instantaneous value of the displacement of both electric and mag-

netic fields, but since they oscillate in time, the time-average is a much more relevant

quantity. Before calculating the average, the light field oscillation function should be split

into a time-independent and a time-dependent function by writing the scalar field u, with
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arbitrary amplitude A(r), as

u(r, t) = A(r)ejkre−jωt = U(r)e−jωt,

where U(r) is a time-independent complex function called phasor, defined as

U(r) = A(r)ejkr.

The time-average of the intensity, derived from the instantaneous intensity relation at

Equation (2.19), can be shown to be proportional to the squared magnitude of the com-

plex phasor, since the average of the time-dependent function over a long period of time

approaches 1/2, as shown in

I(r) = 〈||S(r, t)||〉 = lim
T→∞

� T

0

1

µ0cT
<{U(r)e−jωt}2 dt =

1

2µ0c
|U(r)|2. (2.20)

In this equation, the angular brackets 〈〉 represent continuous average over time

and < returns the real part of a complex number. This result indicates that any phase

factor present in the final field U(r) can be safely discarded without affecting the result. It

also indicates that a time-independent representation is enough for eventually recovering

intensity, so that Equation (2.17) and Equation (2.18) can be rewritten as the phasors

Us(r) =
E0

r
ejkr (2.21)

and

Up(r) = E0e
jkr

respectively.

Finally, it is important to state that the reason for treating the light field as a

scalar field rather than a vector field are given by Goodman (2005), who argues that a

scalar theory of diffraction renders results very close to the vector results because only

on boundaries the vector characteristics of light will matter. Since the apertures usually

dealt with are far larger than the wavelength of light and considerably distant from the

image plane on that same scale (a very legitimate assumption for the situations presented

in this work), the boundary characteristics will not matter and the results will be consis-

tent. It also should be emphasized that usage of electric field rather than magnetic field

as a proxy for describing u is a common convention in wave optics; the magnetic field is
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Figure 2.14: Optical path of a light ray traversing a thin lens. (a) Side view of the lens.
The radii (R1 and R2) of the spherical caps are shown with dashed lines. Thickness
and curvature of surfaces are exaggerated when in comparison with actual thins lens, for
a better depiction of the phenomenon. (b) Front view of the lens. All points (A – F)
coincide in this view because the ray is orthogonal to the xc and yc axes.
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R2 R1
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Source: The Authors

always present, perpendicular to the electric field, but its intensity is so much lower that

it seems more natural to use the latter. Moreover, by using a scalar theory of diffraction

rather than a vector treatment, the directional differences between magnetic and electric

vectors are already neglected.

2.5 Phase transformation of thin lenses

This section shows, using a demonstration adapted from the one presented in

Goodman (2005), how the characteristics of a thin lens regarded as an optical apparatus

capable of converging light rays into a (virtual or real) focus can be translated into wave

optics, where it acts as a phase transformation device. In order to simplify the analysis of

light propagation, the lens has been split into three objects: a spherical cap on the left with

positive curvature R1 and maximum thickness t1, a cylinder of thickness t2, and a spheri-

cal cap on the right with negative curvature R2 and maximum thickness t3 (Figure 2.14a).

An arbitrary light ray crosses each of these objects, in the given order, passing through

points A, B, C, D, E, and F. By the definition of thin lenses, translation between points B

and E is negligible, but phase transformation, which is orders of magnitude smaller than

the lens thickness, should be considered.
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Phase delay depends on the distance traveled inside the lens. For each object

traversed, there is a thickness function, which depends on the (xc, yc) position of the

intersection between the light ray and the lens (Figure 2.14b). Note that we use the c

subscript in the continuous domain coordinates xc and yc to differentiate them from the

discrete domain coordinates x and y in later sections. The thickness function ∆1(xc, yc)

of the first object struck by the ray gives the distance BC. It is computed by limiting the

sphere equation R2
1 = x2

c + y2
c + z2

c using the cap thickness t1. Distance (R1 − zc) is then

subtracted from t1, which results in

∆1(xc, yc) =
√
R2

1 − x2
c − y2

c + t1 −R1.

Pulling R1 out of the square root yields

∆1(xc, yc) = R1

√
1− x2

c + y2
c

R2
1

+ t1 −R1.

Applying the binomial approximation (Appendix A.1) and simplifying yields

∆1(xc, yc) = −x
2
c + y2

c

2R1

+ t1. (2.22)

The second object struck by the light ray is a cylinder, which implies that the

thickness CD is given by the constant function

∆2(x, y) = t2. (2.23)

Like the first object, the third and last object struck by the light ray is also a spher-

ical cap, but its radius is negative by definition. In this case, thickness DE is calculated

first, and the distance (−R2 − z) is then subtracted from the sphere cap thickness t3,

resulting in

∆3(xc, yc) =
√
R2

2 − x2
c − y2

c + t3 +R2.

Pulling −R2 out of the square root yields

∆3(xc, yc) = −R2

√
1− x2

c + y2
c

R2
2

+ t3 +R2.
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Applying the binomial approximation and simplifying results in

∆3(xc, yc) =
x2
c + y2

c

2R2

+ t3. (2.24)

The total OPL is the sum of the OPLs computed for the three objects, which have

refractive index n, added to AB and EF, which are the distances where the ray crosses the

air (refractive index 1), as indicated in

OPL = t1 + (n− 1)∆1 + n∆2 + t3 + (n− 1)∆3. (2.25)

Plugging Equations (2.22) to (2.24) into Equation (2.25) yields

OPL = t1 + (n− 1)

(
−x

2
c + y2

c

2R1

+ t1

)
+ nt2 + t3 + (n− 1)

(
x2
c + y2

c

2R2

+ t3

)
.

Regrouping common terms results in

OPL = (n− 1)

(
1

R1

− 1

R2

)(
−x

2
c + y2

c

2

)
+ n(t1 + t2 + t3). (2.26)

Plugging Equation (2.3) in Equation (2.26) and dropping the phase shift n(t1 + t2 + t3)

yields

OPL = −x
2
c + y2

c

2f
. (2.27)

After embedding Equation (2.27) into the argument of a phasor, it is possible to

compute the light field phase transformation caused by a thin lens with focal distance f .

It is the result of multiplying the incoming light field by

Lf (xc, yc) = e−jk
1
2f

(x2c+y
2
c ). (2.28)

2.6 Huygens-Fresnel principle

When light encounters a barrier on its way, and it is no longer traveling a negligible

distance as was the case considered in the previous section, the task of computing the field

displacement at an arbitrary position is no longer trivial. Such cases are influenced by the

phenomenon of diffraction, which takes the leading role in determining the evolution of

the disturbance in space and time.

An important observation made by Christiaan Huygens in the 17th century be-
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Figure 2.15: Huygens-Fresnel principle. Light is emitted by point A and the contribution
of all the wavelets P1 centered at the wavefront Σ are integrated in order to compute the
field displacement at observation point P0.

P0

Σ

P1

θA

r01

Source: The Authors

comes very useful in these cases. According to Huygens principle, every point of a wave-

front may be considered as a center of a secondary disturbance in form of a wavelet, and

the wavefront at any later instant may be regarded as the envelope of these wavelets. This

principle is not physically correct, but it is very useful in practice. Schwartz (1987), for

instance, argues that it “(...) gives the right answer for the wrong reasons”, since “(...)

light does not emit light; only accelerating charges emit light”. Anyway, Huygens prin-

ciple was a remarkable observation at the time and has been a tremendously useful tool

ever since.

A later addition by Augustin-Jean Fresnel included the necessity of considering

diffraction when calculating the effects of the wavelets, and this modification was so rele-

vant that two combined ideas have been known as Huygens-Fresnel principle (illustrated

on Figure 2.15). According to it, the field displacement at observation point P0 can be

obtained by integrating the contribution of an infinite number of spherical wavelets P1

centered along the wavefront Σ. The integral is written as

U(P0) =
1

jλ

�

Σ

U(P1)
ejkr01

r01

cos θ dΣ, (2.29)

where r01 = P0−P1 and θ is the angle between the wavefront normal at P1 and r01. The

factor 1/(jλ) indicates that the wavelets’ phases are leading the emitter phase by 90◦ and

experience a reduction in field amplitude inversely proportional to the wavelength. The

inclination factor cos θ also indicates a field amplitude reduction.
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2.7 PSF generation

This section explains how an optical system generates a point spread function

(PSF) out of an input point light source. The PSF is the image of the point source, and it

indicates how faithfully the system reproduces objects on the image plane. In the case of

a perfect optical system (which does not exist in practice), the PSF is a two-dimensional

Dirac delta. An aberrated system tends to spread out the points on the image plane,

causing the PSF to be blurred, but nevertheless it should be normalized in order to keep

image energy intact. In signal processing jargon, the PSF is the impulse response of a

focused optical imaging system, and the image produced by a lens can be obtained by the

convolution of an image produced by an ideal system with the lens PSF.

Our wave propagation analysis starts on the light emitted by a point A, illustrated

in Figure 2.16. A short time after the spherical wave emerges from it, the wavefront en-

counters an aperture at plane Σ, and after crossing a lens with focal length h, it reaches

plane Γ. Afterwards, it crosses a second lens with focal length f before reaching plane ∆,

and finally continues propagating towards plane Ω, where the image (PSF) is formed by

the contribution of many points (only one of them, represented by B, is shown in Fig-

ure 2.16). Distance from the object A to plane Σ is d; distance from plane ∆ to plane Ω

is f , which is the same as the focal distance for the rightmost lens. Both lenses are con-

sidered thin lenses, so that all properties seen in Section 2.5 apply, and as a consequence

the distance from plane Σ to plane ∆ is zero.

The propagation of light has been split into three parts. In the first part, propaga-

tion outside the optical system from A to the plane Σ is described. The second part deals

with the adaptive focus (accommodation) that takes place due to propagation inside the

optical system, from plane Σ to plane Γ. Finally, in the third part, after a final phase shift

caused by a second lens, from plane Γ to plane ∆ — which, in the case of an incident

plane wave (d = h), should turn the planar wavefront into a converging spherical shape

centered at the origin —, the Huygens-Fresnel principle is applied to the light field in

order to compute its convergence from plane ∆ to the final image plane Ω, where the

PSF will be registered. Two lenses have been used rather than one, in order to better ex-

plain the accommodation effects (first lens) and the image formation focus (second lens)

separately, but the results are the same if a single lens combining both effects is used.



41

Figure 2.16: Image information in an optical system from a point-source on the optical
axis using Fourier optics. Light propagates from point-source A, passing through two
thin lenses between planes Σ (aperture), Γ, and ∆, and producing an image on plane Ω.
Each point B on the image plane results from the superposition of an infinite number
of wavelets emerging from plane ∆. The focal lengths of the left and right lenses are h
and f respectively. Note that both lenses and the planes Σ, Γ, and ∆ are on the same
location, but shown at different depths in order to indicate the different stages of the wave
propagation.

Σ Γ ∆ Ω

xc

zc

yc

A

fd

h

B

Source: The Authors
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2.7.1 Point source illumination

The spherical wave emitted by pointA, at a distance d from the aperture (plane Σ),

can be described by the phasor at Equation (2.21). In a first approximation, which is

possible because d is much larger than the aperture (paraxial approximation), the value r

in the denominator is replaced by d (GOODMAN, 2005), yielding

UΣ(xc, yc) =
E0

d
ejkr. (2.30)

The same value r in the exponent cannot be approximated by d, and so it is expanded as

r =
√
x2
c + y2

c + d2.

Pulling the value d out of the square root yields

r = d

√
x2
c + y2

c

d2
+ 1,

and applying the binomial approximation to the square root results in

r =
x2
c + y2

c

2d
+ d. (2.31)

Replacing Equation (2.31) in Equation (2.30) yields

UΣ(xc, yc) = ejk( 1
2d

(x2c+y
2
c )+d).

Finally, after dropping the phase shift, the value obtained is

UΣ(xc, yc) = ejk
1
2d

(x2c+y
2
c ), (2.32)

which represents the light field distribution on the aperture Σ.

2.7.2 Accommodation and aberrations

In order to calculate the light field on plane Γ, the one on Σ is multiplied by the

phase transformation performed by the leftmost lens (Equation (2.28)), which has focal
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Figure 2.17: The pupil function. It is characterized as a windowing function that assigns
the value 1 inside the (usually circular) aperture and 0 outside.
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length h, and also by the aberration function UW and the pupil function P , yielding

UΓ(xc, yc) = UΣ(xc, yc)Lh(xc, yc)UW (xc, yc)P (xc, yc).

When h = d, the phase transformation caused by the light propagation from the object to

the plane is exactly canceled out by the lens phase transformation, resulting in

UΣ(xc, yc)Lh(xc, yc) = ejk( 1
2d

(x2c+y
2
c ))e−jk

1
2h

(x2c+y
2
c ) = 1. (2.33)

In practice, this happens when the optical system is focusing the point source A (human

eye accommodation by changing the shape of the crystalline lens). In all other cases,

there will be a vestigial phase transformation that can be considered an accommodation-

induced defocus aberration.

When the aperture is circular, the pupil function (Figure 2.17) can defined as

P (xc, yc) =

1 if x2
c + y2

c ≤ R2, or

0 otherwise.
(2.34)

It provides windowing effects by setting the light field to zero outside an aperture of radius

R. The shape of the aperture plays a crucial role on the diffraction effects considered in

the next subsection.

Besides accommodation-induced defocus, any other lens aberration effects can

also be considered at this plane by plugging the wavefront error W (xc, yc) into the argu-
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ment of the aberration and obtaining

UW (xc, yc) = e−jkW (xc,yc). (2.35)

The complex function UΓ, also denoted by P, is known as the generalized pupil function.

2.7.3 Superposition

After reaching plane Γ, the wavefront will be subject to another phase transforma-

tion on its way to plane ∆. This time, it is dictated by a non-aberrated lens with fixed

focal distance f . Thus, the light field on plane ∆ is

U∆(xc, yc) = Pe−jk
1
2f

(x2c+y
2
c ). (2.36)

Afterwards, light will continue its journey and will eventually reach plane Ω. The im-

age on plane Ω is then calculated as the superposition of the wavelets on the plane ∆

using the Huygens-Fresnel principle shown in Equation (2.29). The resulting value of the

disturbance on the image plane, calculated for every point B on that plane, is given by

E(ζ, η) =
1

jλ

∞�

−∞

U∆(xc, yc)
ejkr

r
dxc dyc,

where the inclination factor cos(θ) is assumed to be 1, and r is the distance from the

wavelet at (xc, yc, f) to every point B on the image plane at (ζ, η, 0). The integration

domain can safely be changed from the wavefront surface to the whole R2 plane because

the windowing effects of the aperture have already been incorporated by the pupil function

in U∆. Replacing the r in the exponent by the Euclidean distance results in

E(ζ, η) =
1

jλ

∞�

−∞

U∆(xc, yc)
1

r
ejk
√

(xc−ζ)2+(yc−η)2+f2 dxc dyc.

Using a binomial approximation to get rid of the square root yields

E(ζ, η) =
1

jλ

∞�

−∞

U∆(xc, yc)
1

r
ejkfej

k
2f

(ζ2+η2)ej
k
2f

(x2c+y
2
c )e−j

k
f

(xcζ+ycη) dxc dyc.
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Another approximation is applied by replacing r in the denominator by f . In this case,

the approximation is justified by the fact that f is much larger in magnitude than (xc− ζ)

and (yc − η). The disturbance obtained so far is

E(ζ, η) =
ejkfej

k
2f

(ζ2+η2)

jλf

∞�

−∞

U∆(xc, yc)e
j k
2f

(x2c+y
2
c )e−j

k
f

(xcζ+ycη) dxc dyc. (2.37)

Replacing Equation (2.36) in Equation (2.37) yields the final phase transformation on

plane Ω, which is

E(ζ, η) =
ejkfej

k
2f

(ζ2+η2)

jλf

∞�

−∞

P(xc, yc)e
−j k

2f
(x2c+y

2
c )ej

k
2f

(x2c+y
2
c )e−j

k
f

(xcζ+ycη) dxc dyc.

The quadratic factors on (xc, yc) cancel out, yielding

E(ζ, η) =
ejkfej

π
λf

(ζ2+η2)

jλf

∞�

−∞

P(xc, yc)e
−j 2π

λf
(xcζ+ycη) dxc dyc. (2.38)

The factor β = λf shows up at various places in Equation (2.38) and can be regarded as

a scaling factor. For compactness, one can group the factors outside the integral using

M =
1

β
exp(j2πf/λ+ jπ/β(ζ2 + η2)− jπ/2).

Aside from the factor M , the integral resembles the continuous Fourier transform of the

light field at plane Γ with a scaling factor of 1/β:

E(ζ, η) = M

∞�

−∞

P(xc, yc)e
−j 2π

β
(xcζ+ycη) dxc dyc. (2.39)

2.7.4 Discretization

The discretization step involves some careful choices that might affect the ex-

pected results in important ways. The pixel pitch of the generalized pupil function is

arbitrary, and affects the quality of the resulting details. It is the ratio between the exit

pupil diameter 2R and the n pixels that the diameter should correspond to.

The pixel pitch of the PSF is also arbitrary, but for our usage cases it should be
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equal to the pixel pitch of the camera sensor (or any pixel discretization desired for the

retina). The pixel pitch of the image is ρ. A mapping from continuous dimensions to

pixels is given by the functions

F (u, v) = E (ρu, ρv) (2.40)

and

U(x, y) = P
(

2R

n
x,

2R

n
y

)
. (2.41)

After discretizing the integral in Equation (2.39) using Equations (2.40) and (2.41), one

obtains

F (u, v) = M
n−1∑
x=0

n−1∑
y=0

U(x, y)
[
e−j

2π
β
ρ 2R
n

(xu+yv)
] (2R)2

n2
.

Moving the constant factor out of the summation yields

F (u, v) = M
(2R)2

n2

n−1∑
x=0

n−1∑
y=0

U(x, y)e−j
2π
β
ρ 2R
n

(xu+yv). (2.42)

The scaling factor α takes into account the various parameters and is defined by

α =
β

ρ2R
=
λN

ρ
, (2.43)

where N if the f-number (ratio between the focal length f and the exit pupil diameter

2R). After replacing Equation (2.43) in Equation (2.42), one obtains the α-scaled discrete

Fourier transform multiplied by a complex factor:

F (u, v) = M
(2R)2

n2

n−1∑
x=0

n−1∑
y=0

U(x, y)e−j
2π
αn

(xu+yv) = M
(2R)2

n2
Fα{U}.

When α > 1, computing Fα{U} can be accomplished by enlarging the n× n do-

main of U to αn×αn with zero-filling before calculating F{U}. Otherwise, no previous

enlargement of the domain should be done, but the result should be downscaled by 1/α.

Using Equation (2.20), it is possible to find the intensity of the light at every spot

of the PSF with the formula

I(u, v) =
1

2µ0c

∣∣∣∣M (2R)2

n2
Fα{U}

∣∣∣∣2 .
The result can be cropped as necessary, taking into account that the pixel pitch of the
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resulting image corresponds to ρ.

After calculating the intensity, the PSF should be normalized in order to ensure

that the energy on the original picture stays the same when using the PSF as a convolution

kernel. After normalization the multipliers are eliminated, yielding

PSF (u, v) = |Fα{U}|2/

(∑
∀u,v

|Fα{U}|2(u, v)

)
, (2.44)

which shows that the discrete PSF is the normalized α-scaled power spectrum of the

discrete generalized pupil function.

Depending on the sensor pixel pitch, the PSF may convey visible diffraction pat-

terns, as shown in Figure 2.18. This is a representation of the impulse response of a

diffraction-limited optical system with wavelengths

λr = 700 nm,

λg = 510 nm, and

λb = 440 nm,

(2.45)

as recommended by Krueger, Oliveira and Kronbauer (2016), for the simulation of PSFs

for color images. Each one, known as an Airy pattern, can be computed using Equa-

tion (2.44) with U representing the generalized pupil function of a plane wave, for a cam-

era with a huge pixel density (roughly 2,888 pixels/mm). The pattern is mathematically

described by

I(r) = E0

(
2J1(πr/(λN))

πr/(λN)

)2

, (2.46)

where r is the radial distance from the center to each point of the pattern, E0 is the

maximum central intensity, and J1 is the Bessel function of the first kind of order one.

The first zero of this function can be shown to occur at

r ≈ 1.22λN, (2.47)

which is defined as the radius of the central bright circle, known as Airy disk.
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Figure 2.18: PSF Airy patterns of a plane wave for three different wavelengths. They
correspond to the usual RGB color channels, and their differences in size and intensity
are notorious. The image plane where they are formed is assumed to be an idealized
camera sensor with pixel density of roughly 2,888 pixels/mm. Focal length of the camera
lens is set to 18 mm. The units of the sensor plane (horizontal axes) are in µm, and
the vertical axis indicates the dimensionless normalized PSF weights. In an actual real
CCD, the Bayer filter colors are not exactly red, green and blue. Even if they were,
their corresponding PSFs would still differ slightly from those presented here, due to
each band-pass filter sensitivity spectrum spanning a certain finite interval of wavelengths,
rather than being limited to its peak wavelength sensitivity.
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(a) λr = 700 nm (red) and
αr = 10.0649
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(c) λb = 440 nm (blue) and
αb = 6.3265

Source: The Authors

2.8 Partial occlusion effects

A very challenging aspect of realistic vision simulation is dealing with partial

occlusion effects. This issue is illustrated in Figure 2.19, which presents a scene with

rosebuds in the foreground (occluder object) and a sunflower in the background. When

the foreground is in focus (Figure 2.19a), it blocks the view of the background object.

However, when the background is in focus (Figure 2.19b), there is a see-through effect

throughout all the foreground, and the background sunflower becomes almost completely

visible; in this case, one says that the background is partially occluded.

Figure 2.20 shows a schematic side view of this scene’s structure. The background

plane stands for the sunflower, and the occluding plane are the rosebuds. Note that, when

focusing on the foreground plane (Figure 2.20a), a large finite region on the background

reflects light rays that contribute to the formation of a single point on the image plane.

This is the reason for the background to be blurry, since the colors of several points are

averaged together. On the other hand, a single point on the occluding plane reflects several

rays that contribute to the formation of a single point on the image plane (Figure 2.20b).

This is why the foreground is sharp. In this case, there is no color mixing between back-

ground and foreground.
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Figure 2.19: Partial occlusion effects. (a) When the foreground is in focus, rosebuds
appear sharp and the background is blurry. (b) When the sunflower on the background is
in focus, parts of it that were occluded on (a) become visible and the foreground appears
to be translucent.

(a) (b)

Source: Zannoli et al. (2016)

When focus is switched to the background, the situation is shown in Figure 2.20c.

Now, a single point on the background is reflecting several rays that form a single point

on the image plane. Yet, at the same time, a finite area on the occluding plane also re-

flects several rays that contribute to the formation of that very same point. This time,

background and foreground colors mix together, and that is the reason for the apparent

translucency of the occluding plane. In any case, it is important to notice that, if infor-

mation from the entire scene is available, all these effects could be simulated using ray

tracing.

2.9 Summary

This chapter provided some background on fundamental concepts related to both

geometric and wave optics that are important for understanding this thesis. This included

the Zernike polynomials, which are used to characterize low-order aberrations, and a

derivation of the Fourier transform produced by a lens, geared towards the Computational

Photography community using the Huygens-Fresnel principle. It also presented an intu-

ition behind partial-occlusion effects, which play a major role on the decisions leading to

development of our two different simulation techniques.
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Figure 2.20: Schematic view of partial occlusion under the geometric optics model. This
is a side-view representation of the scene shown in Figure 2.19. The background plane
represents the sunflower and the foreground occluding plane are the rosebuds. (a) Finite
area on the background emitting rays that form a single image point. (b) Single point on
the foreground forming a single image point. (c) Both a single point on the background
and a finite region on the foreground contribute to the formation of the same image point.
(a,b) occur when the foreground plane is in focus, while (c) occurs when the background
plane is in focus.

(a)

(b)

(c)

Source: The Authors
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3 RELATED WORK

Vision simulation techniques that include optical phenomena like depth of field

fall into two major categories: object-based and image-based algorithms. The former uses

computer graphics techniques to render 3D scenes, producing accurate results as in the

case of distribution ray tracing (COOK; PORTER; CARPENTER, 1984), and, more re-

cently, in real-time simulation of human vision through eyeglasses (NIEßNER; STURM,

2012), and human eye chromatic aberration (CHOLEWIAK et al., 2017). Image-based

techniques manipulate RGB-D data, leading to faster approaches and supporting the use

of actual photographs as input. In turn, they tend to suffer from artifacts due to the limited

amount of scene information available in a single RGB-D image. Our techniques and all

the other methods discussed in this section are image-based approaches. Our new light-

gathering tree data structure (described in Chapter 5) significantly minimizes the impact

of missing data when producing realistic vision simulations.

3.1 First techniques

The first developed image-space methods were able to produce a depth-dependent

circle of confusion for every pixel with the goal of simulating blurriness (POTMESIL;

CHAKRAVARTY, 1982). This technique, however, neglects partial occlusion effects and

is prone to artifacts which can be seen on Figure 3.1b.

In an attempt to offer a solution to this problem, Scofield (1992) proposed to clas-

sify the scene objects into foreground and background fields, filtering them separately

using a PSF appropriate for the distance, and finally compositing the blurred sub-images

with alpha blending. This process solves the partial occlusion issue but it only allows a

single level of blur per object.

The ray distribution buffer (RDB) approach provided a solution to those errors by

averaging the contribution of several rays over a pixel and treating occlusion based on the

ray direction (SHINYA, 1994). Before ray tracing starts, the buffers are reset to maximum

distance. Every time a ray traced into the scene hits an object, the ray direction and the

object’s color and distance are recorded in the RDB, provided the distance is less then

the previously stored for the respective direction. When tracing is finished, the buffer

associated to every pixel is averaged in order to compute the final color (Figure 3.1c).
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Figure 3.1: Comparison between linear filtering and ray distribution buffer techniques.
(a) Sharp image input. (b) Linear filtering technique applied to input image. (c) Ray
distribution buffer algorithm applied to input image.

(a) (b) (c)

Source: Shinya (1994)

3.2 Vision-realistic rendering

Barsky et al. use optical information from a human subject, supplied by a Shack-

Hartmann aberrometer, to model a wavefront that characterizes the subject’s visual sys-

tem (BARSKY et al., 2002; BARSKY et al., 2003). Rays cast from a central point on a

virtual retina are bent by a virtual lens and then affected by the subject’s wavefront aber-

ration before entering the scene. A set of planes regularly spaced in diopters is placed

in the scene (Figure 3.2). Each such plane is associated with a histogram registering the

number of rays intersecting it in different rectangular sub-regions. When normalized,

each histogram is turned into a so-called depth point spread function (DPSF). Given an

input RGB-D image, disjoint sub-images are created using pixels whose depth is clos-

est to each plane. The sub-images are then convolved with their respective DPSFs and

re-combined with alpha compositing. Unfortunately, simply compositing the convolved

sub-images produces undesirable artifacts at the edges of objects (Figure 3.3). The cause

of these artifacts is illustrated in 2D in Figure 3.4, where a foreground scene object (red)

partially occludes a background object (blue). The scene is projected onto some image

plane producing an image I (Figure 3.4a). As the image content is reprojected into the

scene (Figure 3.4b), the region of the background object marked with R is missing. As

this sub-image is convolved with the DPSF corresponding to its plane, the missing infor-

mation is improperly treated as zero (black) producing dark regions around edges in the

resulting composited image Ic (Figure 3.4c). Note that, given the missing information,
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Figure 3.2: A set of planes regularly spaced in diopters.

Source: Barsky (2004)

Figure 3.3: Rendering artifacts produced by the technique of Barsky, when not properly
corrected using the object identification solution. (a) Sharp input image. (b) Blurred
image with border artifacts. When compared to the sharp input image (a), note how the
blurred result (b) presents dark bands separating its parts on different planes.

(a) (b)

Source: Barsky et al. (2003)

one should have used normalized convolution (KNUTSSON; WESTIN, 1993) instead of

linear convolution. Similar artifacts result when an object spans more than one plane

(Figure 3.4d). In this case, an object that should look contiguous presents dark bands sep-

arating its parts on different planes. The workaround of Barsky et al. (2002) for the case

shown in Figure 3.4c is to convolve the original image with a Gaussian kernel and use

some of the resulting pixels to extend the background pixels in occluded regions touched

by the DPSF kernel. For the case shown in Figure 3.4d, Barsky (BARSKY, 2004) uses an

object identification solution to force pixels belonging to the same object into the same

sub-image, regardless of the object’s depth span, which results in incorrect results. Barsky

et al. (BARSKY et al., 2002; BARSKY, 2004) demonstrated their techniques using syn-
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Figure 3.4: A Top-view of a scene containing a red and a blue objects located at two
planes. (a) RGB-D image I corresponding to the view of a pinhole camera system at L,
with region R occluded. (b) Reprojected scene from I , with missing information shown in
black. (c) Planar blue sub-image convolved with its corresponding DPSF, and composited
on the final image Ic. (d) Same as (c), but with a single object spanning the two planes.
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(a) (b) (c) (d)

Source: The Authors

thetic RGB-D images rendered using computer graphics.

Since one’s eye wavefront changes as a function of accommodation (HE; BURNS;

MARCOS, 2000), the DPSFs should be re-created in the case of focus change. However,

obtaining wavefront measurements for different accommodation conditions is not practi-

cal with current aberrometers. Barsky et al. (2002) try to approximate changes in focus

by re-indexing the original DPSFs.

3.3 Other techniques

Some techniques related to ours employ pyramidal image processing in order

to recover occlusion information (KRAUS; STRENGERT, 2007), with satisfactory re-

sults (simulation shown in Figure 3.5), although they involve depth-of-field only, and

thus are not applicable to arbitrary aberrations like ours. Other methods use depth peel-

ing in order to access occluded scene information (LEE; EISEMANN; SEIDEL, 2010;

SCHEDL; WIMMER, 2012), and so only work with synthetic images or specific scene

acquisition methods that register depth and color information for occluded pixels. (results

shown in Figures 3.6 and 3.7 respectively).

Krueger, Oliveira and Kronbauer (2016) applied Zernike polynomials to recon-
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Figure 3.5: Depth-of-field rendering using pyramidal image processing for occluded in-
formation recovery.

Source: Kraus and Strengert (2007)

Figure 3.6: Real-time lens blur effects and focus control. (a) Focus on blue statue. (b)
Extension to physical model allowing focus on two different distances (blue and orange
statues).

(a) (b)

Source: Lee, Eisemann and Seidel (2010)

Figure 3.7: A layered depth-of-field method for solving partial occlusion.

Source: Schedl and Wimmer (2012)
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struct the wavefront error resulting from low-order aberrations, using information directly

available in spectacles prescriptions rather than relying on data from aberrometers. Con-

straining the scene to a single plane at a predefined distance, they used Fourier optics to

obtain convolution kernels and perform personalized vision simulations of a planar tex-

tured surface (e.g., an eye chart). Given a pupil size, the aberrated view was efficiently

computed. Defocus simulations were validated against ground-truth data captured with

a DSLR camera with low-order aberrations induced by the use of extra lenses placed in

front of the original ones.

Xiao et al. (2018) used convolutional neural networks to obtain real-time simula-

tion of depth of field, an important aspect for depth cues in virtual reality applications.

Ziegler, Croci and Gross (2008) used several planes to evaluate the complex-valued func-

tion of electromagnetic field for light propagation inside a cone of light. Their work

considers diffraction and thin lens effects on images, all using Fourier optics.

Previous vision simulation techniques are either limited to a single pre-defined

depth (KRUEGER; OLIVEIRA; KRONBAUER, 2016), only handle simulation of posi-

tive defocus (XIAO et al., 2018), or require specialized data acquired from aberrometers

and lack precision when dealing with partially occluded objects (BARSKY, 2004). In

contrast, our more robust approach provides a solution for interactive rendering of realis-

tic vision simulation for arbitrary depths, considers the various kinds of low-order aber-

rations (e.g., myopia, hyperopia, and astigmatism), and properly models the propagation

of light rays around obstacles.

3.4 Summary

In this chapter, we presented the works closely related to our techniques. All

of them are image-based algorithms. The techniques presented include depth of field

effects of Scofield (1992), ray distribution buffer (SHINYA, 1994), vision realistic ren-

dering (BARSKY et al., 2002; BARSKY et al., 2003), personalized vision simulation of

low-order aberrations of the human eye (KRUEGER; OLIVEIRA; KRONBAUER, 2016)

usage of convolutional neural networks (XIAO et al., 2018), and simulations using several

planes to evaluate the complex-valued function of the electromagnetic field (ZIEGLER;

CROCI; GROSS, 2008).
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4 SIMULATING LOW-ORDER ABERRATIONS USING WAVE OPTICS

This chapter presents a technique based on Fourier optics for simulating aberration-

aware human vision restricted to scenes with a single depth. It is is based on the work

done by Krueger, Oliveira and Kronbauer (2016) and also relies on low-order parameters

to perform wavefront reconstruction through Zernike polynomials.

The following sections describe the method employed as well as the reasoning

behind our algorithm. Section 4.1 presents the rationale behind the technique. Section 4.2

derives the formula used to simulate depth of field for objects on different distances.

Section 4.3 briefly mentions the need of applying gamma decoding. Section 4.4 describes

the implemented algorithm. Finally, Section 4.5 exposes an important limitation of the

technique, which will only be overcome by the approach presented in Chapter 5.

4.1 Rationale of the wave optics approach

The process of producing realistic human vision simulation requires complete real-

world information, such as the position and intensity of every point in the scene that con-

tributes for the final image formation. However, obtaining such data in all is complexity

is a very difficult task. A possible workaround for this issue is to use sharp images with

depth information associated to every pixel; nevertheless, one still has to deal with infor-

mation that will be missing due to occlusions (such issue is exemplified on Figure 4.1,

where occlusion causes trees to cast shadows of missing information over the building

facades).

One possible way of simulating vision is using Fourier optics, a formal and rigor-

ous tool. However, handling partial occlusions under such light propagation model is not

a trivial task. As shown in Figure 4.2, when a single point on the background plane emits

a spherical wave, windowing effects on the occluding plane disturb the wavefront shape,

and this adds a level of significant complexity to the simulation. Besides that, the com-

bination of the effects of wavefronts emitted from different scene points, including both

occluded regions and occluders, renders the correct prediction of the results an intractable

problem for real-time applications. For this reason, we will be limiting our simulations to

single-depth scenes and avoid partial occlusions entirely.

The overview of our Fourier-optics single-depth algorithm is shown in Figure 4.3.

Given a reconstructed wavefront error W using Zernike polynomials, the generalized
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Figure 4.1: Trees occluding building facades on Lidar point cloud. Although this is not
the same method we use to acquire scene information, the cause of missing information
on occluded regions is the same.

Source: (CURA; PERRET; PAPARODITIS, 2018)

Figure 4.2: Windowing effects in Fourier optics approach. Note how the wavefronts emit-
ted from a partially occluded point on the background plane are affected by the occluder.
They are combined with the wavefronts emitted from the occluding plane, and the overall
light field in the lens plane results from all these effects, causing the precise simulation
outcome to be difficult to compute.

Source: The Authors
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Figure 4.3: Wave optics approach overview. (a) Zernike polynomials are used to build
the wavefront error W , which is used as an argument for the complex generalized pupil
function P; by means of the power spectrum of that function, one obtains the PSF. (b)
Simulated result is obtained by the convolution of the sharp input image with the PSF.

(a)

(b)

Source: The Authors

pupil function P is generated using a phasor, and the PSF is obtained by means of the

power spectrum of that function. The PSF is then convolved with a sharp input image,

producing the result. In this case, depth information is used to set the appropriate coeffi-

cients for the Zernike polynomials, as explained in Section 4.2.

4.2 Object position and accommodation

The key observation for performing the computation of accommodation and depth-

aware PSF using Fourier optics is to notice the similarity between the coefficient corre-

sponding to the defocus Zernike polynomial and the accommodation phase transforma-

tion. When the aberration transformation presented in Equation (2.35) is used to model

defocus (shown in Equation (2.11)), it becomes

UW (xc, yc) = ejkc
0
2Z

0
2 (xc,yc). (4.1)



60

The relevant Zernike polynomial listed on the fifth row of Table 2.3 and its corresponding

coefficient shown in Equation (2.9) are

Z0
2(xc, yc) =

√
3(2x2

c + 2y2
c − 1) and (4.2)

c0
2 = − S

4
√

3
. (4.3)

Note that the quadratic radius factor R2 has been removed from c0
2 because the input

coordinates used here are in spatial domain rather than in the dimensionless unit disk.

The cylinder power C has also been removed because we are only modeling defocus in

this phase (astigmatism will be simulated in a different stage). By plugging Equation (4.2)

and Equation (4.3) into Equation (4.1), it can be written as

UW (xc, yc) = e
jk(− S

4
√
3

)
√

3(2x2c+2y2c−1)
. (4.4)

By disregarding the phase shift and performing some additional simplification, one ob-

tains

UW (xc, yc) = e−j
k
2
S(x2c+y

2
c ). (4.5)

On the other hand, by rewriting Equation (2.33) assuming that d 6= h, the cancellation

does not occur anymore, resulting in

UΣ(xc, yc)Lh(xc, yc) = ejk( 1
2d

(x2c+y
2
c ))e−jk

1
2h

(x2c+y
2
c ) = e−j

k
2

[ d−h
hd

](x2c+y
2
c ), (4.6)

which models a spherical wave propagation with distance d combined with accommoda-

tion h. Finally, by making Equation (4.5) to be equal to Equation (4.6) results in

S =
d− h
hd

, (4.7)

which means that we can simulate an object viewed from a distance d, while focusing at

a distance h, by setting S = (d − h)/(hd) diopters (an induced defocus). This result is

properly validated in Section 6.4.
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4.3 Gamma correction

Human vision is more sensitive to changes in low-light intensity levels than to

changes in high-intensity levels. The perception is nonlinear, and can be modeled using

a power function (usually P ∝ I1/γ , where P measures subjective perception and I is

light intensity). The value for γ is usually 2.2 and this process is called gamma encoding.

By coincidence, the light intensity emitted by old CRT monitors is also nonlinear; it

is a power function applied to the input signal that matches the inverse of human light

intensity perception (I ∝ V γ , where V is the signal voltage). This process is called

gamma decoding, and it also happens on newer monitors, which mimic the CRT behavior

for compatibility reasons.

In order to prevent visible artifacts on lower-light intensities and to avoid wasting

storage space on high intensities, color intensity data are usually gamma encoded when

stored in image files. As a consequence, the consecutive tasks of reading an image file

into memory and displaying it do not involve any conversion, since the gamma-encoded

image will be automatically gamma-decoded by the video monitor.

However, when the task involves light manipulation before image display, it is

essential to consider the nonlinearity of stored data. It is therefore necessary to apply a

gamma correction to linearize the data, perform any desired manipulation, and then apply

the inverse function before image output. This process is thereby crucial in the case of

image blurring, and so it is used on both techniques presented in this thesis.

4.4 Implementation

The simulation of low-order aberrations using Equation (4.6) was developed in

MATLAB. It adapts the PSF computation function employed by Krueger, Oliveira and

Kronbauer (2016), which in turn is a modified version of the monochromatic PSF genera-

tion function described by Dai (2008). After the adaptations, it is able to generate DPSFs

for arbitrary low-order aberrations, considering any focus of interest and object distance.

It is important to notice that two features of the human eye present in the orig-

inal algorithm are not modeled in our simulation: Stiles-Crawford effect (non-constant

directional sensitivity of cone cells) and chromatic aberration. The former was removed

because it cannot be objectively validated using DSLR cameras. The latter follows the

same reasoning, but its removal is also justified by the fact that the human brain adapts to
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chromatic aberration (HAY; PICK; ROSSER, 1963), and so there is no need to simulate

it for human perception either. We did, however, include compensation for the chro-

matic aberration caused by external lenses during the experiments. Such formulation is

described in Section 6.3.

Our algorithm consists of two phases. In the first phase, the PSF of the optical sys-

tem is computed according to the objects distances, as well as optical system parameters

(e.g., pupil size and focus of interest) and aberration information. The second phase in-

volves blurring the input image using the PSF as a convolution kernel. The photographed

object is assumed to be a flat surface orthogonal to the optical axis. This limitation, de-

scribed on Section 4.5, led to the development of the technique described in Chapter 5.

The input image is also assumed to be in focus (sharp). The need of using a sharp

in-focus image as input should be obvious, as any blurring in the final image is expected

to be computed by the algorithm.

Algorithm 4.1: Generation and application of PSF using wave optics.
input : Object distance d, gazing focus distance h, sharp image I, lens

aberration (S,C, ϕ), sensor pixel pitch ρ, camera f-number N .
output: Resulting (blurred) image B.

1 Sf ←− S + (d− h)/(hd);
2 α←− λN/ρ;
3 W ←− WavefrontError(Sf , C, ϕ);
4 P←− EnlargeWithZeroFill(P exp(jkW ),max(1, α));
5 PSF←− Normalize(Resize(||F{P}||2,min(1, α)));
6 B←− (Iγ ∗ PSF)1/γ;

The procedure shown in Algorithm 4.1 is applied individually to each color chan-

nel by setting λ to the corresponding wavelength listed in Equation (2.45). Starting on

line 1, defocus is adjusted according to Equation (4.7) to take into account the object dis-

tance and gazing focus. Then, on line 2, the scaling factor α shown in Equation (2.43) is

computed. On line 3, function WavefrontError computes the wavefront aberration

corresponding to the input data. This is accomplished by multiplying the Zernike poly-

nomials Z0
2 , Z1

2 and Z−1
2 by the corresponding coefficients indicated in Equations (2.8)

to (2.10) and adding them, as shown in Equation (2.12). The generalized pupil function

P is computed on line 4 by inserting the wavefront error function W in the argument of a

phasor and multiplying it by the pupil function P . Function EnlargeWithZeroFill

enlarges the domain of the result with zero-filling up to a factor of α, whenever α ≥ 1.

On line 5, the PSF is calculated as the power spectrum of P. The result is downscaled

by a factor α, if α ≤ 1, and finally normalized through function Normalize. At last,
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on line 6, the output (blurred) image is computed as the convolution of the sharp input

image with the PSF. Gamma decoding and re-encoding are properly performed in order to

guarantee that the convolution happens in linear color space. After the algorithm finishes,

the results for the three color channels are combined forming the final blurred image.

Appendix B presents the MATLAB code that implements this simulation process.

4.5 Artifacts due to missing information

Image artifacts at object borders caused by missing information due to occlusions

(Figure 3.4c) are a major challenge for the technique presented in this chapter. For this

reason, the approach described in this chapter deals only with single-depth images, where

no information is missing due to the absence of occlusions. We address the multi-depth

issue using a different technique (light-gathering trees), presented in the following chap-

ter.

4.6 Summary

This chapter presented a technique based on Fourier optics for simulating aber-

rated human vision in scenes restricted to a single depth. We derived a formula used to

simulate depth of field for objects on different distances. We have also shown the im-

portance of applying gamma decoding, the internal workings of the algorithm and some

important limitations of this technique.
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5 SIMULATING LOW-ORDER ABERRATIONS WITH LIGHT-GATHERING TREES

As already stated in Section 2.8, partial occlusion effects emerge naturally from

a ray tracing approach, so that is the method that we will be employing in the technique

presented here. Nevertheless, we still need to deal with missing information.

In order to be able to perform ray tracing in real-time, some compromises have to

made. We use input images with depth information (RGB-D images) and discretize this

depth into planes regularly spaced in diopters. This is shown in Figure 5.1a, where the

pixels in the image presented in Figure 1.2 are classified according to the closest plane

(with closeness function also operating in the dioptric domain).

Rays are cast from the lens plane and into scene (a gathering process). Note how-

ever that the ray tracing will only take place for the formation of a single on-axis point

on the image plane (central output pixel shown in Figure 5.1b). For the other image

points, we reuse the same process adopted for the central pixel. This is supported by

the fact that the human eye has an approximately circular retinal region (fovea) with

approximately 1 degree in diameter that does not exhibit significant changes in aberra-

tions (BEDGGOOD et al., 2008). Thus, measuring the PSF only for a single on-axis

point can be justified by the fact that due to the fovea’s small area, the human visual sys-

tem builds a mental picture of their surroundings by systematically scanning the scene.

Therefore, the most prominent perceived aberrations will be those registered at the fovea.

As such, we assume that the PSF is the same across the visual field, even though it tends

to vary slightly with the direction of the incoming wavefront. This is known as the isopla-

natic assumption (BEDGGOOD et al., 2008). Other researchers make a similar assump-

tion (KRUEGER; OLIVEIRA; KRONBAUER, 2016), albeit implicitly.

The following sections describe the technique in more details. Section 5.1 presents

the rationale behind the technique. Section 5.2 explains the construction of the LGTs.

Section 5.3 covers the usage of the LGTs. Section 5.4 describes some important op-

timizations that allow the technique to run in interactive times. Section 5.5 shows the

algorithm used to compute ray directions for low-order aberrations. Finally, Section 5.6

offers a very high-level idea of the algorithm.
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Figure 5.1: Plane-discretized scene and the isoplanatic assumption. (a) Pixels are classi-
fied into planes according to their dioptric distance to each plane. (b) Rays are only cast
for the formation of a single on-axis output pixel, and reused for the formation of all other
points (isoplanatic assumption).

(a) (b)

Source: The Authors

5.1 Rationale of the light-gathering trees approach

The intuition behind using a tree to emulate ray-tracing is shown on the sequence

illustrated in Figure 5.2. If a large amount of rays were be cast into the scene as shown

in Figure 5.2a, a considerable amount of them would end up traversing the same plane-

pixels (or cells). We replace such groups of rays by arrows, as shown in Figure 5.2b,

where weights indicate the number of rays represented by each arrow. This hierarchical

sequence of arrows define a tree structure (a light-gathering tree). It is now evident that

ray tracing should be equivalent to traversing this tree it from root to each one of the

leaves. Furthermore, this tree can be precomputed and reused for all the other image

points due to the isoplanatic assumption.

If an occluder is present at a certain plane and a group of rays would end up

on a region behind it where information is missing (Figure 5.2c), dark artifacts would

be produced for the reasons previously discussed. We overcome this issue by accessing

color information beneath the previous traversed cell (Figure 5.2d) and using that as the

missing color. It should be emphasized, however, that although we are illustrating this

issue using rays, this process takes place during runtime, when the tree has already been

created (it is being used to emulated the ray tracing process).

The tree’s nodes are defined based on the scene content, subject’s low-order aber-
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Figure 5.2: Intuition behind using a tree for performing a gathering process. (a) Several
rays cast into scene. (b) Tree structure where weights on arrows indicate number of rays
in bundles. (c) Occluder causing missing information. (d) Color information used to fill
occluded pixels.

(a) (b)

(c) (d)

Source: The Authors
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Figure 5.3: 2-D representation of the light-gathering tree concept. (a) The scene space
is discretized using a set of planes placed at distances corresponding to several dioptric
powers covering the intended simulation depth range. Scene sampling rays emerging
from the sensor pixel are bent by a lens and converge to a focus (black dot) along the
optical axis of the lens, and diverge after passing through it. (b) A regular grid defines the
sampling positions on the lens.

p=4 (3.5 D)

p=3 (4 D)

p=2 (4.5 D)

p=1 (5 D)

(a) (b)

Source: The Authors

rations, focal distance, and pupil size. Rather than casting rays into the scene in the tradi-

tional way during runtime, we traverse the tree structure and sample the data required to

simulate the subject’s vision.

5.2 Light-gathering tree construction

Human blur discrimination is approximately linear in diopters. Thus, we place

planes at distances corresponding to the several dioptric powers along the range of dis-

tances to be used for vision simulation (Figure 5.3a). As such, the spacing between ad-

jacent planes increases from planes closer to the viewer to far away ones. Inter-plane

boundaries (shown as dashed blue lines in Figure 5.3a) are positioned half-way consec-

utive planes, subdividing the space and classifying objects as belonging to each plane

subspace. Thus, the spacing between them are small for planes closer to the viewer and

large for far away ones. The number of planes, as well as the distances of the closest and

farthest planes (in diopters) are user-supplied parameters.

A light-gathering tree (LGT) is defined by nearest and farthest plane distances,

number of planes, focal distance, pupil size, number of traversal rays, and low-order
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Figure 5.4: Three rays cast into a virtual scene (not shown) and the tree nodes built
during each step of the process. Colors red, green, and blue are used for discriminating
between first, second and third rays (and the nodes created by them), respectively. Arrows
indicate parent-child relationship between nodes. A node intersected by n rays coming
from different parent nodes is considered as n different nodes, but a node intersected by k
rays coming from the same parent node is considered as single node (see Figure 5.8). The
value inside each node indicates the number of intercepted rays. The root note is shown
as a black rectangle containing a light-blue lens.

1 1 1

Central pixel
step 2 step 3

p=4 (3.5 D)

p=3 (4 D)

p=2 (4.5 D)

p=1 (5 D)

step 1
Central pixel Central pixel

root node root node root node

1 11

Source: The Authors

aberration parameters (S, C, ϕ). Thus, for a given subject the nodes of an LGT may

need to be updated when the focal distance changes, as this may lead to a change in

accommodation (i.e., a change in the dioptric power of the crystalline lens). Updating the

nodes of an LGT can be done at interactive rates. For instance, for a typical LGT with 14

planes and a million rays it takes approximately one second on a Core i5 2.8 GHz CPU

using nonoptimized C# code.

A grid of cells is laid over each plane, representing a bijection between cells and

input image pixels (Figure 5.3a). Each plane corresponds to a level of the LGT. Cells

crossed by the optical axis, indicated by a thick outline, are called center cells. Fig-

ure 5.3b shows a regularly spaced grid over a disk representing the subject’s pupil. The

grid crossings are the starting positions of rays traced into the scene towards a point along

the optical axis. In Figure 5.3 such point is indicated by a large dot between planes 1

and 2.

The process of building an LGT is illustrated in Figure 5.4, where only three rays

are shown for simplicity. We call tree width the maximum number of plane cells spanned

horizontally or vertically by any level of a given LGT. Thus, the width of the LGT shown

in Figure 5.4 is 5. When the first ray is cast (step 1), one tree node is created inside each

cell traversed by the ray. Nodes are all linked from parent to child. Each node stores the

following information: number of intercepted rays, cell position, and parent node’s cell
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position. All positions are stored as 2D coordinates relative to the center cell. Note that

the root node is on the pupil plane. In the example shown in Figure 5.4, every node is

traversed by a single ray, causing the ray count on all nodes to be one. Figure 5.8 depicts a

situation where a node is intercepted by three rays, all from the same parent node, leading

to node reuse.

The intended simulated blurred image results from the gathering process described

in Section 5.3, where the contributions of each portion of the scene hit by rays are inte-

grated into the final color for the output pixels.

5.3 Light-gathering tree usage

The use of an LGT requires three supporting maps, all with the same dimensions

as the input image: a plane index (PI) map, a nearest potentially reachable plane (NPRP)

map, and a farthest potentially reachable plane (FPRP) map. The PI map stores, for each

pixel of the input RGB-D image, the index of the closest scene-discretization plane to

that pixel. Both NPRP and FPRP maps are constructed from the PI map, by considering

at each cell of the PI map a neighborhood of size LGT width × LGT width. The NPRP

map stores in each of its cells the smallest plane index in the neighborhood centered at its

corresponding cell in the PI map. Likewise, the FPRP map stores in each of its cells the

largest plane index in its corresponding neighborhood in the PI map. When considering

neighborhoods on the PI map, only cells inside the map are considered. Figure 5.6 shows

examples of PI, NPRP, and FPRP maps computed for a simple scene containing three

objects (color rectangles) shown in Figure 5.5, whose LGT width is 5.

The usage of the LGT constructed for the scene in Figure 5.5 is illustrated in

Figure 5.7. By following the tree from its root towards the leaves, one emulates a beam of

rays cast into the scene. Step 1 is performed when the leftmost branch is taken. The first

(leftmost) red node, corresponding to plane p = 1, indicates that the pixel immediately to

the left of the center cell should be analyzed (Figures 5.7a and 5.7b). The corresponding

(third) entry on the plane index map (Figure 5.6a) shows the presence of an object on plane

p = 1, issuing a stop condition because the ray has hit an obstacle. The pixel’s output

color is updated by accumulating the color stored in the input image pixel indicated by the

current node multiplied by some weight (the reciprocal of the number of rays leaving the

parent node) (Figure 5.7b). In this example, the parent node is the root node from which

three rays have been traced. Thus, each of these rays has a weight of 1/3.



70

Figure 5.5: Top-view of a simple scene with three objects (blocks). Pixels are colored
according to the object nearest to them. Labels on the pixels indicate the optimization to
be applied: Two-plane (T ), single-plane (S), or default algorithm (D).

p=4 (3.5 diopters)

p=3 (4 diopters)

p=2 (4.5 diopters)

p=1 (5 diopters)S D

TT

D D

D

Source: The Authors

Step 2 corresponds to a beam of rays cast through the center cell, which is ac-

complished by following the green branch of the LGT (Figures 5.7a and 5.7c). The stop

condition will only be met at the third level of the tree, when it is verified that the num-

ber on the fourth entry of the plane index map (Figure 5.6a) is equal to the current plane

(p = 3). Once again, the colors of the reached pixels in the image are averaged, weighted,

and added to the color of the output pixel.

Step 3 is defined by the blue nodes (Figures 5.7a and 5.7d). Similarly to the

previous step, the nodes are followed until the third level. However, this time the value

in the third entry of the plane index map shows "1", which is closer to the observer (root

node) than the current plane (p = 3). This indicates that information about the exact hit

location is missing, and it is the source of partial occlusion artifacts common in image-

based vision simulation methods discussed in Chapter 3. Our technique addresses this

situation by using the parent node’s position (fourth element of the plane index map)

instead, resulting in a pink color contribution. That is the reason why we store the parent’s

index in each node. As in the previous steps, the returned color is multiplied by the current

node’s weight (1/3) and accumulated into the final pixel color (Figure 5.7d).

5.4 Runtime optimizations

The algorithm described in Section 5.3 is adequate for modeling the actual spread-

ing of the light beams over the scene, but the number of nodes traversed can be very large
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Figure 5.6: Maps used for defining which planes to look at during LGT traversal. They
have the same resolution as the input image and guide the traversal of the associated LGT.
This example was created for a hypothetical 7-pixel image representing the scene depicted
in Figure 5.5. (a) Map showing which plane each pixel belongs to. (b) and (c) Maps used
to decide which (optimized) algorithm to use on each input pixel.
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1 1 1 1 2 2

1 3 3 3 3
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(b)

(c)
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3 3

Source: The Authors

Figure 5.7: Light-gathering tree usage example. (a) The tree used in the example. (b,c,d)
The three steps taken to fully produce the output pixel. Each one of them will return a
color in the scene (read from the input color image), multiplied by a weight. The final
output color, shown in (c), is the color that will be shown in the final blurred image.

step 1 step 2 step 3

= 3
1

3
1+ = 3

1
3
2+= 3
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p=3 (4 D)

p=2 (4.5 D)

p=1 (5 D)

Root node

(a) (b) (c) (d)

Source: The Authors

depending on the tree configuration. It is possible to significantly reduce the number of

LGT nodes that need to be visited for a given ray by considering only a subset of the

LGT layers. Combining a complete LGT (i.e., a tree built with all planes/layers) with

smaller two-layer trees built for pairs of adjacent planes, one can perform vision simu-

lation in real-time. An LGT considering only adjacent planes a and b is called an a-b

tree. Figure 5.8 shows an example of a 1-2 tree. Once an LGT is created, a-b trees are

automatically created for each pair of adjacent planes. During runtime, when computing

the color of a given pixel of the output image, if its nearest and farthest intersected planes

(stored in the NPRP and FPRP maps) are adjacent, we select the corresponding a-b tree

instead of the full tree to speed up the simulation process.

If the closest and farthest planes are the same, as shown in the first entry of the
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Figure 5.8: Example of a 1-2 tree. Its central cell (node) is intercepted by several rays, all
from the same parent node.

3

p=2 (4 D)

p=1 (4.5 D)

Source: The Authors

maps in Figures 5.6b and 5.6c, one can apply an even further optimization and get rid of

the trees entirely. In this case, we use the (normalized) number of rays that hit each LGT

cell on the plane as the weight to be multiplied by the respective pixel color. The output

pixel color is obtained by summing all these contributions. This is equivalent to locally

applying a convolution kernel.

We call these optimizations two-plane and single-plane optimizations, respec-

tively. In Figure 5.5, pixels where two-plane optimization is applied are indicated by

the letter T , and those where single-plane optimization applies are indicated by the letter

S. The ones for which the complete LGT is applied are marked with D.

5.5 Determining ray directions

So far, we have shown simplified examples, using a single point of interest for

eye accommodation. The actual algorithm supports two focal points in order to simulate

astigmatism (Figure 5.9). We adopt a left-handed coordinate system, as shown in Fig-

ure 5.10. The cylinder axis lies on the xy plane making an angle ϕ with the horizontal

axis (Figure 5.10d). For each ray, its starting position (xs,ys,0) and direction (∆x,∆y,1)

are obtained using Equations (5.1) and (5.2):xs
ys

 =

cosϕ − sinϕ

sinϕ cosϕ

x′s
y′s

, (5.1)
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Figure 5.9: Illustration of an astigmatic optical system with ϕ = 0◦. A bundle of rays on
the horizontal plane is related to focal point 1 at distance 1/S, while a bundle of rays on
the vertical plane is related to focal point 2 at distance 1/(S + C).

focal point 1

focal point 2

bundle of rays
on vertical plane

bundle of rays
on horizontal plane

point on retina

object space (scene)image space

Source: The Authors

Figure 5.10: Ray casting for an astigmatic optical system using a left-handed coordinate
system. Each ray is defined by a starting position (xs,ys,0) and direction (∆x,∆y,1), given
by Equations (5.1) and (5.2), respectively. (a) Top view (xz plane) of the scene. (b) Side
view (yz plane) of the scene. (c) Back view (xy plane) of the scene when ϕ = 0 . (d)
Back view (xy plane) of the scene when ϕ 6= 0.
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∆x

∆y

 =

cosϕ − sinϕ

sinϕ cosϕ

∆′x

∆′y

, (5.2)

where (x′s,y
′
s,0) and (∆′x,∆

′
y, 1) correspond to the ray starting position and direction for

the case of an axis-aligned grid (i.e., ϕ = 0◦) (Figure 5.10c). The values of ∆′x and ∆′y

are computed as

∆′x = − x′s
1/S

= −x′s · S and

∆′y = − y′s
1/SpC

= −y′s · SpC ,
(5.3)

where SpC = S + C is the sum of the spherical (S) and cylindrical (C) powers.

5.6 General LGT algorithm

The general algorithm used for simulation using LGTs consists of two different

stages. During the offline stage, the following sequence of steps is taken for each possible

tree (considering all k−plane optimizations):

• Trace rays from pupil plane into virtual scene.

• Group rays into weighted beams.

• Build a tree from beams (root node on lens plane).

The runtime stage, for instance, executes these two main steps for each output

pixel:

• Choose tree based on planes nearby screen area.

• Follow every path from root to leaf.

The collection of output pixels will then form the result of the simulation.

5.7 Summary

This chapter presented our second and more robust technique, used to simulate ac-

commodation and low-order aberrations of the human eye in scenes with multiple depths

and partial occlusions. We showed the definition, construction and usage of a tree data
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structure that allows us to visualize the scene under low-order aberrations at interactive

rates. We also showed how we provide a solution for artifacts (due to missing informa-

tion) by caching the parent’s tree node.



76

6 EXPERIMENTS AND RESULTS

This chapter presents experimental results related to the theoretical aspects intro-

duced in Chapter 2, as well as validation and results of the two techniques presented in

this work (Chapters 4 and 5). All pictures in the experiments were captured using a Canon

Rebel T6 DSLR camera.

Section 6.1 shows a comparison of the Airy pattern predicted by the theory and the

one obtained with the camera. Section 6.2 describes the support device we have crafted to

use in the camera experiments on the subsequent tests. Section 6.3 discusses some adjust-

ments required to allow comparisons of our results with ground-truth images. Section 6.4

presents validation for the formula deduced in Section 4.2 relating objection position,

gazing focus and defocus aberration, achieving structural similarity (SSIM) values above

0.93 and peak signal-to-noise ratio (PSNR) above 31.0. Section 6.5 presents a quantita-

tive evaluation of low-order aberrations produced by both techniques (implemented as a

MATLAB script) using SSIM and PSNR metrics. Section 6.6 shows the results of the

LGT technique (implemented as a Unity compute shader) applied to real scenes with var-

ious depths, acquired from a publicly available dataset. Section 6.7 addresses some of the

limitations and issues in our techniques.

The results of these experiments show that both techniques produce quite realistic

simulations of accommodation and low-order aberrations, achieving SSIM values above

0.94 and PSNR above 32.0 in all objective evaluations.

6.1 Airy pattern validation

In this section, we perform a comparison of the Airy pattern predicted by theory

(Section 2.7.4) with the PSF of a point source captured by the camera, in order to verify

the correctness of the scaling factor α derived in Equation (2.43). We have employed the

method shown in Trantham and Reece (2015) to measure the Airy pattern generated by

some far away mercury-vapor and sodium-vapor street lights visible at night. Given the

large distance from the lights to the camera, they can be considered as being at infinity,

and treated as point-like light sources.

For comparison, we have generated the PSF for infinitely distant point light sources

by modeling a plane wavefront, using the strongest peak on the line spectrum of both

elements in the green region as their corresponding wavelengths. Due to its higher reso-
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Figure 6.1: Night time picture of town landscape with mercury-vapor and sodium-vapor
lamps displaying the Airy pattern. Picture is down-cropped to 4,549×1,705 pixels, fol-
lowed by 25% downscaling. Camera settings: ISO 100, exposure 15 s, f = 300 mm,
f/45.

Source: The Authors

Table 6.1: Comparison of photographed, simulated and computed diameter of Airy disk.
Airy disk diameter (px)

Element λ (nm) Picture Simulation Predicted
Sodium 589 16± 0.5 16± 0.5 15.509
Mercury 546.1 14± 0.5 14± 0.5 14.379

Source: The Authors

lution on the Bayer filter pattern, only the green color channel from the pictures is used.

The wavelengths values used to simulate the corresponding PSFs are λ = 589 nm and

λ = 546.1 nm (JENKINS; WHITE, 2001), since they are the most prominent lines found

in the frequency spectrum of, respectively, Sodium-vapor and Mercury-vapor lamps (Fig-

ure 6.2).

The camera’s RAW file metadata informs that uncropped pictures are 5,344 pix-

els wide. Along with the known sensor width of 22.3 mm (obtained from the camera’s

specifications), this results in a pixel pitch of 4.17 µm. Applying the pixel pitch to Equa-

tion (2.43), it is possible to compute the factor to be used to scale the PSF obtained

through the Fourier optics approach, and compare it to the expected value given by Equa-

tion (2.47). The comparison of the generated PSFs with ground-truth pictures is shown on

Figure 6.2 and objectively measured on Table 6.1, demonstrating that the radii of both the

photographed disk and the one generated through Fourier optics using the scaling factor

are in agreement with the radius expected by Equation (2.47) within a margin of error of

±0.5 pixel.
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Figure 6.2: Details of Airy pattern seen on the PSF of point light source shown in Fig-
ure 6.1. (a) and (b) Sodium-vapor lamps, with respective green channel isolated in (c) and
(d), respectively. (e) Our simulation of point-source impulse response for λ = 589 nm. (f)
and (g) Mercury-vapor lamps, with respective green channel isolated (h) and (i), respec-
tively. (j) Our simulation of point-source impulse response for λ = 546.1 nm.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Source: The Authors

6.2 Camera holding device

With the goal of ensuring precise lens positioning during the tests, a support device

was crafted out of polystyrene and medium-density fiberboard (MDF) sheets, with a tight-

fitting area for inserting the camera. A tripod quick release plate was attached to the

camera to ensure steadiness. The device’s surface, made out of MDF, was designed to fit

the plate without gaps, in an effort to prevent looseness and conserve camera positioning

between shots even when the camera is removed and later reattached to the device.

For each lens, a cardboard sheet was cut into a rectangular card and a round aper-

ture was carved out from its middle. The lens was glued to the aperture. A slot was cut

out of the polystyrene structure, right in front of the device and orthogonal to the camera

optical axis, to be used for inserting the lens cards. The distance from the camera lens

mount to the lens slot was set to 101 mm (Figure 6.4).
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Figure 6.3: Camera mounted on custom supporting device. (a) Back view of device with
camera pointing to Snellen chart. (b) Lens inserted into the device slot.

(a) (b)

Source: The Authors

Figure 6.4: Camera holding device scheme. Distance from the entrance pupil to the
camera zoom lens fixation base (de) was measured to be 47 mm. Distance from the
external lens to the camera zoom lens fixation base was fixed at dL = 101 mm.

dL = 101 mm

de = 47 mm

Source: The Authors
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6.3 Optical power and image adjustments

Given the distance v from the camera lens to the external lens, known as vertex

distance, the resulting anisotropic magnification due to astigmatism is given by

Mϕ =
1

1− vS
and Mϕ⊥ =

1

1− vSpC
, (6.1)

where Mϕ and Mϕ⊥ are, respectively, the magnification factors along the directions that

make angles ϕ and ϕ+ 90◦ with the horizontal axis, and S and SpC are the spherical and

the sum of spherical and cylindrical powers as discussed in Section 5.5. In the absence of

astigmatism, the magnification is isotropic, with Mϕ = Mϕ⊥ . The effective optical power

is then obtained as S ′ϕ = SMϕ and S ′
ϕ⊥ = SMϕ⊥ .

Image magnification may introduce incorrect values due to interpolation. Thus,

when comparing our results to ground-truth, rather than magnifying a smaller dimension

to match a larger, we downscale the larger to match the smaller. One should note, however,

that magnification is a function of vertex distance and vanishes when v = 0. Thus,

magnification and its compensation have only been used for the sake of the validation

experiment that uses an external lens. This is not a stage of the techniques themselves,

which are geared towards the simulation of scenes as seen by a naked eye.

Likewise, brightness adjustment is required to compensate for some amount of

light that is reflected/absorbed by the extra lens, effectively not reaching the camera sen-

sor. The images captured with the extra lens tend to be darker than ones captured without

it. To perform brightness adjustment, for each different external lens, a small white patch

is taken from the same area in images captured with and without the additional lens.

The ratio between the average intensities from the darker and brighter patches was used

to modulate the images simulated with our technique, making them exhibit brightness

similar to the ground-truth images. This is important when performing quantitative com-

parisons using metrics such as SSIM and PSNR (Figures 6.5 to 6.8 and Tables 6.2 to 6.5).

Chromatic aberration due to the external lens is given by

S ′′ϕc =
S ′ϕ(µc − 1)

µy − 1
and S ′′ϕ⊥c =

S ′
ϕ⊥(µc − 1)

µy − 1
,

where S ′′ϕc and S ′′
ϕ⊥c are the resulting aberrated powers (in diopters) for wavelength λc, S ′ϕ

and S ′
ϕ⊥ are the effective optical powers due to the vertex distance v, µc is the lens refrac-

tive index for wavelength λc, and µy = 1.5085 is the reference refractive index, which is
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usually on the yellow region of the spectrum. For our experiments, we used the following

indices of refraction for red, green, and blue, respectively: µr = 1.4998, µg = 1.5085, and

µb = 1.5152, which were obtained from an online refractive index database (POLYAN-

SKIY, 2019), and correspond to wavelengths λr = 700 nm, λg = 510 nm, and λb = 440 nm

(Equation (2.45)).

6.4 Object defocus compensation using an extra lens

This experiment shows that observing an object at a certain distance d while si-

multaneously focusing at a distance h can be simulated by a single lens with optical power

given by Equation (4.7). On each of the four performed tests, we took a picture of an eye

chart positioned in front of the camera with distance h. We used the camera auto focus to

make sure it was focusing exactly on the eye chart. We locked the focus and took a sharp

picture of the eye chart. We then moved the chart to a distance d from the camera and

took another picture, which appears out of focus. Then, we put an extra lens in front of

the camera in order to allow it to focus again on the chart at distance d from the camera,

and took another picture.

The results of this experiment are shown in Figures 6.5 to 6.8. The SSIM and

PSNR values shown in the captions measure the similarity between lens-corrected defocus

images (column b) and ground-truth in-focus images (column c). In all cases, they indicate

quantitatively that the deduced formula is indeed correct. The small qualitative divergence

(slight defocus) observed in Figure 6.8b is due to imprecision on measurements occurring

in a low-tolerance and low depth-of-field region in the vicinity of the external lens.

6.5 Quantitative evaluation

For the quantitative evaluation, we took a set of pictures from two eye charts using

the DSLR camera with extra lenses placed 54 mm in front of the camera’s original lens to

induce low-order aberrations. The charts were placed 7.0 m (approximately 23.96 feet)

away from the camera. We used external lenses with various spherical (S) and cylindrical

(C) powers, as well as astigmatism axes (Tables 6.2 to 6.4). The acquired ground-truth

images (JPEG, 5,184×3,456 pixels) were compared against our simulations for the cor-

responding low-order aberrations using the SSIM and PSNR objective metrics. Since the
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Figure 6.5: Induced myopia corrected with extra lens. Object distance d = 6,047 mm.
PSNR = 37.2334 and SSIM = 0.9664. (a) Camera focus at f = 943 mm (myopia). (b)
Camera focus at f = 943 mm. Hyperopic extra lens with S = -1.00 D. (c) Camera focus
at f = d = 6,047 mm (ground-truth).

(a) (b) (c)

Source: The Authors

Figure 6.6: Induced myopia corrected with extra lens. Object distance d = 6,047 mm.
PSNR = 37.6544 and SSIM = 0.9616. (a) Camera focus at f = 469 mm (myopia). (b)
Camera focus at f = 469 mm. Hyperopic extra lens with S = -2.50 D. (c) Camera focus
at f = d = 6,047 mm (ground-truth).

(a) (b) (c)

Source: The Authors
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Figure 6.7: Induced hyperopia corrected with extra lens. Object distance d = 864 mm.
PSNR = 36.2875 and SSIM = 0.9491. (a) Camera focus at f = 6,047 mm (hyperopia).
(b) Camera focus at f = 6,047 mm. Hyperopic extra lens with S = +1.00 D. (c) Camera
focus at f = d = 864 mm (ground-truth).

(a) (b) (c)

Source: The Authors

Figure 6.8: Induced hyperopia corrected with extra lens. Object distance d = 414 mm.
PSNR = 31.2921 and SSIM = 0.9367. (a) Camera focus at f = 6,047 mm (hyperopia).
(b) Camera focus at f = 6,047 mm. Hyperopic extra lens with S = +2.25 D. (c) Camera
focus at f = d = 414 mm (ground-truth).

(a) (b) (c)

Source: The Authors
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eye charts are planar, these experiments take advantage of the single-plane optimization.

The use of an external lens introduces changes to the camera’s optical system, re-

sulting in changes in magnification, brightness, and chromatic aberrations of the captured

ground-truth images. Such changes need to be compensated for in our synthesized results

using the methods described in Section 6.3 for proper comparisons.

6.5.1 Objective validation

We validated our technique by performing some quantitative evaluation of low-

order aberrations (myopia, hyperopia, and astigmatism) with and without considering

chromatic aberrations.

Figure 6.9a shows three pictures of an eye chart captured with the following cam-

era settings: ISO 100, exposure 1/40 s, f = 20 mm, and f/5. Figure 6.9b shows the

pictures in Figure 6.9a after anisotropic minification and brightness correction. Such

minification was performed using MATLAB’s interpolation function interp2. Fig-

ure 6.9c shows the ground-truth pictures captured by placing a lens whose parameters

are described in the corresponding rows of Tables 6.2 and 6.3. Figures 6.9d and 6.9e

show the simulated results produced by both of our techniques (Fourier optics and LGT

respectively) using Figure 6.9b as input and not taking chromatic aberration into account.

Note how similar they are to the corresponding ground-truth images. Tables 6.2 and 6.3

show SSIM and PSNR values for the results shown in Figures 6.9d and 6.9e respectively.

SSIM values are above 0.94 and PSNR values are above 32.4 for all simulated results,

both with or without considering chromatic aberration (CA). The metric values obtained

when considering CA were just slightly higher than without considering it. The results

are visually indistinguishable. Including CA in the simulations does not seem to improve

the results to justify its additional computation. Thus, in this thesis, we only show pictures

of simulated results without considering CA.

Figure 6.10a shows pictures of an eye chart captured under a shorter exposure.

The camera settings are: ISO 100, exposure 1/125 s, f = 18 mm, and f/5. Again, the

two images were taken by placing extra lenses 54 mm in front of the original camera lens.

The spherical (S) and cylindrical (C) powers, as well as the corresponding ϕ cylinder

axis angle of the extra lens used to capture each picture of this experiment are shown in

Tables 6.4 and 6.5. Figure 6.10c shows the ground-truth image captured by placing a lens

with parameters described in the corresponding row of Tables 6.4 and 6.5. Figures 6.10d
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Figure 6.9: Inducing low-order aberrations (hyperopia and astigmatism) by placing exter-
nal lenses in front of a camera’s original lens (v = 54 mm). Camera settings: ISO 100,
exposure 1/40 s, f = 20 mm, f/5. (a) Picture taken without extra lens. (b) Anisotropic
minification and brightness adjustment applied to (a). (c) Ground-truth image obtained
with an external lens in front of the camera. (d) Simulated results produced by the Fourier
optics technique. (e) Simulated results produced by the LGT technique. Lens’ parame-
ters, SSIM and PSNR values for comparison of (c), (d) and (e) are in Tables 6.2 and 6.3.
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Source: The Authors

and 6.10e show our simulated results. Again, note how similar they are to the correspond-

ing ground-truth images. Tables 6.4 and 6.5 show the corresponding SSIM and PSNR

values, which are higher than 0.98, and 42.2, respectively, indicating strong agreement

with the ground-truth.

6.6 Qualitative evaluation

For the qualitative experiments, we use a set of RGB-D images whose depth ranges

cover several diopters. Thus, the simulations discussed in the section use combinations of

complete LGTs and a-b trees, as well as the process in single-plane optimization. The

set of RGB-D images was obtained from a stereo online dataset that offers 23 color
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Table 6.2: Extra lens parameters, SSIM and PSNR values for the simulation results of
Fourier optics approach in Figure 6.9. Results are shown both with (CA) and without
(NCA) considering chromatic aberration. "Row" is the row number in Figure 6.9.

Lens CA NCA
Row S C ϕ SSIM PSNR SSIM PSNR

1 0 D -1 D 86◦ 0.959 34.318 0.959 34.296
2 0 D -0.5 D 82◦ 0.944 32.465 0.944 32.445
3 -0.25 D -2.25 D 69◦ 0.953 36.500 0.951 36.430

Source: The Authors

Table 6.3: Extra lens parameters, SSIM and PSNR values for the simulation results of
LGT approach in Figure 6.9. Results are shown both with (CA) and without (NCA)
considering chromatic aberration. "Row" is the row number in Figure 6.9.

Lens CA NCA
Row S C ϕ SSIM PSNR SSIM PSNR

1 0 D -1 D 86◦ 0.959 34.426 0.959 34.401
2 0 D -0.5 D 82◦ 0.942 32.434 0.942 32.411
3 -0.25 D -2.25 D 69◦ 0.952 36.382 0.950 36.312

Source: The Authors

Figure 6.10: Inducing low-order aberrations (myopia) by placing external lenses in front
of a camera’s original lens (v = 54 mm). Camera settings: ISO 100, exposure 1/125 s,
f = 18 mm, f/5. (a) Picture taken without the extra lens. (b) Minification and brightness
applied to (a). (c) Ground-truth image obtained by placing an external lens in front of the
camera. (d) Simulated results produced by the Fourier optics technique. (e) Simulated
results produced by the LGT technique. Lens’ parameters, SSIM and PSNR values for
comparison of (c), (d) and (e) are in Tables 6.4 and 6.5.
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Table 6.4: Extra lens parameters and SSIM and PSNR values for the simulation results
of Fourier optics approach shown in Figure 6.10. Results are shown both with (CA)
and without (NCA) considering chromatic aberration. "Row" is the row number in Fig-
ure 6.10.

Lens CA NCA
Row S C ϕ SSIM PSNR SSIM PSNR

1 +1 D 0 D 0◦ 0.986 42.013 0.987 42.165
2 +2.25 D 0 D 0◦ 0.991 42.979 0.991 43.078

Source: The Authors

Table 6.5: Extra lens parameters and SSIM and PSNR values for the simulation results
of LGT approach shown in Figure 6.10. Results are shown both with (CA) and without
(NCA) considering chromatic aberration. "Row" is the row number in Figure 6.10.

Lens CA NCA
Row S C ϕ SSIM PSNR SSIM PSNR

1 +1 D 0 D 0◦ 0.986 42.220 0.987 42.370
2 +2.25 D 0 D 0◦ 0.991 43.204 0.991 43.078

Source: The Authors

images with corresponding disparity maps, which can be converted to depth informa-

tion (SCHARSTEIN et al., 2014). The per-pixel depth values expressed in meters were

computed as:

Z =
b × f/(d+ dpp)

1000
, (6.2)

where b is the camera baseline, f is camera’s focal length in pixels, d is the pixel disparity

value, and dpp is the x-difference of principal points (SCHARSTEIN et al., 2014). All

these values are available in the files accompanying each image in the dataset. One should

note that some of the depth values computed by this procedure are not properly aligned

to the color pixels or do not correspond to a valid distance. In those cases, we manually

adjusted the depth map using the distance from objects that were correctly registered

and roughly correspond to the same depth. Early tests have shown that even slightly

misplaced depth values can result in noticeable artifacts, such as the introduction of light

or dark auras around objects, similar to the one shown in Figure 6.11.

Figure 1.2 demonstrates the use of our technique for simulating the view of a

myopic subject (0.5 D) focusing at scene objects located at different depths. In Figure 1.2a

the subject is focusing on the game box, causing the white and blue flower to appear

blurry. In Figure 1.2b the focus has moved to the white and blue flower, making the game

box to look defocused. Figure 6.12 illustrates the view of a hyperopic subject (-0.3 D)

observing the same scene showing in Figure 1.2. Note how closer objects appear blurrier

than far away ones
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Figure 6.11: Light aura around handrail due to misplaced depth values. (a) Aura is present
due to wrong depth values. (b) After fixing some depth values on the top-left border of
the handrail, the aura is absent on that region, but still present on the other regions.

(a) (b)

Source: The Authors

Figure 6.13 shows a scene containing an Adirondack chair. The input color and

depth images are shown in Figures 6.13a and 6.13b. The scene’s plane index map is

illustrated in Figure 6.13c, where each color indicates a different plane numbered from

0 (closest) to 13 (farthest) according to Table 6.6. Figures 6.14a and 6.14b compare the

results of myopic simulations for 1.5 D and 0.75 D, respectively. These correspond to

focusing at the two armrests (red and blue insets), which are located approximately at

0.67 m and 1.33 m from the observer. Please note that only one armrest appears in focus

in each image. The white book is closer to the farthest armrest in diopters and, as such,

its image appears sharper in Figure 6.14b compared to its appearance in Figure 6.14a.

Figure 6.15 illustrates the combined simulation of myopia and astigmatism (S = 1D,

C = 3 D, ϕ = 20◦). Note that the anisotropic blurriness on the book cover and on the mug

handle (red inset) is more pronounced at 110◦, a direction perpendicular to ϕ. Along such

direction, the dioptric power is given by S+C = 4 D.

Figure 6.16 shows a scene containing a backpack on the foreground (approxi-

mately 0.91 m from the viewer) and a wardrobe and a broom on the background (ap-

proximately 1.54 m from the viewer), both presenting high and low-frequency content.

Figure 6.17a illustrates the simulated view of a myopic subject with S = 1.1 D, thus fo-

cusing on the backpack (see red and green insets), while the background looks blurry

(blue inset). Figure 6.17b shows another simulation, this time for a myopic subject with

S = 0.65 D, thus focusing on the broom (blue inset), while the backpack appears blurry

(red and green insets). Figure 6.17b simulates the view of a subject with myopia and

astigmatism (S = 0.65 D, C = 0.45 D, and ϕ = 90◦).
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Table 6.6: Plane indices and their encoded colors.
0 1 2 3 4 5 6
7 8 9 10 11 12 13

Source: The Authors

Figure 6.18 shows a scene where various objects span several planes in terms

of depth range (Figure 6.18c), and illustrates how our technique can produce realistic

simulations without exhibiting inter-plane artifacts. Figure 6.19a simulates the view of an

observer focusing on the moose puppet (blue inset) (0.52 m away), causing other elements

to go increasingly out of focus as the distance from the viewer increases (green and red

insets). Figure 6.19b illustrates the view of the scene when the focus is on the back of

the green bucket located 0.87 m away from the observer (red inset). Finally, Figure 6.19c

simulates the view of an individual with myopia and astigmatism (S = 1.10 D, C = 0.85 D,

and ϕ = 75◦).

Our project website provides some supplementary materials1, including a video2

captured in real time, illustrating the use of our technique. They also provide a user

interface that can be used to explore high-resolution versions of the results shown in this

work.

6.7 Discussion and Limitations

Our technique assumes a constant PSF across the entire visual field (isoplanatic

assumption), even though it should slightly vary according to the direction of the in-

coming wavefront relative to the optical axis. It also does not take into account any of

the high-order aberrations, which can be represented by a linear combination of Zernike

polynomials.

Wavefront errors are a function of accommodation, meaning that when a sub-

ject changes focal distance, aberrations might change as well (HE; BURNS; MARCOS,

2000). Remarkably, defocus is not affected because it is already determined by the change

in the focus of interest. Astigmatism, on the other hand, might be affected. He et al. re-

port a wavefront error of roughly 0.5 µm for each of the astigmatism coefficient in the

Zernike polynomials (HE; BURNS; MARCOS, 2000). Our techniques disregard such

minor effects.

1Supplementary materials: http://www.inf.ufrgs.br/˜oliveira/pubs_files/VS/SM/
2Video: http://www.inf.ufrgs.br/˜oliveira/pubs_files/VS/SM/VS_video.mp4

http://www.inf.ufrgs.br/~oliveira/pubs_files/VS/SM/
http://www.inf.ufrgs.br/~oliveira/pubs_files/VS/SM/VS_video.mp4
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Figure 6.12: Simulated view of a hyperopic subject (-0.3 D). Note how closer objects
appear blurrier than far away ones. The pairs of sub-images compare simulated (left) and
original (right) patches.

Source: The Authors
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Figure 6.13: Adirondack chair. (a) Reference image. (b) Field discretization plane set.
(c) Depth image.
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Figure 6.14: Myopic simulations of Figure 6.13. Myopic simulations for 1.5 D (a) and
0.75 D (b), which correspond to focusing at the two armrests (red and blue insets), which
are located approximately at 0.67 m and 1.33 m from the observer. The white book (green
inset) is closer to the farthest armrest and, therefore, appears sharper in Figure 6.14b.
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Figure 6.15: Myopic and astigmatic simulations of Figure 6.13. Simulation of myopia
and astigmatism: S = 1 D, C =3 D, ϕ = 20◦.

Source: The Authors
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Figure 6.16: Backpack and broom on the background. (a) Reference image of an Back-
pack and a broom. (b) Depth image. (c) Field discretization plane set.
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Figure 6.17: Myopic and astigmatic simulations of Figure 6.16. A backpack (0.91 m from
the viewer) and a wardrobe and a broom on the background (1.54 m from the viewer). (a)
Simulated view of a myopic subject with S = 1.1 D. (b) Simulated view of a myopic sub-
ject with S = 0.65 D. (c) Simulation of myopia and astigmatism (S = 0.65 D, C = 0.45 D,
ϕ = 90◦).
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Figure 6.18: Scene with most objects spanning several planes in terms of depth range.
(a) Reference image. (b) Depth image. (c) Field discretization plane set.
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Figure 6.19: Myopic and astigmatic simulations of Figure 6.18. (a) View of a subject is
focusing on moose puppet (0.52 m away). (b) View of a subject is focusing on the bucket
back rim (0.87 m away). (c) Simulated view of a subject with myopia and astigmatism
(S = 1.10 D, C = 0.85 D, ϕ = 75◦).
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The disocclusion (missing information recovery) technique we employ involves

color extending and assumes that the color pattern around the occlusion border will persist

across the occluded interior. Deep learning techniques could be used in order to attempt a

more elaborated guess, but nevertheless they fall into the same category, in the sense that

it is impossible to recover missing information with 100% accuracy.

6.8 Summary

This chapter described some experimental results of the techniques and formulas

presented in this thesis. We performed an Airy pattern measurement to test a scaling

factor predicted by theory in Fourier optics. We also validated the formula used in our

wave optics technique, and performed various quantitative evaluation experiments for

both techniques. A set of qualitative evaluation experiments were done to test the LGT

technique. The results showed that both techniques produce quite realistic simulations of

accommodation and low-order aberrations.
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7 CONCLUSIONS AND DISCUSSION

We presented two practical solutions for simulating accommodation and low-order

aberrations of the human eye, considering real scenes. The first technique, using Fourier

optics, included the derivation of a formula for computing the equivalence between defo-

cus aberration and the combination of object position and gazing focus distance. However,

the lack of information due to partial occlusions among objects in arbitrary scenes pre-

cludes the use of such technique in general, limiting its use to scenes containing flat or

concave depth values. This led to the development of our second method.

Our second technique is based on a new data structure called light-gathering tree

(LGT), built from an RGB-D image and low-order aberration parameters (S, C, ϕ), focal

distance, and pupil size. The use of an isoplanatic assumption and a set of auxiliary maps

(PI, NPRP, and FPRP) leads to a light data structure that only needs to store the paths of

rays traced through few tree nodes.

We validated the results of our techniques using quantitative and qualitative ap-

proaches. Quantitative validation was performed against ground-truth data (captured us-

ing a DSLR camera coupled with external lenses) for single-depth scenes using metrics

such as SSIM and PSNR. For astigmatic optical configurations, our results achieved SSIM

and PSNR values above 0.94 and 32.4, respectively. In the case of defocus-only, the

SSIM and PSNR values are above 0.98 and 42.2, respectively. Such results indicate a

strong agreement with the ground-truth images. Overall, the results obtained showed that

the geometric optics approach does produce results compatible with wave optics in the

human vision simulation domain. The only obvious divergence are on the diffraction pat-

terns, but they were only observed on the Airy pattern measurement because an extremely

long focal length was used, and that is obviously unrealistic for human vision simulation.

Qualitative evaluation was performed using RGB-D images of real scenes as input.

Our techniques can be used in eye care areas where realistic human vision simu-

lation is important. This includes providing doctors with concrete representations of how

their patients see the world; explaining the benefits of refractive surgery to patients, con-

trasting their current vision with the corrected one, considering potential residual errors;

and as training tool for medical students.
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7.1 Future work

An interesting direction for future exploration is to consider microscopic environ-

ments by designing LGTs that can handle diffraction effects using Wigner functions (LUIS,

2007) to represent rays using the Huygens-Fresnel principle. The use of a separable bokeh

technique (NIEMITALO, 2011; GARCIA, 2017) could further improve the algorithm’s

performance. However, this would probably be limited to myopia and hyperopia, since

the astigmatic bokeh is not circularly symmetrical. Finally, one could implement higher-

order aberrations replacing ray direction determination by sampling along the wavefront

normals.
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APPENDIX A — MATHEMATICAL BACKGROUND

A.1 Binomial approximation

Binomial approximation is a mathematical tool used to approximate powers of the

binomial (1+x), where x happens to be a small number. Whenever |x| < 1 and |αx| � 1,

where x, α ∈ C, one can truncate the Maclaurin series of the binomial to the second term,

yielding the approximation

(1 + x)α = 1 + αx+
1

2
α(α− 1)x2 +

1

6
α(α− 1)(α− 2)x3 . . . ≈ 1 + αx.

As a corollary,
√

1 + x ≈ 1 + x/2.
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APPENDIX B — MATLAB SOURCES

This appendix provides the source code for the approach described in Chapter 4,

along with the adjustments described in Section 6.3. It consists of a setup code, listed

in Appendix B.1, which is used to define the optical system properties, perform any

necessary adjustments in the image (chromatic aberration, magnification, and brightness

changes) and call the function gen_PSF, defined in Appendix B.2. Both of these algo-

rithms issue calls to the other helper functions, listed in Appendices B.3 to B.15.

In case one does not wish to simulate effects caused by external lenses, the variable

bpar.extralens(1).present should be set to 0, and bpar.ab_S, bpar.ab_C

and bpar.ab_angle should be adjusted according to the low-order aberration param-

eters (S, C, ϕ) respectively.

B.1 Setup code

1 % These constants are the wavelengths in nanometers in vacuum for each of the RGB
2 % channels, plus an extra ’White’ channel centered on yellow frequency to use in
3 % grayscale simulations
4 R_nm = 700;
5 G_nm = 510;
6 B_nm = 440;
7 W_nm = 550; % "White" wavelength is mean value of human sensitivity
8

9 bpar.iterate_pupil_pixels = 1; % Whether to iterate over better size in
10 % pixels for pupil. If not iterating,
11 % the size in pixels is fixed
12 bpar.sensor_pixel_scale = 1; % Set <> 1 if you wish to have different
13 % sized sensor pixels
14 bpar.use_wave_optics = 1;
15 bpar.num_components = 3; % RGB are the three components
16 bpar.f = 18; % This is the camera zoom lens focal
17 % length in mm
18 bpar.Fnum = ’5.0’; % This is the camera F number
19 bpar.frame = 112; % This is the number of pixels in the
20 % frame minus one
21 bpar.brightness = 0; % Brightness to use
22 bpar.ignore_vertex_distance = 0;
23 bpar.new_mode = 1;
24 bpar.apply_chromatic_aberration = 1; % If 1, then chromatic aberration will
25 % be applied to external lens
26 bpar.psf_magnification = 1; % (internal use) the magnification to be
27 % applied to PSF before returning it to
28 % caller
29 numerical_validation_with_linear = 0;
30

31 % These field should be eliminated
32 bpar.doapply = 0; %
33 bpar.scale = 0; %
34 bpar.entrance_pupil_pos = 47; % distance (in mm) from camera lens
35 % mount to entrance pupil
36 bpar.gaze_objdist = 0; % distance (in mm) from camera lens
37 % mount to object to be observed
38 bpar.gaze_focus = 0; % distance (in mm) from camera lens
39 % mount to gazing focus point
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40 bpar.extralens_overall_astig_angle = 0;
41

42 bpar.ab_S = 0; % S (spherical) in diopters
43 bpar.ab_C = 0; % C (cylinder) in diopters
44 bpar.ab_angle = 0; % axis angle in degrees
45

46 bpar.extralens(1).present = 0;
47 bpar.extralens(1).thin_S = 0;
48 bpar.extralens(1).thin_C = 0;
49 bpar.extralens(1).astig_angle = 0;
50

51 bpar.extralens(1).pos = 101; % distance (in mm) from camera lens
52 % mount to extra lens back surface
53 bpar.extralens(1).thickness = 0; % extra lens center thickness (in mm)
54 bpar.extralens(1).n = 1.5; % extra lens refractive index
55 bpar.extralens(1).raw_back_x_power = 0; % extra lens back surface power in x
56 % direction
57 bpar.extralens(1).raw_back_y_power = 0; % extra lens back surface power in y
58 % direction
59 bpar.extralens(1).raw_front_x_power = 0; % extra lens front surface power in x
60 % direction
61 bpar.extralens(1).raw_front_y_power = 0; % extra lens front surface power in y
62 % direction
63

64 bpar.extralens(2).present = 0;
65 bpar.extralens(2).thin_S = 0;
66 bpar.extralens(2).thin_C = 0;
67 bpar.extralens(2).astig_angle = 0;
68

69 bpar.extralens(2).pos = 111; % distance (in mm) from camera lens
70 % mount to extra lens back surface
71 bpar.extralens(2).thickness = 0; % extra lens center thickness (in mm)
72 bpar.extralens(2).n = 1.5; % extra lens refractive index
73 bpar.extralens(2).raw_back_x_power = 0; % extra lens back surface power in x
74 % direction
75 bpar.extralens(2).raw_back_y_power = 0; % extra lens back surface power in y
76 % direction
77 bpar.extralens(2).raw_front_x_power = 0; % extra lens front surface power in x
78 % direction
79 bpar.extralens(2).raw_front_y_power = 0; % extra lens front surface power in y
80 % direction
81

82 MAX_EXTRA_LENSES = 2;
83

84 % RGB_nm is a 3-element vector containing the wavelength
85 % in nanonmeters for each color channel. If number of components is not 3,
86 % it is assumed to be one, indicating grayscale image processing
87 if (bpar.num_components == 3)
88 bpar.RGB_nm = [R_nm, G_nm, B_nm];
89 else
90 bpar.RGB_nm = [W_nm, W_nm, W_nm];
91 end
92

93 FL_crop_dx = 0;
94 FL_crop_dy = 0;
95

96 %=================================================
97 % Set up experiment for astigmatism
98 %=================================================
99

100 bpar.apply_chromatic_aberration = 0;
101

102 bpar.gaze_objdist = 6490 + 25;
103 bpar.gaze_focus = 6490 + 25;
104

105 % Base path for all input images (JPG and DNG)
106 bpar.base_path = ’E:/ufrgs/experiments/2019_02_13/’;
107

108 bpar.extralens(1).present = 1; % If 1 then extra lens is present
109 bpar.extralens(1).thin_S = 0;
110 bpar.extralens(1).thickness = 0; % extra lens center thickness (in mm)
111

112 crop_x = 2620;
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113 crop_y = 1538;
114

115 crop_w = 113;
116 crop_h = 113;
117

118 % Base file name for to-be-blurred image (image A)
119 bpar.fname_A = ’IMG_0197’;
120

121 bpar.f = 20; % This is the camera zoom lens focal length in mm
122 bpar.brightness = 0;
123

124 bpar.extralens(1).thin_C = -2.25;
125 bpar.extralens(1).thin_S = -0.25;
126 bpar.extralens(1).astig_angle = 69;
127

128 FL_crop_dx = 5; % cropping adjustments due to magnification affecting
129 FL_crop_dy = -5; % position of off-axis objects
130

131 bpar.fname_C = ’IMG_0196’;
132

133 crop_w = 113 * 2;
134 crop_h = 113 * 2;
135

136 %----------------------------------------
137 % Setup phase finished. Start the process
138 %----------------------------------------
139

140 gt_crop_dx = FL_crop_dx;
141 gt_crop_dy = FL_crop_dy;
142

143 border_x = crop_w;
144 border_y = crop_h;
145

146 % Load the images
147 [meta_info, raw] = simply_load_dng(strcat(bpar.base_path, bpar.fname_A, ’.dng’));
148 clear raw;
149 warning off MATLAB:imagesci:png:libraryWarning
150 full_image_A = unapply_gamma(im2double(imread(strcat(bpar.base_path, bpar.fname_A, ...
151 ’.jpg’))));
152 full_image_C = unapply_gamma(im2double(imread(strcat(bpar.base_path, bpar.fname_C, ...
153 ’.jpg’))));
154

155 % Convert images to grayscale if using only one channel
156 if bpar.num_components == 1
157 full_image_A = rgb2gray(full_image_A);
158 full_image_C = rgb2gray(full_image_C);
159 end
160

161 if strcmp(meta_info.Model, ’Canon EOS Rebel T3’)
162 bpar.sensor_pixels = 4278;
163 bpar.sensor_width = 0.0222;
164 elseif strcmp(meta_info.Model, ’Canon EOS Rebel T6’)
165 bpar.sensor_pixels = 5344;
166 bpar.sensor_width = 0.0223;
167 else
168 error(’UNKNOWN CAMERA’)
169 end
170

171 % Defocus added to wave optics in order to simulate observing light-emitting object at
172 % distance ’d’, while focusing at distance ’f’
173 bpar.wave_defocus = 0;
174

175 % If object or gazing have been set (not zero), then we compute the actual values for
176 % defocus and plane
177 if (bpar.gaze_objdist ~= 0) && (bpar.gaze_focus ~= 0)
178

179 % proper relative distance and conversion to meters
180 gf = (bpar.gaze_focus - bpar.entrance_pupil_pos) * 0.001;
181 % proper relative distance and conversion to meters
182 od = (bpar.gaze_objdist - bpar.entrance_pupil_pos) * 0.001;
183

184 % This variable is used by wave optics. This formula is based on our derivation in
185 % the dissertation
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186 bpar.wave_defocus = (od - gf) / (od * gf);
187

188 clear gf;
189 clear od;
190 end
191

192 num_extralenses = 0;
193

194 for lens_i = 1:MAX_EXTRA_LENSES
195 if (bpar.extralens(lens_i).present == 1)
196 num_extralenses = num_extralenses + 1;
197 end
198 end
199

200 magnification_angle = 0;
201 x_magnification = 1;
202 y_magnification = 1;
203

204 if num_extralenses > 0
205 for lens_i = 1:MAX_EXTRA_LENSES
206 if bpar.extralens(lens_i).present == 0
207 continue;
208 end
209

210 sin_theta = sin(deg2rad(bpar.extralens(lens_i).astig_angle));
211 cos_theta = cos(deg2rad(bpar.extralens(lens_i).astig_angle));
212

213 % ------------------------------------------------------------------------------
214 % Compute the magnification caused by extra lens
215 %
216 extralens_distance = (bpar.extralens(lens_i).pos - bpar.entrance_pupil_pos) ...
217 * 0.001;
218 if bpar.extralens(lens_i).thickness == 0
219 extralens_raw_x_power = bpar.extralens(lens_i).thin_S;
220 extralens_raw_y_power = bpar.extralens(lens_i).thin_S + ...
221 bpar.extralens(lens_i).thin_C;
222 x_power_factor = 1 / (1 - extralens_distance * extralens_raw_x_power);
223 y_power_factor = 1 / (1 - extralens_distance * extralens_raw_y_power);
224

225 % Formula derived to apply a rotated scaling
226 this_x_magnification = (1 * x_power_factor);
227 this_y_magnification = (1 * y_power_factor);
228 if (this_x_magnification ~= this_y_magnification)
229 if magnification_angle ~= 0
230 error(’Competing astigmatism angles’)
231 end
232 magnification_angle = bpar.extralens(lens_i).astig_angle;
233 end
234 if bpar.extralens(lens_i).thin_C ~= 0
235 if bpar.extralens_overall_astig_angle ~= 0
236 error(’Competing astigmatism angles’)
237 end
238 bpar.extralens_overall_astig_angle = bpar.extralens(lens_i).astig_angle;
239 end
240 x_magnification = x_magnification * this_x_magnification;
241 y_magnification = y_magnification * this_y_magnification;
242 clear extralens_rot_raw_thin_x_power;
243 clear extralens_rot_raw_thin_y_power;
244 end
245 end
246

247 clear sin_theta;
248 clear cos_theta;
249

250 % ------------------------------------------------------------------------
251 % Each channel will have its own chromatic-aberration-dependent S
252 if bpar.num_components == 3
253 for i_lambda = 1 : bpar.num_components
254 bpar.nd_S(i_lambda) = 0;
255 bpar.nd_C(i_lambda) = 0;
256 for lens_i = 1 : MAX_EXTRA_LENSES
257 if bpar.extralens(lens_i).present == 1
258 extralens_distance = (bpar.extralens(lens_i).pos ...
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259 - bpar.entrance_pupil_pos) * 0.001;
260 ca_S = f_CalcChromaticDiopter(bpar.extralens(lens_i).thin_S, ...
261 i_lambda, 0, bpar);
262 bpar.nd_S(i_lambda) = bpar.nd_S(i_lambda) + f_CalcNewDiopter( ...
263 ca_S, extralens_distance * 1000);
264 ca_C = f_CalcChromaticDiopter(bpar.extralens(lens_i).thin_C, ...
265 i_lambda, 0, bpar);
266 bpar.nd_C(i_lambda) = bpar.nd_C(i_lambda) + f_CalcNewDiopter( ...
267 ca_C, extralens_distance * 1000);
268 end
269 end
270 end
271 else
272 for i_lambda = 1 : 3
273 bpar.nd_S(i_lambda) = 0;
274 bpar.nd_C(i_lambda) = 0;
275 for lens_i = 1 : MAX_EXTRA_LENSES
276 if bpar.extralens(lens_i).present == 1
277 extralens_distance = (bpar.extralens(lens_i).pos ...
278 - bpar.entrance_pupil_pos) * 0.001;
279 bpar.nd_S(i_lambda) = bpar.nd_S(i_lambda) + f_CalcNewDiopter( ...
280 bpar.extralens(lens_i).thin_S, extralens_distance * 1000);
281 bpar.nd_C(i_lambda) = bpar.nd_C(i_lambda) + f_CalcNewDiopter( ...
282 bpar.extralens(lens_i).thin_C, extralens_distance * 1000);
283 end
284 end
285 end
286 end
287 clear ca_S;
288 clear ca_C;
289 else
290 x_magnification = 1;
291 y_magnification = 1;
292 for i_lambda = 1 : 3
293 bpar.nd_S(i_lambda) = 0;
294 bpar.nd_C(i_lambda) = 0;
295 end
296 end
297

298 % ------------------------------------------------------------------
299 % Positive lens causes magnification (m > 1)
300 % We should shrink the PSF and shrink the ground truth blurred image
301 if x_magnification > 1
302 PSF_x_scale = 1 / x_magnification;
303 gtruth_x_magnification = 1 / x_magnification;
304 input_image_x_magnification = 1;
305 % ------------------------------------------------------------------
306 % Negative lens causes demagnification (m < 1)
307 % don’t do this!! We should enlarge the PSF and shrink the already-convolved image
308 % We should shrink the yet-to-be convolved image
309 elseif x_magnification < 1
310 PSF_x_scale = 1;
311 gtruth_x_magnification = 1;
312 input_image_x_magnification = x_magnification;
313 % No magnification at all
314 else
315 PSF_x_scale = 1;
316 gtruth_x_magnification = 1;
317 input_image_x_magnification = 1;
318 end
319

320 % ------------------------------------------------------------------
321 % Positive lens causes magnification (m > 1)
322 % We should shrink the PSF and shrink the ground truth blurred image
323 if y_magnification > 1
324 PSF_y_scale = 1 / y_magnification;
325 gtruth_y_magnification = 1 / y_magnification;
326 input_image_y_magnification = 1;
327 % ------------------------------------------------------------------
328 % Negative lens causes demagnification (m < 1)
329 % don’t do this!! We should enlarge the PSF and shrink the already-convolved image
330 % We should shrink the yet-to-be convolved image
331 elseif y_magnification < 1
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332 PSF_y_scale = 1;
333 gtruth_y_magnification = 1;
334 input_image_y_magnification = y_magnification;
335 % No magnification at all
336 else
337 PSF_y_scale = 1;
338 gtruth_y_magnification = 1;
339 input_image_y_magnification = 1;
340 end
341

342 %-------------------------------------------------------------------
343 % Perform input image downscaling if necessary
344 if (input_image_x_magnification ~= 1) || (input_image_y_magnification ~= 1)
345 image_A_is_resized = 1;
346

347 resized_image_A = apply_anisotropic_magnification(full_image_A, magnification_angle,
...

348 input_image_x_magnification, input_image_y_magnification, 0, 0);
349 resized_image_A = max(0,min(resized_image_A,1));
350 else
351 image_A_is_resized = 0;
352 resized_image_A = full_image_A;
353 end
354

355 %-------------------------------------------------------------------
356 % Perform ground-truth image downscaling if necessary
357 if (gtruth_x_magnification ~= 1) || (gtruth_y_magnification ~= 1)
358 image_C_is_resized = 1;
359

360 resized_image_C = apply_anisotropic_magnification(full_image_C, magnification_angle,
...

361 gtruth_x_magnification, gtruth_y_magnification, 0, 0);
362 resized_image_C = max(0,min(resized_image_C,1));
363 else
364 image_C_is_resized = 0;
365 resized_image_C = full_image_C;
366 end
367

368 %% auto brightness code - these coordinates lead to a small white patch on the image
369 bright_sample_A = imcrop(resized_image_A, [crop_x - 340, ...
370 crop_y, ...
371 64, 64]);
372 bright_sample_C = imcrop(resized_image_C, [crop_x + gt_crop_dx - 340, ...
373 crop_y + gt_crop_dy, ...
374 64, 64]);
375

376 for i_lambda = 1 : bpar.num_components
377 channel_brightness_scale = mean2(bright_sample_A(:, :, i_lambda)) / ...
378 mean2(bright_sample_C(:, :, i_lambda));
379 resized_image_C(:, :, i_lambda) = resized_image_C(:, :, i_lambda) * ...
380 channel_brightness_scale;
381 end
382

383 image_A_x = crop_x;
384 image_A_y = crop_y;
385

386 cropped_image_A = imcrop(resized_image_A, [image_A_x - border_x, ...
387 image_A_y - border_y, ...
388 crop_w + 2 * border_x, ...
389 crop_h + 2 * border_y]);
390

391 image_C_x = image_A_x;
392 image_C_y = image_A_y;
393

394

395 im_U = apply_gamma(imcrop(full_image_A, [crop_x, ...
396 crop_y, ...
397 crop_w, crop_h]));
398

399 cropped_image_C = imcrop(resized_image_C, [image_C_x + gt_crop_dx, image_C_y + ...
400 gt_crop_dy, crop_w, crop_h]);
401

402 w_out = gen_PSF(0, bpar);
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403

404 %-------------------------------------------------------------------
405 % Resize the PSF and compute OTF for each channel
406 w_OTF = zeros(size(cropped_image_A));
407 g_OTF = zeros(size(cropped_image_A));
408 for i_lambda = 1 : bpar.num_components
409 unresized_PSF = w_out.PSF(:, :, i_lambda);
410 if (PSF_x_scale ~= 1) || (PSF_y_scale ~= 1)
411 resized_PSF = apply_anisotropic_magnification(unresized_PSF, magnification_angle

, ...
412 PSF_x_scale, PSF_y_scale, 0, 0);
413 resized_PSF = max(0,min(resized_PSF,1));
414 else
415 resized_PSF = unresized_PSF;
416 end
417 PSF = zeropad_newsize(resized_PSF, size(cropped_image_A));
418 PSF = PSF / sum(sum(PSF));
419 w_OTF(:, :, i_lambda) = psf2otf(PSF);
420 end
421

422 %-------------------------------------------------------------------
423 % Convolution in spacial domain is the same as multiplication in frequency domain
424 w_convolved_rgb = zeros(size(cropped_image_A), ’double’);
425 for i_lambda = 1 : bpar.num_components
426 w_convolved_rgb(:, :, i_lambda) = ifft2(fft2(cropped_image_A(:,:,i_lambda)) .* ...
427 w_OTF(:, :, i_lambda));
428 end
429

430 g_convolved_rgb = zeros(size(cropped_image_A), ’double’);
431 for i_lambda = 1 : bpar.num_components
432 g_convolved_rgb(:, :, i_lambda) = ifft2(fft2(cropped_image_A(:,:,i_lambda)) .* ...
433 g_OTF(:, :, i_lambda));
434 end
435

436 %-------------------------------------------------------------------
437 % Remove borders and apply gamma encoding
438 linear_im_A = (imcrop(cropped_image_A, [border_x, border_y, crop_w, crop_h]));
439 im_A = apply_gamma(linear_im_A);
440 linear_im_BW = imcrop(w_convolved_rgb, [border_x, border_y, crop_w, crop_h]);
441 im_BW = apply_gamma(linear_im_BW);
442

443 linear_im_C = cropped_image_C;
444 im_C = apply_gamma(linear_im_C);
445

446 if image_A_is_resized == 1
447 total_images = 4;
448 sp1=subplot(1, total_images, 1);
449 imshow(im_U);
450 title(’[Original] Sharp input image’);
451 else
452 total_images = 3;
453 end
454 sp2=subplot(1, total_images, total_images - 2);
455 imshow(im_A);
456 if image_A_is_resized == 1
457 title(’[Resized] Sharp input image’);
458 else
459 title(’[Original] Sharp input image’);
460 end
461 sp3=subplot(1, total_images, total_images - 1);
462 imshow(im_BW);
463 title(’WO-Blurred image’);
464 sp5=subplot(1, total_images, total_images);
465 imshow(im_C);
466 if image_C_is_resized == 1
467 title(’[Resized] Ground truth’);
468 else
469 title(’[Original] Ground truth’);
470 end
471 if numerical_validation_with_linear == 1
472 w_SSIM = ssim(linear_im_BW, linear_im_C)
473 w_PSNR = psnr(linear_im_BW, linear_im_C)
474 else
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475 w_SSIM = ssim(im_BW, im_C)
476 w_PSNR = psnr(im_BW, im_C)
477 end

B.2 PSF generation function

1 %----------------------
2 % gen_PSF(in_rgb, bpar)
3 %----------------------
4 % Generate a PSF
5 function out = gen_PSF(in_rgb, bpar)
6 % Convert the F-Number from string to integer
7 Fnumber = str2double(bpar.Fnum);
8

9 % D is the pupil diameter in mm
10 D = bpar.f / Fnumber;
11

12 % pupil_radius is the pupil radius in mm
13 pupil_radius = D/2;
14

15 % final_side is the number of pixels on each dimension of the final PSF image.
16 % We add one because bpar.frame should always be even, and so final_side will
17 % always be odd.
18 % We want odd pixel dimensions because this way we can center the convolution kernel
19 % to produce
20 % something similar to a dirac delta when the wavefront is aberration-free
21 final_side = bpar.frame + 1;
22

23 % Q_alpha is a 3-element vector containing, for each channel, the alpha scaling
24 % factor needed
25 % to obtain the desired PSF resolution.
26 Q_alpha = [0, 0, 0];
27

28 % pupil_frame is a 3-element vector containing, for each channel, the number of
29 % pixels in each dimension
30 % of the general pupil function domain minus one (even).
31 pupil_frame = [0, 0, 0];
32

33 % out.pupil_frames is a copy of pupil_frame that is exported to the user
34 out.pupil_frames = [0, 0, 0];
35

36 % pupil_scaled_frame is a 3-element vector containing, for each channel, the number
37 % of pixels in each dimension
38 % of the alpha-zero-padded general pupil function domain minus one (even).
39 % We pad zeros around the pupil domain in order to obtain the desired frequencies in
40 % the Fourier Transform
41 % that computes the PSF.
42 pupil_scaled_frame = [0, 0, 0];
43

44 % sensor_pixels is the horizontal number of pixels in the camera sensor. This value
45 % can be obtained from the web (https://www.digicamdb.com/specs/canon_eos-rebel-t6/,
46 % https://www.digicamdb.com/specs/canon_eos-rebel-t3/).
47 sensor_pixels = bpar.sensor_pixels * bpar.sensor_pixel_scale;
48

49 % sensor_width is the horizontal width of the camera sensor in meters. This value
50 % can be obtained from the web.
51 sensor_width = bpar.sensor_width;
52

53 % out.expected_unit contains the units for every pixel in the final PSF
54 out.expected_unit = 10^(6) * sensor_width / sensor_pixels;
55

56 % out.actual_units is a 3-element vector containing, for each channel, the computed
57 % units (in nanometers) for each pixel in the final PSF. Ideally all 3 channels
58 % should have the same units, but this is not currently possible because (1) our FFT
59 % function does not allow arbitrary frequency multipliers and (2) our imresize
60 % function does not allow non-integer dimensions.
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61 % These values should be as close as possible to out.expected_unit.
62 out.actual_units = [0, 0, 0];
63

64 % Calculating alpha (Q)
65 % alpha = sensor_pixels * lambda * Fnumber / sensor_size
66 for i_lambda = 1 : bpar.num_components
67 Q = sensor_pixels * (bpar.RGB_nm(i_lambda) * 10^(-9)) * Fnumber / sensor_width;
68 [pf, pfs] = best_pupil_pixel_size(bpar, Q);
69 unit = 1 / ((pfs + 1) / (pf + 1));
70 unit = unit * bpar.RGB_nm(i_lambda) * Fnumber * 10^(-3);
71 Q_alpha(i_lambda) = Q;
72 pupil_frame(i_lambda) = pf;
73 pupil_scaled_frame(i_lambda) = pfs;
74 out.actual_units(i_lambda) = unit;
75 out.pupil_frames(i_lambda) = pf + 1;
76 end
77 lin_srgb = zeros(size(in_rgb));
78 OTF = zeros(size(in_rgb));
79 out.PSF = zeros([final_side, final_side, 3]);
80 for i_lambda = 1 : bpar.num_components
81 lambda = bpar.RGB_nm(i_lambda) * 10^(-3);
82 k = (2*pi) / lambda;
83 pupf = pupil_frame(i_lambda);
84 [X, Y] = meshgrid((-1:2/pupf:1),(1:-2/pupf:-1)); % from -1 to 1, steps of 2/n
85 r = sqrt(X.^2 + Y.^2); % calulate radius
86 coeff = [0; getZernikeFromPrescription( pupil_radius, ...
87 bpar.nd_S(i_lambda) + bpar.wave_defocus + bpar.ab_S, ...
88 bpar.nd_C(i_lambda) + bpar.ab_C, ...
89 bpar.extralens_overall_astig_angle + bpar.ab_angle)];
90 WavefrontPhaseError = my_ZernikeSurface(pupf,X,Y,r,coeff);
91 if i_lambda == 1
92 out.WE_R = WavefrontPhaseError;
93 elseif i_lambda == 2
94 out.WE_G = WavefrontPhaseError;
95 elseif i_lambda == 3
96 out.WE_B = WavefrontPhaseError;
97 end
98 S = exp( 1i * k * WavefrontPhaseError);
99 S(r > 1) = 0; % circular aperture

100 oldside = pupf + 1;
101 new_side = pupil_scaled_frame(i_lambda) + 1;
102 if new_side > oldside
103 S = zeropad_newsize(S, [new_side, new_side]);
104 end
105 PSF = fft2(S); % amplitude impulse response
106 PSF = PSF .* conj(PSF); % square magnitude
107 PSF = real(fftshift(PSF)); % real part
108 if new_side < oldside
109 PSF = imresize(PSF, [new_side, new_side]);
110 end
111 if final_side > new_side
112 PSF = zeropad_newsize(PSF, [final_side, final_side]);
113 elseif final_side < new_side
114 PSF = zerocut_newsize(PSF, [final_side, final_side]);
115 end
116 smallPSF = PSF / sum(sum(PSF)); % Scale so that PSF sums to unity.
117 out.PSF(:, :, i_lambda) = smallPSF;
118 end
119

120 if (bpar.num_components == 1)
121 OTF(:, :, 2) = OTF(:, :, 1);
122 OTF(:, :, 3) = OTF(:, :, 1);
123 end
124

125 % from -1 to 1, steps of 2/n
126 [out.X, out.Y] = meshgrid(linspace(-1,1,bpar.frame+1),linspace(-1,1,bpar.frame+1));
127 unit = (bpar.frame + 1) / 2;
128

129 out.X = out.X * unit;
130 out.Y = out.Y * unit;
131 end



114

B.3 Zernike coefficients generation

1 %-------------------------------------------------
2 % getZernikeFromPrescription(pupil_r, S, C, theta)
3 %-------------------------------------------------
4 % Zernike coefficients generation
5 function [coeffs] = getZernikeFromPrescription(pupil_r, S, C, theta)
6 coeffs = zeros(20,1);
7 R = pupil_r;
8 % c3 = y-astigmatism 2,-2
9 % c4 = defocus 2, 0

10 % c5 = x-astigmatism 2, 2
11 syms c3; % microns +1.05
12 syms c4; % microns -3.55
13 syms c5; % microns -0.98
14 % S in diopters
15 % C in diopters
16 % t in radians
17 % R in mm
18 T_rad = deg2rad(theta);
19 eqn1 = c3 == (R^2*C*sin(2*T_rad)) / (4*sqrt(6));
20 eqn2 = c4 == - ( (R^2*(S+(C/2))) / (4*sqrt(3)) );
21 eqn3 = c5 == (R^2*C*cos(2*T_rad)) / (4*sqrt(6));
22 tmp1 = solve(eqn1, c3);
23 tmp1 = vpa(tmp1);
24 tmp1 = double(tmp1);
25 tmp2 = solve(eqn2, c4);
26 tmp2 = vpa(tmp2);
27 tmp2 = double(tmp2);
28 tmp3 = solve(eqn3, c5);
29 tmp3 = vpa(tmp3);
30 tmp3 = double(tmp3);
31 c3 = tmp1;
32 c4 = tmp2;
33 c5 = tmp3;
34 coeffs(3) = c3;
35 coeffs(4) = c4;
36 coeffs(5) = c5;
37 end

B.4 Wavefront phase error surface generation

1 %----------------------------------
2 % my_ZernikeSurface(nn, X, Y, r, z)
3 %----------------------------------
4 % This function calculates the wavefront based on a set of Zernike
5 % coefficients z to get frame size (nn+1)x(nn+1).
6 function [S] = my_ZernikeSurface(nn, X, Y, r, z)
7 terms = length(z)-1;
8 Theta = atan2(Y, X);
9 S = zeros(nn+1);

10 for i = 0:terms
11 [n, m] = single2doubleZ(i);
12 if (m == 0)
13 pa = sqrt(n+1);
14 else
15 pa = sqrt(2*(n+1));
16 end
17 coef = pa;
18 Surf = zeros(nn+1);
19 for s = 0:(n-abs(m))/2
20 c1 = n-s;
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21 c2 = (n+m)/2-s;
22 c3 = (n-m)/2-s;
23 Surf = Surf + (-1)^s*factorial(c1)/factorial(s) ...
24 / factorial(c2)/factorial(c3)*power(r, n-2*s);
25 end
26 if (m < 0)
27 Surf = Surf.*sin(abs(m)*Theta);
28 elseif (m > 0)
29 Surf = Surf.*cos(m*Theta);
30 end
31 S = S + z(i+1)*coef*Surf;
32 end
33 S(r > 1) = NaN;
34 end

B.5 Zernike’s single to double-index conversion

1 %-------------------
2 % single2doubleZ(jj)
3 %-------------------
4 % This function converts single->double index in Zernike polynomials
5 % Source: [DAI, G. Wavefront Optics for Vision Correction]
6 function [n, m] = single2doubleZ(jj)
7 n = floor(sqrt(2*jj+1)+0.5)-1;
8 m = 2*jj-n*(n+2);
9 end

B.6 Fitting pupil size in pixels

1 %-------------------------------
2 % best_pupil_pixel_size(bpar, Q)
3 %-------------------------------
4 % Find closest integers that generate the best approximation for pupil frames
5 function [pupil_frame, pupil_scaled_frame] = best_pupil_pixel_size(bpar, Q)
6 attempts = 360;
7 pupil_frame = 112 * 1 + attempts * 2;
8 try_pupil_frame = pupil_frame + 2;
9 best_diff = 1000;

10 if bpar.iterate_pupil_pixels ~= 1
11 attempts = 1;
12 try_pupil_frame = 112 + 2;
13 end
14 for i = 1:attempts
15 try_pupil_frame = try_pupil_frame - 2;
16 new_side_float = (try_pupil_frame + 1) * Q;
17 new_side_ceil = ceil(new_side_float);
18 new_side = floor(new_side_float);
19 if (bitand(new_side_ceil, 1) == 1)
20 new_side = new_side_ceil;
21 end
22 this_diff = new_side / new_side_float;
23 if this_diff < 1
24 this_diff = new_side_float / new_side;
25 end
26 if this_diff < best_diff
27 best_diff = this_diff;
28 pupil_frame = try_pupil_frame;
29 pupil_scaled_frame = new_side - 1;
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30 end
31 end
32 end

B.7 Matrix dimensions splitting

1 %----------------
2 % matsplit(A,dim)
3 %----------------
4 % matsplit
5 % version 1.3.0.0 (568 Bytes) by Matthew Eicholtz
6 % available at https://www.mathworks.com/matlabcentral/fileexchange/48439-matsplit
7 function varargout = matsplit(A,dim)
8 %MATSPLIT Split matrix elements into separate variables.
9 % VARARGOUT = MATSPLIT(A) returns each element of the array A in a

10 % separate variable defined by VARARGOUT.
11 %
12 % VARARGOUT = MATSPLIT(A,DIM) only splits the matrix in one dimension. If
13 % DIM=1, each column vector is assigned to an output variable. If
14 % DIM=2, each row vector is assigned to an output variable.
15 %
16 % MRE 11/12/14 (last updated 11/13/14)
17 if nargin==1
18 varargout = num2cell(A);
19 else
20 varargout = num2cell(A,dim);
21 end
22 end

B.8 Cropping a given surface

1 %----------------------------
2 % zerocut_newsize(W, newsize)
3 %----------------------------
4 % This function zero-pads the frame to be alpha times as large.
5 function S = zerocut_newsize(W, newsize)
6 [p, q] = size(W);
7 [n, m] = matsplit(newsize);
8 S = W((p-n)/2+1:(p+n)/2,(q-m)/2+1:(q+m)/2);
9 end

B.9 Zero filling a given surface

1 %----------------------------
2 % zeropad_newsize(W, newsize)
3 %----------------------------
4 % This function zero-pads the frame to be alpha times as large.
5 function S = zeropad_newsize(W, newsize)
6 oldsize = size(W);
7 n = oldsize(1);
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8 m = oldsize(2);
9 p = newsize(1);

10 q = newsize(2);
11 pn = int32(p - n);
12 if (bitand(pn, 1) == 1)
13 y1 = (p-n+1)/2;
14 y2 = (p+n-1)/2;
15 else
16 y1 = (p-n)/2+1;
17 y2 = (p+n)/2;
18 end
19 qm = int32(q - m);
20 if (bitand(qm, 1) == 1)
21 x1 = (q-m+1)/2;
22 x2 = (q+m-1)/2;
23 else
24 x1 = (q-m)/2+1;
25 x2 = (q+m)/2;
26 end
27 if ndims(W) == 2
28 S = zeros(p, q);
29 S(y1:y2,x1:x2) = W;
30 else
31 S = zeros(p, q, 3);
32 S(y1:y2,x1:x2, :) = W;
33 end
34 end

B.10 Gamma encoding

1 %--------------------
2 % apply_gamma(in_rgb)
3 %--------------------
4 % Gamma Correction
5 function rgb = apply_gamma(in_rgb)
6 rgb = in_rgb.^(1/2.2);
7 end

B.11 Gamma decoding

1 %----------------------
2 % unapply_gamma(in_rgb)
3 %----------------------
4 % Gamma Correction
5 function rgb = unapply_gamma(in_rgb)
6 rgb = in_rgb.^(2.2);
7 end

B.12 Applying anisotropic magnification
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1 %-------------------------------------------------------------------
2 % apply_anisotropic_magnification(in_rgb, angle, x_scale, y_scale, x_add, y_add)
3 %-------------------------------------------------------------------
4 % Apply anisotropic magnification
5 function rgb = apply_anisotropic_magnification(in_rgb, angle, x_scale, y_scale, x_add,

y_add)
6 % extract image dimensions
7 [nr nc channels] = size(in_rgb);
8 % create a grid running from -0.5 to 1.0 in both directions
9 x = linspace(-0.5, 0.5, nc);

10 y1 = linspace(-0.5, 0.5, nr);
11 y = flipud(y1);
12 [X, Y] = meshgrid(x, y);
13 % compute sine and cosine for the reverse angle
14 % (we use reverse angle here because we have to simulate how a camera would view the
15 % rotation and magnification in a way similar to how we compute all the reverse
16 % transformations when creating a view camera matrix in OpenGL)
17 sin_theta = sin(-deg2rad(angle));
18 cos_theta = cos(-deg2rad(angle));
19 % Rotate (this is a standard rotation algorithm)
20 P_r = X*cos_theta+Y*sin_theta; Q_r = -X*sin_theta+Y*cos_theta;
21 % Scale (we use the reciprocal of scaling because this is a reverse (camera)
22 % transformation
23 P_sr = P_r * (1 / x_scale); Q_sr = Q_r * (1 / y_scale);
24 % Unrotate (this is the inverse matrix of a standard rotation)
25 P = P_sr*cos_theta - Q_sr*sin_theta + x_add / nc; Q = P_sr*sin_theta + Q_sr * ...
26 cos_theta + y_add / nr;
27 % apply interp2 to all channels
28 rgb=zeros(size(in_rgb));
29 if channels == 3
30 rgb(:,:,1) = interp2(X,Y,in_rgb(:, :, 1),P,Q,’linear’,0);
31 rgb(:,:,2) = interp2(X,Y,in_rgb(:, :, 2),P,Q,’linear’,0);
32 rgb(:,:,3) = interp2(X,Y,in_rgb(:, :, 3),P,Q,’linear’,0);
33 else
34 rgb = interp2(X,Y,in_rgb,P,Q,’linear’,0);
35 end
36 end

B.13 Computing chromatic aberration diopters

1 %-------------------------------------------------------
2 % f_CalcChromaticDiopter(D_lens, i_lambda, lambda, bpar)
3 %-------------------------------------------------------
4 % Compute diopters for chromatic aberration
5 function [N] = f_CalcChromaticDiopter(D_lens, i_lambda, lambda, bpar)
6 mu_r = 1.4998;
7 mu_g = 1.5085;
8 mu_b = 1.5152;
9 mu_y = 1.5085;

10 if (bpar.num_components == 3) && (bpar.apply_chromatic_aberration == 1)
11 if i_lambda == 1
12 n_t = mu_r;
13 elseif i_lambda == 2
14 n_t = mu_g;
15 elseif i_lambda == 3
16 n_t = mu_b;
17 end
18 N = (n_t - 1) * D_lens / (mu_y - 1);
19 else
20 N = D_lens;
21 end
22 end
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B.14 Computing vertex-distance adjusted diopters

1 %-----------------------------
2 % f_CalcNewDiopter(D_lens, vd)
3 %-----------------------------
4 % Recompute diopters considering vertex distance
5 function [N] = f_CalcNewDiopter(D_lens, vd)
6 d = vd; % vertex distance in mm
7 N = D_lens / (1 - (d * 0.001) * D_lens);
8 end

B.15 Loading DNG image files

1 %--------------------------
2 % simply_load_dng(filename)
3 %--------------------------
4 % Read a .DNG file
5 function [meta_info, raw] = simply_load_dng(filename)
6 warning off MATLAB:imagesci:tiffmexutils:libtiffWarning
7 warning off MATLAB:imagesci:tiffmexutils:libtiffErrorAsWarning
8 warning off MATLAB:imagesci:tifftagsread:badTagValueDivisionByZero
9 t = Tiff(filename,’r’);

10 offsets = getTag(t,’SubIFD’);
11 setSubDirectory(t,offsets(1));
12 raw = read(t);
13 close(t);
14 clear t;
15 meta_info = imfinfo(filename);
16 end


	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Thesis structure

	2 Background
	2.1 Geometric optics
	2.1.1 Refraction
	2.1.2 Refractive errors
	2.1.3 Defocus
	2.1.4 Ophthalmic astigmatism

	2.2 Eyeglass prescriptions
	2.3 Zernike polynomials
	2.4 Wave Optics
	2.5 Phase transformation of thin lenses
	2.6 Huygens-Fresnel principle
	2.7 PSF generation
	2.7.1 Point source illumination
	2.7.2 Accommodation and aberrations
	2.7.3 Superposition
	2.7.4 Discretization

	2.8 Partial occlusion effects
	2.9 Summary

	3 Related work
	3.1 First techniques
	3.2 Vision-realistic rendering
	3.3 Other techniques
	3.4 Summary

	4 Simulating low-order aberrations using wave optics
	4.1 Rationale of the wave optics approach
	4.2 Object position and accommodation
	4.3 Gamma correction
	4.4 Implementation
	4.5 Artifacts due to missing information
	4.6 Summary

	5 Simulating low-order aberrations with light-gathering trees
	5.1 Rationale of the light-gathering trees approach
	5.2 Light-gathering tree construction
	5.3 Light-gathering tree usage
	5.4 Runtime optimizations
	5.5 Determining ray directions
	5.6 General LGT algorithm
	5.7 Summary

	6 Experiments and results
	6.1 Airy pattern validation
	6.2 Camera holding device
	6.3 Optical power and image adjustments
	6.4 Object defocus compensation using an extra lens
	6.5 Quantitative evaluation
	6.5.1 Objective validation

	6.6 Qualitative evaluation
	6.7 Discussion and Limitations
	6.8 Summary

	7 Conclusions and Discussion
	7.1 Future work

	References
	Appendix A — Mathematical background
	A.1 Binomial approximation

	Appendix B — MATLAB sources
	B.1 Setup code
	B.2 PSF generation function
	B.3 Zernike coefficients generation
	B.4 Wavefront phase error surface generation
	B.5 Zernike's single to double-index conversion
	B.6 Fitting pupil size in pixels
	B.7 Matrix dimensions splitting
	B.8 Cropping a given surface
	B.9 Zero filling a given surface
	B.10 Gamma encoding
	B.11 Gamma decoding
	B.12 Applying anisotropic magnification
	B.13 Computing chromatic aberration diopters
	B.14 Computing vertex-distance adjusted diopters
	B.15 Loading DNG image files


