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ABSTRACT

Low-light image enhancement (LLIE) is an important task in computer vision, addressing
the need to improve the visual quality of images captured in suboptimal lighting condi-
tions. Enhanced images are not only more visually appealing but also more effective for
downstream tasks such as object detection and classification. However, while the desired
level of enhancement is often subjective and varies across users and applications, previous
LLIE techniques do not allow users to control the desired level of enhancement intensity.
We introduce the Restoration Level Estimator (RLE) block, a novel component designed
to provide control over the enhancement level in existing LLIE models. The RLE block
can be seamlessly integrated into convolutional neural networks, adding a new channel
that allows users to adjust the level of enhancement applied to input images. Furthermore,
our experiments show that, in addition to offering control, the RLE block can improve
the overall performance of LLIE models as measured by PSNR, SSIM, and LPIPS. We
demonstrate the flexibility of our approach across multiple LLIE models, highlighting its
potential to improve both user experience and model performance.

Keywords: Low-Light Image Enhancement. Controllable Image Enhancement. Image

Restoration. Computational Photography. Computer Vision. Deep Learning.



Controlando a Realce de Imagens em Baixa [luminacio com Estimador de Nivel de

Restauracao

RESUMO

O realce de imagens em baixa iluminacdo (Low-Light Image Enhancement - LLIE) € uma
tarefa importante em visdo computacional, visando melhorar a qualidade visual de ima-
gens capturadas em condicoes de iluminacao subdtimas. Imagens realgadas ndo apenas se
tornam mais agraddveis visualmente, mas também mais eficazes para tarefas subsequen-
tes, como deteccao e classificacdo de objetos. No entanto, o nivel desejado de realce é
frequentemente subjetivo e varia entre usudrios e aplicacdes, o que motiva a necessidade
de métodos de LLIE controldveis, que permitam ajustar a intensidade do realce.

Neste trabalho, introduzimos o bloco Estimador de Nivel de Restauracio (Restoration Le-
vel Estimator - RLE), um componente projetado para proporcionar controle sobre o nivel
de realce em modelos existentes de LLIE. O bloco RLE pode ser integrado em redes neu-
rais convolucionais, adicionando um novo canal que permite aos usudrios ajustar o nivel
de realce aplicado as imagens de entrada. Além disso, nossos experimentos mostram que,
além de oferecer controle, o bloco RLE pode, em alguns casos, melhorar o desempenho
geral dos modelos de LLIE. Demonstramos a flexibilidade da nossa abordagem em di-
versos modelos de LLIE, destacando seu potencial para aprimorar tanto a experiéncia do

usudrio quanto o desempenho do modelo.

Palavras-chave: Realce de Imagens em Baixa Iluminacdo. Realce de Imagens Con-
troldvel. Restauragdo de Imagens. Fotografia Computacional. Visdo Computacional.

Aprendizado Profundo.
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1 INTRODUCTION

Low-light image enhancement is a challenging task influenced by various factors
such as environmental lighting conditions and camera settings. The goal of enhancing
low-light images is not only to improve their visual appeal but also to make them more
suitable for downstream tasks, such as object detection and segmentation (Diamond et al.,
2021). Traditional methods often aim for a universal solution independent of the lighting
conditions of the input images, which may not address individual user preferences or
specific requirements of different regions within an image. Therefore, providing user
control over the enhancement process is highly desirable.

Recent advancements in deep learning have led to significant improvements in
low-light image enhancement techniques. However, most previous approaches enhance
images uniformly, which can be problematic in scenarios where different regions of the
image require different levels of enhancement. Additionally, the subjective nature of what
constitutes a well-lit image varies among users, making it essential to offer a controllable
enhancement mechanism.

We present a method that addresses those challenges by introducing a Restoration
Level Estimator (RLE) block that can be added to existing CNN-based low-light image
enhancement (LLIE) networks. The RLE block allows users to adaptively control the
amount of enhancement applied to an image (i.e., it provides both global and local con-
trol).

Our method enables users to adjust the enhancement level according to their pref-
erences. This control is achieved by manipulating the output of the RLE block, which
corresponds to the optimal level of enhancement predicted for the input image. Addition-
ally, our method supports local control, allowing users to specify multiple regions within
an image and control their enhancement levels individually.

We evaluate the proposed method both quantitatively and qualitatively. The im-
pact of adding the proposed RLE block to existing networks is assessed using standard
metrics such as PSNR and SSIM. We demonstrate our method’s ability to provide control
over the image’s enhancement level, both globally and locally.

Figure 1.1 provides an overview of our method, illustrating how the RLE module
can be incorporated into existing CNN-based LLIE models to introduce user control over
the enhancement process. The figure displays the results of applying different enhance-

ment levels to an input image with a high dynamic range. It also shows how we use the
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Figure 1.1 — Overview of our method and demonstration of its low-light image enhancement
control capabilities. The diagram illustrates the processing pipeline: first, the user can optionally
specify regions of interest using the Segment Anything Model (Kirillov et al., 2023). The RLE
block then estimates an optimal enhancement level to be added as an additional input to the LLIE
model (LLFlow + SKF in this example), which can be further adjusted by increasing or
decreasing the estimated value. The bottom row showcases the results: the enhanced image
obtained using the optimal level estimated by the RLE block is shown in (c); (a) image with
lower enhancement obtained by decreasing the value estimated by the RLE block; (b) similar to
(a), but with selected regions corresponding to the SAM mask brightened; (d) image with bigger
enhancement obtained by increasing the value estimated by the RLE block, resulting in a brighter
image.

Segment Anything Model (SAM) (Kirillov et al., 2023) to enable users to specify regions
of interest for local adjustments.

The contributions of this work include:

e A Restoration Level Estimator block that can be added to existing low-light image
enhancement methods, providing both global and local control over the enhance-
ment process;

e A method for controlling the enhancement of multiple regions within an image,

enabling users to adjust the enhancement levels individually for different areas;

e Experiments to evaluate the impact of adding the RLE block to existing methods

and to showcase the control of low-light image enhancement.

This dissertation is structured as follows. Section 1.1 defines the problem of low-
light image enhancement and introduces key concepts relevant to this work. Chapter 2
presents a review of related work, covering both low-light image enhancement meth-
ods and techniques for controllable image restoration. Chapter 3 describes our pro-
posed method for introducing enhancement control to existing LLIE networks. Chapter
4 presents the experimental results and analysis of our method. Finally, Chapter 5 pro-

vides our conclusions and outlines possible directions for future work. Additionally, Ap-
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pendix A describes the smartphone application we developed to capture burst sequences

with varying exposure settings, as well as the dataset collected through this process.

1.1 Problem Definition

Low-light image enhancement (LLIE) aims to improve the perceptual quality
and visibility of images captured under poor lighting conditions. Given an input im-
age I € RW*H*C where W, H and C are respectively the width, height, and number of
channels of image /. Typically, I is a color (RGB) image, with C' = 3. The enhancement

process can be formulated as:

a)Back lit ¢)Dim light

d)Extremely low e)Colored light f)Boosted noise

Figure 1.2 — Examples of low-light image degradation observed in natural imaging scenarios,
highlighting the diversity and complexity of challenges faced by LLIE methods.
Source: (Li et al., 2022)

R = F(I;0), (1.1)

where F is a deep neural network with trainable parameters 6, and R € RW*#*C ig the
enhanced output. The network is trained to minimize the difference between the enhanced

result and the corresponding well-exposed ground truth image R, by solving:

= argmin E(}?, R), (1.2)
0

where R € R">*H*C is the ground truth, and E(]A%, R) is aloss function designed to guide

the optimization.
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While this formulation defines the problem from a learning perspective, low-light
images encountered in real-world scenarios are affected by different types of degradation.
Figure 1.2 illustrates examples of such images, which suffer from issues such as reduced
contrast, noise amplification, and color distortion due to suboptimal lighting. In this work,
we focus on extremely low-light images, where the available illumination is minimal,
affecting the visibility of elements in the scene.

Furthermore, we refer to the enhancement level as the degree to which an LLIE
model modifies an image to restore its visibility and perceptual quality. It reflects how
strongly the enhancement process alters the input image to resemble a well-exposed ver-
sion. Most learning-based LLIE methods apply a fixed enhancement level, which may
not be ideal for all scenes or user preferences. In this work, we introduce a mechanism
for estimating an optimal enhancement level of an image, while also allowing user adjust-

ments.
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2 RELATED WORK

This section discusses works related to low-light image enhancement (LLIE) and

controllable image restoration.

2.1 Low-Light Image Enhancement

Low-light image enhancement has been an extensively studied subject, with tra-
ditional approaches often relying on histogram equalization (Abdullah-Al-Wadud et al.,
2007) or the Retinex theory (Guo; Li; Ling, 2017). Histogram equalization improves con-
trast by redistributing pixel intensities. The Retinex theory assumes that an image can be
decomposed into reflectance and illumination, and enhancement is achieved by adjusting
the illumination component (Land; McCann, 1971).

These methods have been surpassed in recent years by learning-based methods,
which achieve significantly improved results in terms of both detail preservation and
noise reduction (Yu; Li; Yang, 2022)(Jiang et al., 2024)(Singh; Parihar, 2023)(Pan et
al., 2024)(Zhang et al., 2024). As such, we restrict the discussion to learning-based tech-
niques. For a discussion of traditional methods for LLIE, we refer the reader to the survey
by Wang et al. (Wang et al., 2020).

LLNet (Lore; Akintayo; Sarkar, 2017) was the first technique to use a deep-
learning-based approach for low-light image enhancement. It uses an autoencoder-based
architecture and was trained on a synthetic dataset created by darkening and adding noise
to well-exposed images. Expanding on the Retinex theory, Retinex-Net (Wei et al., 2018)
proposed the first deep-learning approach inspired by Retinex decomposition. They also
introduced the first paired dataset of real low-light and well-exposed images, enhancing
the training process with more realistic data.

Several other Retinex-based methods have been proposed to refine this idea. KinD
(Zhang; Zhang; Guo, 2019) employs three subnetworks for layer decomposition, re-
flectance restoration, and illumination adjustment. KinD++ (Zhang et al., 2021) improves
KinD with a Multi-Scale Illumination Attention (MSIA) module to reduce artifacts and
enhance illumination consistency. DeepUPE (Wang et al., 2019a) is another Retinex-
based model that estimates an illumination map rather than directly enhancing images,
applying illumination-aware constraints to improve exposure and color balance.

Beyond Retinex-based models, other supervised learning approaches have ex-
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plored different enhancement strategies. SNR (Xu et al., 2022c) enhances images by
dynamically processing different regions based on their signal-to-noise ratio, balancing
noise reduction and detail preservation. LLFlow (Wang et al., 2022) introduces normal-
izing flows to model the distribution of low-light and enhanced images. WaveNet (Dang
et al., 2023) enhances low-light images by modeling enhancement as a wave modulation
process, using wave-based representations to improve both efficiency and detail preserva-
tion.

All previous methods are based on supervised learning and thus rely on paired
datasets, which are difficult to collect for low-light image enhancement. To remove this
dependency, unsupervised and zero-reference learning techniques have been explored.
EnlightenGAN (Jiang et al., 2021) was the first unsupervised LLIE model, using a gen-
erative adversarial network (GAN) to enhance low-light images without requiring paired
training data. Zero-DCE (Guo et al., 2020) proposed the first zero-reference approach
for LLIE by introducing DCE-Net, a lightweight neural network that estimates pixel-wise
enhancement curves for dynamic range adjustment. DRBN (Qiao et al., 2021) introduced
a hybrid approach, combining supervised recursive band learning and unsupervised ad-
versarial learning to balance perceptual quality and signal fidelity.

More recently, transformer-based methods have been introduced to capture long-
range dependencies for LLIE. LYT-Net (Brateanu et al., 2024) is a lightweight transformer-
based LLIE method that processes luminance and chrominance separately in the YUV
color space. Retinexformer (Cai et al., 2023) is a one-stage transformer-based LLIE
method that integrates illumination-guided self-attention to refine Retinex decomposition
and improve enhancement quality.

Diffusion models have also been explored for LLIE. GlobalDiff (Hou et al., 2023)
is a diffusion-based LLIE model that introduces global structure-aware and uncertainty-
guided regularization to refine the diffusion process. PyDiff (Zhou; Yang; Yang, 2023)
proposes a pyramid diffusion sampling strategy, which progressively increases resolu-
tion during enhancement, improving both processing speed and stability while mitigating
global degradation effects.

Unlike standalone LLIE models, SKF (Wu et al., 2023) proposes a framework
to enhance existing LLIE methods by improving their performance with semantic pri-
ors from a pre-trained segmentation network. It refines enhancement quality through a
semantic-aware embedding (SE) module, which integrates scene semantics into feature

representations. Additionally, semantic-guided color histogram (SCH) loss and semantic-
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guided adversarial (SA) loss help maintain color consistency and texture realism.

While previous methods based on deep learning have made significant advance-
ments in low-light image enhancement, they produce outputs with a fixed level of en-
hancement determined solely by the network during training. This fixed enhancement
may not suit the varying preferences or needs of different users. In contrast, our ap-
proach automatically estimates an optimal enhancement level while also providing the
flexibility of user control. This allows users to adapt the intensity of the enhancement as
needed, offering a more flexible and customizable solution for low-light image enhance-
ment. Our method can be used with CNN-based LLIE techniques, complementing them

and strengthening their potential.

2.2 Controllable Image Restoration

Ni et al. (Ni et al., 2021) introduced a deraining method with bidirectional rain
intensity control from a single input image, allowing users to control rain removal and
rendering. Jiang et al. (Jiang; Zhang; Timofte, 2021) presented a model for JPEG artifact
removal with adjustable control. It uses a decoupler module to separate the quality factor,
which is then used by the reconstructor module to balance artifact removal and detail
preservation. Yao et al. (Yao et al., 2023) presented a method for image denoising that
allows user control over the intensity of denoising, providing the ability to preserve more
details or to reduce noise further.

He et al. (He; Dong; Qiao, 2020) proposed a method based on residual learning for
image restoration with multi-dimensional control to enable adjustment over various types
and levels of image degradation. They propose a layer that modifies channel-wise fea-
tures with depthwise convolution filters to allow control over restoration levels. Wang et
al. (Wang et al., 2019b) introduced CFSNet for controllable image restoration. It features
a dual-branch structure with coupling modules to adjust features for either low distor-
tion or high perceptual quality, providing interactive control over the restoration process.
Dynamic-Net (Shoshan; Mechrez; Zelnik-Manor, 2019) also allows controllable image
restoration by first training the network with one objective and then adding tuning blocks
trained with a different objective. Restoration level control is provided by a scalar param-
eter that adjusts the influence of these tuning blocks. Deep Network Interpolation (DNI)
(Wang et al., 2019) enables smooth transitions in image restoration by applying linear

interpolation in the parameter space of neural networks pre-trained for different effects.



18

All techniques mentioned so far were applied to various image restoration problems, such
as denoising, JPEG deblocking, and deraining.

Specifically for low-light image enhancement, Xu et al. introduced ReCoRo (Xu
et al., 2022a), a framework that allows users to enhance specific regions of low-light im-
ages using imprecise masks. ReCoRo uses SPADE blocks and a dual-discriminator setup
to ensure realistic enhancements based on user input. It incorporates domain-specific data
augmentations to handle mask imprecision, making it ideal for mobile applications where
users provide rough enhancement guidance. Yin et al. (Yin et al., 2023) introduced CLE,
a diffusion-based framework for low-light image enhancement with high user control. It
allows users to specify brightness levels and enhance specific regions using the Segment
Anything Model (SAM) (Kirillov et al., 2023). CLE Diffusion handles imprecise inputs
and ensures consistent brightness with domain-specific augmentations and a novel en-
coding technique. It also minimizes color distortions and focuses on low SNR regions,
providing robust tools for precise brightness and local adjustments.

Similarly to ReCoRo (Xu et al., 2022a) and CLE (Yin et al., 2023), our method
supports user-guided control and local adjustments for low-light image enhancement.
However, ours differs as it is a flexible module designed to integrate seamlessly into ex-
isting LLIE networks. This modularity enables our approach to complement a variety of

networks while preserving their original strengths.
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3 CONTROLLING LOW-LIGHT IMAGE ENHANCEMENT

Our method improves existing low-light image enhancement networks by intro-
ducing a Restoration Level Estimator (RLE) block. This section outlines the structure and
training process of the RLE block and its integration with existing networks. Figure 1.1

shows an overview of our method.

3.1 Restoration Level Estimator

The architecture of the RLE block is shown in Figure 3.1. It consists of four
blocks, each composed of two convolution layers (represented by yellow blocks) and
one 2 x 2 max polling layer (represented by red blocks). The blocks are followed by a
global average pooling layer, shown in green. All convolution layers use 3 x 3 kernels
with no padding. The convolution layers in the same block have the same number of
filters (channels). In the first four blocks, the number of filters is 24, 48, 96, and 192,
respectively. The input to the RLE block is the original low-light RGB image. Its output
is a scalar value, which is replicated into a tensor matching the input image’s width and
height and concatenated with the original image as an extra channel (represented in light
green in Figure 3.1) to form the input for the main enhancement network (shown as the
large gray block). A minor change in the input layer of the main network is required
to accommodate the extra channel. Assuming the first layer is convolutional, this means
increasing its number of input filters by one. As a result, the main network must be trained
jointly with the RLE block, and its original pre-trained weights cannot be reused.

The RLE block’s output drives the combined network to obtain the optimal en-
hancement level estimated by the model, typically resulting in a well-exposed image.
Through a provided user interface, one can interactively modify the RLE block’s out-
put to adjust the image’s enhancement level. Increasing the RLE block’s predicted value
produces brighter images while decreasing it results in darker images (Figure 1.1). This
mechanism enables both automatic enhancement and user control over the final image

brightness.
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Restoration Level Estimator (RLE)

Figure 3.1 — Architecture of the Restoration Level Estimator (RLE) block, highlighted by the
dashed rectangle. The RLE block takes a low-light image as input and processes it through four
blocks, each consisting of two convolutional layers (yellow boxes) followed by a max pooling
layer (red boxes), doubling the number of filters at each step. After the last block, there is a
global average pooling layer, producing a scalar that is reshaped into a tensor with the same
width and height as the input image. This tensor is concatenated with the original low-light
image to form the input for an arbitrary CNN-based LLIE network (gray box).

3.2 Local Enhancement Control

Inspired by ReCoRo (Xu et al., 2022a) and CLE Diffusion (Yin et al., 2023), we
introduce local control to our low-light image enhancement module. This feature allows
users to specify multiple regions within an image and control their enhancement level
individually. We utilize SAM (Kirillov et al., 2023) to generate masks for these regions.

By default, the output of the RLE block is replicated into a fourth channel and
concatenated with the original input RGB image. Each SAM-generated mask allows one
to interactively change (increase or decrease) the value of the RLE block’s prediction.
These masks are applied after the RLE estimate is computed, modifying the replicated
output locally. Additionally, a global adjustment factor can be applied uniformly to all
pixels. The final RLE channel is obtained by summing the replicated RLE output, the

scaled masks, and the global adjustment.

3.3 Training Process

The RLE block is trained jointly with the primary LLIE network, but we use two
distinct loss functions: one for the primary network alone and another for the RLE block
alone. The primary network loss function estimates the difference between the predicted
and the ground truth images.

To ensure that the RLE block accurately represents the enhancement level, we
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estimate the optimal enhancement level as:

rle_gt(ll, gt) = avg(gt) — avg(ll), 3.1

where [ is the low-light image, gt is the ground truth, and avg([l) calculates the average
intensity of the image /. Essentially, this is equivalent to the difference in brightness
between the ground truth image and the low-light image. Although this estimate serves
as the ground truth for the RLE block output, it is important to note that the enhancement
performed by the combined network is more complex than a brightness modification. We
selected the L1 loss function used to train the block. Therefore, the overall loss function

can be represented as:

Liotr = Lumain(main(ll), gt) + A - [rle(ll) — rle_gt(ll, gt)| (3.2)

where main(I) is the output of the primary network, rle(!) is the output of the RLE,
and )\ is a weight factor for the RLE loss. Our training dataset includes pairs of (low-
light, well-exposed) images as well as pairs of (well-exposed, well-exposed) images. For
the latter, the ground truth of the RLE block is set to zero, indicating that no enhance-
ment should be applied. Empirical results demonstrate that including well-exposed im-
age pairs in the training process significantly improves the model’s ability to control the
enhancement level. Without well-exposed pairs, applying extreme adjustments to the en-
hancement level often leads to noticeable color distortions. In contrast, incorporating
well-exposed pairs allows the model to achieve a broader range of adjustments without

introducing color artifacts, as illustrated in Figure 3.2.

round Truth High
Figure 3.2 — Demonstration of enhancement control using the RLE block with the LLFlow +
SKF model. The first row shows results from the model trained without well-exposed pairs,
exhibiting color distortions when the enhancement level is drastically increased or decreased.
The second row shows results from the model incorporating well-exposed pairs to the training
data, avoiding color distortions even at extreme enhancement levels.
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3.4 Interactive Enhancement Control

By default, the enhancement level in networks modified with the RLE block cor-
responds to the optimal value estimated by the block. To provide users with the ability
to manually adjust the enhancement level, we developed an application that enables in-
teractive control of the modified networks. The application provides a slider to adjust the
enhancement level, letting users see how increasing or decreasing it affects the result.

Additionally, the application supports local enhancement control, as users can
specify regions of interest within the image and adjust the enhancement level indepen-
dently for each region. This feature is useful in scenarios where different parts of the
image require varying levels of enhancement. Figure 3.3 shows the application interface,
illustrating how users can interactively modify the enhancement level globally or for se-

lected regions.

a) b) <) d)

Figure 3.3 — Screenshots of our user interface for enhancement control of LLFlow + SKF with
the RLE block, where: (a) shows the low-light input image; (b) shows the result of LLFlow +
SKF with the optimal enhancement level estimated by the RLE block; (c) illustrates the process
of creating a mask, represented by the light gray region; When creating a mask, users can specify
the region of interest using the Segment Anything Model interface. (d) shows the result after
increasing the enhancement level both globally and locally for the region highlighted in (b); The
enhancement level can be adjusted globally or per mask by selecting the desired item from the
list and moving the slider.
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4 RESULTS

One key feature of adding the RLE block to an existing model is the ability to
control the enhancement level applied to images. This section illustrates this fact. The
resulting network incorporates the RLE block’s layers and the input corresponding to the
main network module includes an additional channel. To evaluate the potential impact of
these changes, we compare the performance of existing models with and without the RLE

block.

4.1 Low-Light Image Enhancement Dataset

Several LLIE methods rely on synthetic data generated by darkening well-exposed
images and adding noise, such as in LLNet (Lore; Akintayo; Sarkar, 2017), due to the
difficulty of acquiring large-scale paired datasets. Synthetic approaches allow controlled
data generation and scalable training. However, models trained exclusively on synthetic
data often fail to generalize well to real-world low-light conditions, which involve com-
plex noise patterns, color distortions, and lighting inconsistencies. For this reason, real
datasets with paired low-light and well-exposed images, such as LOL (Wei et al., 2018)
and SICE (Cai; Gu; Zhang, 2018), tend to yield better performance and more visually
pleasing results.

Inspired by the SICE dataset (Cai; Gu; Zhang, 2018), which uses multi-exposure
image fusion (MEF) to generate high-quality reference images, we explored a similar ap-
proach to construct a low-light image enhancement dataset of pictures taken with smart-
phones. Our goal was to collect burst sequences of images taken at different exposure
settings and generate their corresponding ground truth using Multi-Exposure Image Fu-
sion (MEF) techniques. These methods process each sequence to produce a well-exposed
result, preserving details in both bright and dark regions.

To capture these images, we developed a smartphone app capable of recording
burst sequences with adjustable exposure settings. However, due to delays between con-
secutive shots, misalignments occurred in dynamic scenes (e.g., moving leaves, shadows,
and people), leading to artifacts in the MEF-generated outputs. Further details on the app
and dataset collection are provided in Appendix A.

Given this limitation, we considered our dataset unsuitable for training deep-

learning models. Instead, we used the LOL dataset (Wei et al., 2018) to evaluate our
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method. This dataset is widely used as a benchmark for low-light image enhancement,

providing paired low-light and well-exposed images for both training and evaluation.

PSNR | SSIM | LPIPS
RetinexNet 18.17 | 0.6956 | 0.4041
RetinexNet w/ RLE 19.18 | 0.7242 | 0.3472
UNet 19.85 | 0.8195 | 0.1281
UNet w/ RLE 20.11 | 0.8025 | 0.1255
LLFlow + SKF 2591 | 0.8657 | 0.1933
LLFlow + SKF w/ RLE | 25.81 | 0.8665 | 0.1249
WaveNet 22.53 | 0.8419 | 0.0772
WaveNet w/ RLE 22.49 | 0.8628 | 0.0639

Table 4.1 — Performance comparison between the original models and adding the RLE block.

PSNR | SSIM | LPIPS
RetinexNet (Original) 16.77 | 0.462 | 0474
RetinexNet (Retrained) 18.17 | 0.724 | 0.347
LLFlow + SKF (Original) 2594 | 0.865 | 0.125
LLFlow + SKF (Retrained) | 2591 | 0.866 | 0.193
WaveNet (Original) 24.54 | 0.856 -
WaveNet (Retrained) 22.53 | 0.8419 | 0.0772

Table 4.2 — Performance comparison of the original models as reported on their respective papers
and their results when retraining them locally.

4.2 Evaluated Models

For our experiments, we selected five CNN-based models and assessed their per-
formance on the LOL dataset with and without the RLE block. The selected models were
LLFlow (Wang et al., 2022), LLFlow with SKF (Wu et al., 2023), WaveNet (Dang et
al., 2023), RetinexNet (Wei et al., 2018), and UNet (Ronneberger; Fischer; Brox, 2015).
They were selected to include both recent (LLFlow, LLFlow with SKF and WaveNet)
and classic ones (RetinexNet and UNet). For the LLFlow, LLFlow + SKF, and WaveNet
models, we adapted the original code provided by the authors to include the RLE block.
The RetinexNet and the UNet models were reimplemented in Keras (Chollet et al., 2015),
each with an integrated RLE block. Since the LLFlow + SKF outperforms the LLFlow,
here we only show the results for LLFlow + SKF.
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4.3 Performance Metrics

To compare performance, we used three commonly adopted evaluation metrics:
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS). The PSNR measures the fidelity between a

predicted image I and a reference image [ based on the mean squared error (MSE):

2

N
L 1 .
PSNR =10 - log, (M—SE) where MSE = — ;:1: ([Z- — Ii> . @

Here, L is the maximum possible pixel value, and V is the total number of pixels.
The SSIM evaluates image similarity by considering luminance, contrast, and structure.

For image x and y, the SSIM is defined as:

(QMxruy + Ch) (20961/ + Cs)

SSIM{(x,y) = (2 +p2 4 C1) (024024 Cy)’

4.2)

where 1.2, ui are the means, o2, 02 the covariance, and C;, C5 are small constants to
stabilize the division. Finally, the LPIPS metric (Zhang et al., 2018) measures perceptual
similarity based on deep feature embeddings from pre-trained networks. It compares
activations from multiple layers of a deep neural network (e.g., VGG) and correlates well

with human visual perception. Lower LPIPS values indicate higher perceptual similarity.

PSNR | SSIM | LPIPS

RetinexNet + SKF 20.42 | 0.711 | 0.216
RetinexNet w/ RLE 19.18 | 0.724 | 0.347
LLFlow + SKF 2594 | 0.865 | 0.125

LLFlow + SKF w/RLE | 25.81 | 0.867 | 0.125

Table 4.3 — Performance comparison of the RetinexNet and LLFlow models adding the SKF
and/or the RLE block. We were not able to reproduce the results of LLFlow without SKF to
evaluate adding RLE to only LLFlow, and the authors did not provide the pre-trained models nor
the code for the RetinexNet with the SKF framework.

4.4 Performance Evaluation

We evaluated the potential impact of the RLE block on the performance of image
enhancement networks. Table 4.1 summarizes this evaluation. In the case of RetinexNet

and UNet, the addition of the RLE block resulted in a slight improvement in image quality,
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Figure 4.2 — Comparison of LLFlow + SKF and WaveNet results without and with the RLE block.

as supported by the corresponding increases in PSRN, SSIM, and decrease in LPIPS, as
shown in Table 4.1. For the LLFlow + SKF and the WaveNet models, the RLE block had
minimal impact on the PSNR but showed improvements in SSIM and LPIPS, indicating
a potential enhancement in perceptual quality. Besides, the models also benefit from the
ability to control their levels of enhancement. Figures 4.3, 4.4, 4.5, and 4.6 compare
results from RetinexNet, UNet, LLFlow + SKF, and WaveNet with and without the use of
the RLE block. The perceived improvement in visual quality resulting from incorporating
the RLE block is more evident in the classic networks (RetinexNet, UNet), though some
pre-existing artifacts in the base network outputs remain unchanged. For the more recent
networks (LLFlow + SKF, WaveNet), the outputs with and without the RLE block are
visually similar, with the primary benefit being the added enhancement control.

Figure 4.7 presents the results of the four LLIE models with the RLE block, high-
lighting its versatility in providing controllable low-light image enhancement. Figure 4.8
provides additional results demonstrating the enhancement control with the LLFlow +
SKF model. By adjusting the scaling value, users can achieve fine control over the level
of enhancement applied to the input images: decreasing the value results in less intense

enhancement, while increasing it produces a brighter output. This flexibility allows users
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Input Ground Truth RetinexNet ) ~ RetinexNet w/ RLE

PSNR =12.114 dB, SSI= 0.520 PSNR = 13.835dB, SSIM =0.579
Figure 4.3 — Comparison of RetinexNet results without and with the RLE block. The results with

the RLE block show a slight improvement, particularly in color saturation.

to intuitively adjust the level of enhancement to their specific needs. Figure 4.9 compares
our method with the CLE Diffusion and with adjusting the input’s contrast. Unlike con-
trast modification, which is able to darken the image but fails to brighten it, both CLE
Diffusion and our approach offer smoother and more realistic control over the enhance-
ment level.

It is also possible to use the RLE block to perform local enhancement control
independently over multiple regions, leaving the brightness levels of surrounding areas
unaffected. Each targeted region is specified using a mask, allowing for individual ad-
justments. Increasing a mask’s scaling value progressively brightens the corresponding
region, while decreasing it darkens the region. This is illustrated in Figures 4.10 and 4.11.
One should note that, when performing local enhancement control, the boundary of the
selected regions might become overly bright as the enhancement level increases beyond

a certain limit.

4.5 Reproducibility Challenges

Reproducing results from deep learning-based models can often be challenging
due to various factors, such as the lack of precise implementation details or differences

in hardware and software environments. Table 4.2 presents a comparison between the
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Input Ground Truth UNet UNet w/ RLE

3 ! & 3
518 dB, SSIM = 0.865 PSNR = 19.974 dB, SSIM = 0.858
Pl TET Y R

PSNR = 12.696 dB, SSIM = 0.692 PSNR = 12.799 dB, SSIM = 0.671

Figure 4.4 — Comparison of UNet results without and with the RLE block. The results with the
RLE block show a slight improvement in color saturation. UNet pre-existing artifacts at the
bottom right of the image in the first row are minimized although they are still visible around the
cat drawing in the top right.

original results reported by the authors for the LOL dataset and the results we obtained
by retraining these models using the parameters and number of epochs reported in their
respective papers. In some cases, such as with RetinexNet, we observed significant im-
provements in PSNR and SSIM upon retraining. For LLFlow + SKEF, the retrained model
produced similar results to the original, although with a slight increase in LPIPS, sug-
gesting minor variation in perceptual quality. However, for WaveNet, the retrained model
performed worse than the reported in terms of PSNR and SSIM. We found it hard to
reproduce the results of LLFlow without the SKF framework, as we were unable to suc-

cessfully retrain the model despite following the authors’s guidelines.

4.6 Comparison with SKF

Although a direct comparison between RLE and SKF is challenging due to repro-
ducibility issues, Table 4.3 provides a comparison of the available results. For RetinexNet,
we were able to evaluate its performance with the RLE block and compare it to the perfor-
mance of RetinexNet with the SKF framework using the results provided by the authors.
However, we could not evaluate RetinexNet with both RLE and SKF simultaneously

because the code was not made available. Similarly, while we successfully evaluated



29

Ground Truth LLFlow + SKF LLFlow + SKF w/ RLE

PSNR =27.365 dB, SSIM = 0.901 PSNR = 28.151 dB, SSIM = 0.905

PSNR = 19.559 dB, SSIM = 0.796 PSNR =19.811 dB, SSIM = 0.799
Figure 4.5 — Comparison of LLFlow + SKF results without and with the RLE block. The outputs
are visually similar, demonstrating that the RLE block preserves the original enhancement quality
while providing additional user control.

LLFlow with both SKF and RLE, we could not integrate RLE into LLFlow alone.

From the available results, we noticed that adding SKF to models like RetinexNet
and LLFlow has a more significant impact on performance metrics, especially in terms
of PSNR and SSIM. This suggests that SKF improves image quality more effectively
than RLE in terms of traditional metrics. However, the RLE block introduces a unique
advantage by enabling users to control the level of enhancement, offering flexibility that
SKF does not provide. Thus, while SKF tends to boost performance more significantly,
RLE offers the benefit of controllability without severely impacting model’s performance.

As demonstrated in the case of LLFlow, RLE and SKF can be combined, yielding
the performance improvements associated with SKF alongside the enhancement control
offered by RLE. However, we were unable to test this combination with other models due
to reproducibility issues with the provided SKF implementations and the challenges of

adapting SKF to other models.
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Ground Truth WaveNet WaveNet w/ RLE

PSNR = 24.597 dB, SSIM = 0.881
1 \u» | dl | ERC A

PSNR = 15.370 dB, SSIM = 0.840 PSNR = 16.700 dB, SSIM = 0.879
Figure 4.6 — Visual comparison of WaveNet results without and with the RLE block. As in Figure

4.5, the outputs are visually similar, demonstrating that the RLE block preserves the original
enhancement quality while enabling additional user control.

LLFlow SKF UNet RetinexNet

WaveNet

Ground Truth - - : = : High
Figure 4.7 — Results of RetinexNet, UNet, LLFlow + SKF, and WaveNet models as the estimated
value of the RLE block is adjusted. Increasing the value produces a brighter image, while
decreasing it results in a darker image. The enhancement level range varies across models, and
for this example, the values were selected to produce results with comparable overall illumination
in each column.

Input
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Input roundﬁth — — — ‘igfl
Figure 4.8 — Additional results demonstrating the enhancement control of the LLFlow + SKF
model after incorporating the RLE block, with varying RLE values shown across different

images.

LLFlow + SKF _
(Mod. Tnput Contr) ~ CLE Diffusion

LLFlow + SKF
w/ RLE

Input Ground Truth Low - e High
Figure 4.9 — Comparison of enhancement control using CLE Diffusion, LLFlow + SKF with
input contrast modification, and LLFlow + SKF with our proposed RLE block. While reducing
contrast in the input image leads to a darker output, increasing it does not effectively brighten the
image. Both CLE Diffusion and our RLE-based approach produce more natural and perceptually
consistent enhancements across varying levels, unlike simple contrast manipulation.

Mask Low High
Figure 4.10 — Local enhancement control with the RLE block. The (highlighted) mask in the first
image indicates the region targeted for adjustable enhancement. In the subsequent images,
increasing the mask’s scaling value progressively brightens the selected region, while decreasing
it darkens the region, leaving the brightness levels of surrounding areas unaffected. However, the
boundary of the selected region tends to become overly bright as the enhancement level increases.
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a) b) c) d) e)

Figure 4.11 — Independent enhancement of multiple image regions using the RLE block. (a)
Reference image. (b) The two highlighted masks indicate the regions targeted for enhancement.
(c) Increased enhancement of the left mask’s region; (d) Increased enhancement of the right
mask’s region. (e) Increased enhancement of both masks’ regions.
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5 CONCLUSION AND FUTURE WORK

This work presented a novel approach for low-light image enhancement control by
introducing the Restoration Level Estimator block. Our method allows for both global and
local control over the enhancement level, adding flexibility and user control to existing
low-light image enhancement networks. The RLE block can be integrated into CNN-
based models, providing users the ability to fine-tune the level of enhancement applied to
input images.

We evaluated the impact of adding the RLE block to some recent (LLFlow +
SKF, WaveNet) as well as classic (RetinexNet, UNet) LLIE models. Although the impact
on performance varied across models, we demonstrated that interactively modifying the
value predicted by the RLE block directly adjusts the enhancement level of the input
image.

In addition to global control, our approach offers local control, allowing users to
adjust the enhancement levels of specific areas within an image. By using masks gener-
ated with the Segment Anything Model, users can adapt the enhancement level for mul-
tiple regions independently. Since the RLE block does not correct pre-existing artifacts
from the base model, any distortion present in the original enhancement network is likely
to persist.

Overall, the RLE block represents an important step toward making LLIE meth-
ods more flexible and adaptable to user preferences. As future work, we would like to
extend this approach to include diffusion-based and transformer-based models, as well as
investigate its application in low-light video enhancement. In particular, we are interested
in exploring the use of the DID dataset (Fu et al., 2023) and potentially integrating the
RLE block with recent video-based methods such as LAN (Fu et al., 2023). We also in-
tend to address the overly-bright boundaries that can occur around masked regions during

local enhancement.
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APPENDIX A — CONTROLLABLE BURST PHOTOGRAPHY ON

SMARTPHONES FOR MULTI-EXPOSURE IMAGE FUSION

This appendix details the development and evaluation of a smartphone app de-
signed for capturing burst sequences of images with user-specified ISO and exposure time
settings. The primary goal of this app is to enable the acquisition of multi-exposure image
sequences for use in multi-exposure image fusion (MEF) techniques (Xu et al., 2022b),
facilitating the creation of well-exposed ground-truth images from a range of lighting
conditions.

Inspired by the SICE dataset (Cai; Gu; Zhang, 2018), this project sought to ex-
tend the idea of multi-exposure imaging to smartphone cameras, focusing on the Xiaomi
Redmi Note 118, a widely available device. Unlike the SICE dataset, which was collected
using a combination of DSLRs and other consumer-grade cameras, this work emphasizes
data collected exclusively with smartphones. Smartphones are increasingly the primary
imaging devices for most users, making datasets derived from them especially relevant
for applications such as low-light image enhancement.

In the following sections, we describe the implementation of the app, present ex-
amples of sequences captured with it, demonstrate MEF results using these sequences,

and discuss the limitations of the current approach.

A.1 Controllable Burst Photography App

To facilitate the collection of burst sequences with varied lighting settings, we
developed a custom smartphone application using Kotlin and Android Studio. The app
uses the Camera2 API to precisely control camera parameters, enabling users to adjust
ISO and exposure time for each capture. Other settings, such as focus and white balance,
were left in automatic mode and configured for optimal image quality.

The app’s main interface allows users to define and manage a sequence of capture
settings. It displays a list of user-specified parameters that can be easily edited or removed.
Additionally, the app includes a live camera preview feature, enabling users to see how
the current settings affect the image. This functionality is particularly useful for adjusting

parameters to match the lighting conditions of the scene being captured.
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A.1.1 Capturing Burst Sequences

The burst sequences of images were captured using the app with the smartphone
mounted on a tripod to ensure stability throughout the process. To further minimize cam-
era movement, the burst was triggered using a Bluetooth controller, capturing all images
sequentially. All captures were taken in outdoor environments, chosen for their more

challenging lighting conditions.

Figure A.1 — Two examples of multi-exposure image sequences captured using our custom app.
In each sequence, the exposure time increases from left to right. Images with lower exposure
times preserve details in brighter regions, while those with higher exposure times exhibit
saturation in bright areas but reveal more details in darker regions.

Figure A.1 presents examples of sequences captured with the app. One notable
limitation of our approach is the significant delay between each image capture within a
burst. This delay makes it difficult to obtain perfectly aligned sequences when there is
movement within the scene. In such cases, the resulting images of the sequence are not

perfectly aligned, as illustrated in Figure A.2.

A.2 Multi-Exposure Image Fusion

Traditional digital imaging systems often lose structural details in high dynamic
range scenes due to their limited brightness capture capabilities. Multi-exposure fusion
(MEF) techniques address this by combining multiple images in the non-linear brightness
domain to produce high-visibility results (Xu et al., 2022b). For generating well-exposed
ground-truth images from our dataset’s burst sequences, we employed the MESPD-MEF
method (Li et al., 2021). Its edge-preserving approach effectively reduces halo effects
while enhancing detail retention in both bright and dark regions, offering a reliable solu-
tion for producing high-quality fused images from exposure-varied sequences.

The burst sequences were processed using the source code provided by the authors
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Figure A.2 — A subset of images from a burst sequence captured with our custom app, illustrating
misalignment issues in dynamic scenes, here caused by wind. The first row displays the burst
images, while the second row shows magnified views of the highlighted region. The differences
between the images are particularly noticeable in the branches of the tree located in the top-right
corner of the highlighted areas.

Figure A.3 — Results of the multi-exposure image fusion technique applied to our burst
sequences. The fused images in (a) and (b) demonstrate a higher dynamic range than any single
image in their respective input sequences, successfully preserving details in both bright and dark

areas. However, in (c), some regions, such as the tree branches, appear blurry due to
misalignment caused by movement from wind during capture.

of the MESPD-MEF method, running on a desktop computer. Figure A.3 showcases the
results of this method applied to the previously shown image sequences. For the first
two sequences, the method produced high-quality results with a wider dynamic range
than any individual input image, effectively preserving structural details and enhancing
visibility. However, for the final sequence, despite the improved dynamic range, certain
regions, particularly the leaves on the trees, appeared blurry. This was caused by wind
during capture, leading to misalignment between images in the sequence. Due to this lim-
itation, we determined that collecting a dataset with approach was unsuitable for training

machine-learning models.



41

APPENDIX B — RESUMO EXPANDIDO

O aprimoramento de imagens em baixa luminosidade € uma tarefa desafiadora, influenci-
ada por fatores como iluminag¢do e configuracdes da camera. Além de melhorar o aspecto
visual, busca-se tornar as imagens mais adequadas para tarefas como detec¢do de obje-
tos. No entanto, solu¢des tradicionais muitas vezes ignoram as preferéncias do usudrio ou
necessidades regionais da imagem, tornando desejavel oferecer controle sobre o processo
de aprimoramento.

Com os avancos do aprendizado profundo, novas técnicas tém melhorado signi-
ficativamente o aprimoramento de imagens. No entanto, a maioria aplica ajustes de forma
uniforme, o que pode ser inadequado para imagens com regides que requerem niveis dis-
tintos de aprimoramento. A percep¢do subjetiva do que constitui uma boa iluminagao
reforca a necessidade de oferecer controle ao usudrio.

Neste trabalho, propomos o Estimador de Nivel de Restauracdo (Restoration Level
Estimator - RLE), um modulo que pode ser integrado a redes de aprimoramento existentes
para permitir controle adaptativo, tanto global quanto local. Usuérios podem ajustar o
nivel de aprimoramento para a imagem inteira ou para regides especificas, definidas com
auxilio do Segment Anything Model (SAM).

Avaliacdes quantitativas e qualitativas demonstram que o RLE mantém a qual-
idade do aprimoramento original, medido por métricas como PSNR e SSIM, enquanto
adiciona maior controle ao usudrio. A Figura B.1 mostra uma visdo geral do método,
destacando como o mddulo RLE permite controle global e local sobre o aprimoramento.

As contribuicoes desse trabalho incluem:

e Um moddulo que adiciona controle de nivel de aprimoramento a métodos existentes;

e Um mecanismo para ajustar niveis de aprimoramento em regides especificas da
imagem;

e Experimentos que demonstram a o controle do nivel de aprimoramento com o RLE

e seu impacto em redes existentes.

B.1 Trabalhos Relacionados

Esta secdo apresenta os principais trabalhos relacionados ao aprimoramento de

imagens em baixa luminosidade (Low-Light Image Enhancement - LLIE).
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Figure B.1 — Visdo geral do nosso método e demonstracdo de suas capacidades de controle para
aprimoramento de imagens em baixa luminosidade. O diagrama mostra o pipeline de
processamento: primeiro o usudrio define regides de interesse e o bloco RLE estima o nivel ideal
de aprimoramento, que € usado como entrada adicional para o modelo LLIE (LLFlow + SKF,
neste exemplo). O usudrio pode ajustar o nivel estimado modificando seu valor tanto globalmente
quanto localmente. A linha inferior exibe os resultados: (a) o nivel de aprimoramento € reduzido
globalmente; (b) o aprimoramento global permanece inalterado, mas regides selecionadas sdo
iluminadas; (c) a imagem ¢é aprimorada com o nivel ideal estimado pelo RLE; (d) o nivel de
aprimoramento € aumentado globalmente, resultando em uma imagem mais clara.

B.1.1 Aprimoramento de Imagens em Baixa Luminosidade

O aprimoramento de imagens em baixa luminosidade é um tema amplamente es-
tudado, com abordagens tradicionais baseadas em equalizac¢do de histograma (Abdullah-
Al-Wadud et al., 2007) e na teoria de Retinex (Guo; Li; Ling, 2017). Contudo, méto-
dos baseados em aprendizado profundo tém alcangado resultados superiores, com mel-
hor preservacdo de detalhes e reducdo de ruido. Nesse contexto, diferentes estratégias
tém sido exploradas, incluindo autoencoders (Lore; Akintayo; Sarkar, 2017), variagdes
baseadas no modelo Retinex (Wei et al., 2018), redes adversariais generativas (Jiang et al.,
2021), e normalizing flows (Wang et al., 2022). Com o objetivo de aprimorar os resulta-
dos de métodos existentes, Wu et al. (Wu et al., 2023) propuseram o SKF, um framework
guiado por semantica que pode ser incorporado a outras redes, garantindo consisténcia de
cores e texturas naturais.

Embora esses métodos representem avangos significativos, eles produzem resul-
tados com niveis de aprimoramento fixos, limitados as configuracdes aprendidas durante
o treinamento. Nosso método, ao contrdrio, combina estimativas automadticas de apri-
moramento com controle ajustdvel, permitindo adaptagdes globais e regionais conforme

as preferéncias do usuario.
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B.1.2 Restauracao de Imagens com Controle Ajustavel

Trabalhos recentes t€ém explorado formas de restaurar imagens com controle ajustavel.
Métodos como o de He et al. (He; Dong; Qiao, 2020) e Wang et al. (Wang et al.,
2019b) introduziram redes que permitem ajustar niveis de restauracao, equilibrando fi-
delidade ao sinal e qualidade visual. Técnicas como Dynamic-Net (Shoshan; Mechrez;
Zelnik-Manor, 2019) e Deep Network Interpolation (DNI) (Wang et al., 2019) permitem
transi¢des suaves entre diferentes objetivos de restauracdo, controlados por parametros
ajustdveis. Essas técnicas foram aplicadas para diferentes problemas de restauracdo de
imagens, como remogao de ruido, JPEG deblocking, e deraining.

Especificamente para LLIE, ReCoRo (Xu et al., 2022a) introduziu um framework
que permite o controle do nivel de aprimoramento e usa mascaras imprecisas para guiar
ajustes regionais. CLE Diffusion (Yin et al., 2023) prop6s uma técnica para controle de
aprimoramento baseada em difusdo, utilizando o Segment Anything Model (Kirillov et al.,
2023) para especificar as mascaras para controle local.

Nosso método compartilha o objetivo de oferecer controle ao usuario, como ReCoRo
e CLE, mas diferencia-se por ser um modulo versatil que pode ser integrado a redes LLIE
jé existentes. Essa modularidade permite complementar diferentes arquiteturas, preser-

vando suas vantagens originais.

fio--f D

CNN-Based LLIE Network

1 Level Estimator (RLE)

Figure B.2 — Arqultetura do bloco RLE, destacado pelo retangulo tracejado. O bloco RLE recebe
uma imagem com baixa luminosidade como entrada e a processa através de blocos de camadas
convolucionais seguidas de max pooling. Ap6s o dltimo bloco, uma camada de global average

pooling gera um escalar, que € transformado em um tensor com as mesmas dimensdes espaciais
da imagem de entrada. Esse tensor é concatenado com a imagem original para formar a entrada

de uma rede LLIE baseada em redes neurais convolucionais (caixa cinza).
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B.2 Controlando o Aprimoramento de Imagens em Baixa Luminosidade

Este trabalho propde um método que aprimora redes existentes de melhoria de
imagens em baixa luminosidade, introduzindo um bloco chamado Estimador de Nivel
de Restauragcdo (Restoration Level Estimator - RLE). O RLE combina uma estimativa
automética de nivel de aprimoramento com controle interativo, gerando resultados bem
iluminados sem necessidade de interacdo mas ao mesmo tempo possibilitando ajustes
conforme as preferéncias do usudrio. Além disso, o nosso método integra um controle
local inspirado em trabalhos recentes, permitindo que diferentes regides de uma mesma

imagem sejam tratadas de forma independente.

B.2.1 Estimador de Nivel de Restauracao

O bloco RLE é um mddulo compacto adicionado a rede de aprimoramento de
baixa luminosidade, com o objetivo de estimar automaticamente o nivel ideal de apri-
moramento para uma imagem. A sua arquitetura estd ilustrada na Figura B.2, e consiste
de blocos consecutivos de camadas convolucionais seguidas por max pooling, com uma
camada de global average pooling ao final para gerar um valor escalar que representa o
nivel de aprimoramento a ser aplicado na imagem. Esse valor € replicado para formar um
tensor com as mesmas dimensodes espaciais da imagem original, que € entdo concatenado
a imagem original como um canal adicional, servindo de entrada para a rede principal de
aprimoramento.

Como o RLE apenas estima o nivel de aprimoramento, ele deve ser integrado a
uma rede principal responsavel pelo aprimoramento, e os dois médulos sdo treinados si-
multaneamente. A fungdo de loss da rede principal é calculada com base na diferenca
entre a imagem gerada e a imagem de referéncia. Ja a fun¢do de loss do RLE consid-
era a diferenca absoluta entre o nivel de aprimoramento estimado pelo RLE e um nivel
ideal calculado como a diferenga média de intensidade entre a imagem de entrada e a
de referéncia. Este treinamento conjunto permite ao RLE capturar informagdes sobre a
luminosidade ideal para diferentes condi¢des de iluminagdo, enquanto a rede principal

aprende a utilizar a saida do RLE para guiar o nivel de aprimoramento.
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B.2.2 Controle Interativo de Aprimoramento

Além do aprimoramento automético, o RLE possibilita o controle interativo da
intensidade do aprimoramento. A interface desenvolvida permite que o usudrio facilmente
controle o nivel de aprimoramento global atrvés de um slider. Ao modificar o slider, o seu
valor € somado a saida do RLE, gerando imagens mais claras ou mais escuras de acordo
com suas preferéncias.

Além de controle global também adicionamos um controle local inspirado em
abordagens recentes, como ReCoRo (Xu et al., 2022a) e CLE Diffusion (Yin et al., 2023).
No caso do RLE, nés alcangamos controle global utilizando o modelo Segment Anything
(SAM) (Kirillov et al., 2023) para facilitar a geracdo de mdscaras bindrias para as regioes
de interesse. A cada mdscara gerada, o valor estimado pelo RLE pode ser alterado de
forma independente, aumentando ou diminuindo o nivel de aprimoramento na regido cor-
respondente. Para isso, basta selecionar a mascara desejada e modificar o slider. Esse
mecanismo permite tratar detalhes locais da imagem de maneira flexivel e adaptada as
necessidades de cada usudrio, como dar mais destaque a algum elemento da imagem, ou

iluminar dreas subexpostas sem afetar regides ja bem iluminadas.

LLFlow SKF UNet RetinexNet

‘WaveNet

Input Ground Truth Low — : = : Hig

Figure B.3 — Resultados dos modelos RetinexNet, UNet, LLFlow + SKF e WaveNet conforme o
valor estimado pelo bloco RLE € ajustado. O aumento do valor gera uma imagem mais clara,

enquanto a redugao resulta em uma imagem mais escura.

B.3 Resultados

Nessa Secao discutiremos os experimentos realizados para avaliar o nosso médulo

tanto em termos mais quantitativos, com as métricas PSNR, SSIM e LPIPS, quanto sub-
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Mask Low High
Figure B.4 — Controle local de aprimoramento com o bloco RLE. A mdscara destacada em azul
na primeira imagem indica a regido alvo para o aprimoramento ajustivel. Nas imagens
subsequentes, o aumento do valor de escala da méscara torna a regido selecionada
progressivamente mais brilhante, enquanto a reducao do valor a escurece, sem alterar os niveis de
brilho das dreas ao redor.

jetivamente, ao demonstrar o controle de nivel de aprimoramento obtido ao adicionar o
nosso bloco a uma rede existente. Uma caracteristica central da adi¢cdo do bloco RLE a
um modelo existente € a capacidade de controlar o nivel de aprimoramento aplicado as
imagens. Esta secdo ilustra esse fato, avaliando o impacto do bloco RLE em redes de
aprimoramento de imagens e comparando seu desempenho com outros métodos.

Para avaliar as mudancas estruturais introduzidas pelo RLE, foram selecionados
cinco modelos baseados em CNN, avaliados no conjunto de dados LOL (Wei et al., 2018):
LLFlow (Wang et al., 2022), LLFlow com SKF (Wu et al., 2023), WaveNet (Dang et
al., 2023), RetinexNet (Wei et al., 2018) e UNet (Ronneberger; Fischer; Brox, 2015).
Esses modelos incluem redes recentes (LLFlow, LLFlow com SKF e WaveNet) e cldssicas
(RetinexNet e UNet). Para os modelos LLFlow, LLFlow + SKF e WaveNet, o cédigo
original foi adaptado para incluir o bloco RLE. Os modelos RetinexNet e UNet foram
reimplementados em Keras (Chollet et al., 2015), com a integra¢do do RLE.

Os resultados, resumidos na Tabela B.1, indicam que a adi¢do do bloco RLE
teve impacto minimo no PSNR para LLFlow + SKF e WaveNet, mas trouxe melhorias
nos indices SSIM e LPIPS, sugerindo potencial ganho na qualidade perceptual. Para
RetinexNet e UNet, a inclusdo do RLE resultou em ligeira melhora na qualidade da im-
agem, evidenciada pelo aumento nos indices PSNR, SSIM e pela redu¢ao do LPIPS. Além
disso, todos os modelos passaram a oferecer a capacidade de controle sobre os niveis de
aprimoramento.

A Figura B.3 ilustra a versatilidade do RLE ao permitir aprimoramento de imagens
controldvel em quatro modelos de LLIE. Ajustando o valor estimado pelo RLE, € possivel
reduzir ou intensificar o aprimoramento das imagens de maneira intuitiva. A Figura B.4
destaca o controle em regides especificas da imagem, mostrando a flexibilidade oferecida
pelo bloco RLE.

Um desafio encontrado foi a reproducdo dos resultados relatados por modelos
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baseados em aprendizado profundo, devido a diferencas em hardware, ambientes de soft-
ware ou a falta de detalhes precisos de implementacdo. A Tabela B.2 compara os re-
sultados originais reportados pelos autores com aqueles obtidos ao retrainar os mode-
los usando os parametros e datasets descritos nos artigos. Em alguns casos, como o
RetinexNet, houve melhorias significativas nos indices PSNR e SSIM ap0s a retrainagem.
Para LLFlow + SKEF, os resultados retrainados foram similares aos originais, com leve au-
mento no LPIPS. J4 para o WaveNet, os resultados foram inferiores em PSNR e SSIM.
Nao foi possivel reproduzir os resultados do LLFlow sem o SKF, apesar de seguir as
orientagdes fornecidas pelos autores.

Embora a comparacgdo direta entre RLE e SKF seja limitada pelos desafios de re-
producio, a Tabela B.3 apresenta os resultados disponiveis. Observa-se que o SKF tende
a melhorar métricas de desempenho, como PSNR e SSIM, de maneira mais significativa.
No entanto, o RLE oferece a vantagem tnica de controle sobre o nivel de aprimoramento,
permitindo maior flexibilidade sem prejudicar drasticamente o desempenho. No caso do
LLFlow + SKF, os dois métodos combinados oferecem tanto a melhora nas métricas as-

sociada ao SKF e a flexibilidade de controle trazida pelo RLE.

PSNR | SSIM | LPIPS
RetinexNet 18.17 | 0.6956 | 0.4041
RetinexNet w/ RLE 19.18 | 0.7242 | 0.3472
UNet 19.85 | 0.8195 | 0.1281
UNet w/ RLE 20.11 | 0.8025 | 0.1255
LLFlow + SKF 2591 | 0.8657 | 0.1933
LLFlow + SKF w/RLE | 25.81 | 0.8665 | 0.1249
WaveNet 22.53 | 0.8419 | 0.0772
WaveNet w/ RLE 22.49 | 0.8628 | 0.0639

Table B.1 — Comparag@o de desempenho entre os modelos originais e as versdes estendidas com
o bloco RLE.

B.4 Conclusao

Este trabalho apresentou uma abordagem inovadora para o controle de aprimora-
mento de imagens em baixa luminosidade por meio do bloco RLE. Nosso método auto-
maticamente gera imagens bem expostas a0 mesmo tempo que permite controle do nivel
de aprimoramento, adicionando flexibilidade e controle do usudrio a redes existentes de

LLIE. O bloco RLE pode ser integrado a modelos convolucionais, que sdo amplamente
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utilizados para esse resolver esse problema.

Avaliamos o impacto da adicdo do bloco RLE a alguns modelos LLIE existentes.
Embora o impacto no desempenho tenha variado entre os modelos, demonstramos que
a modificacdo interativa do valor previsto pelo bloco RLE ajusta diretamente o nivel de
iluminacdo da imagem aprimorada, permitindo um controle eficaz do aprimoramento.

Além do controle global, nossa abordagem oferece controle local, possibilitando
que os usudrios ajustem os niveis de aprimoramento de dreas especificas dentro de uma
imagem. Utilizando méscaras geradas pelo Segment Anything Model, é possivel adaptar
o nivel de aprimoramento de multiplas regides de forma independente.

De forma geral, o bloco RLE representa um passo importante para tornar os méto-
dos de LLIE mais flexiveis e adaptédveis as preferéncias dos usudrios. Trabalhos futuros
buscam estender esta abordagem para incluir modelos baseados em difusdo e transform-
ers, além de investigar sua aplicacdo no controle de aprimoramento de videos em baixa

luminosidade.

PSNR | SSIM | LPIPS
RetinexNet (Original) 16.77 | 0.462 | 0474
RetinexNet (Retrained) 18.17 | 0.724 | 0.347
LLFlow + SKF (Original) 2594 | 0.865 | 0.125
LLFlow + SKF (Retrained) | 2591 | 0.866 | 0.193
WaveNet (Original) 24.54 | 0.856 -
WaveNet (Retrained) 22.53 | 0.8419 | 0.0772

Table B.2 — Desempenho dos modelos originais conforme relatado pelos autores e os resultados
do nosso re-treinamento no mesmo conjunto de dados.

PSNR | SSIM | LPIPS

RetinexNet + SKF 2042 | 0.711 | 0.216
RetinexNet w/ RLE 19.18 | 0.724 | 0.347
LLFlow + SKF 2594 | 0.865 | 0.125

LLFlow + SKF w/ RLE | 25.81 | 0.867 | 0.125

Table B.3 — Performance comparison of the RetinexNet and LLFlow models adding the SKF
and/or the RLE block. We were not able to reproduce the results of LLFlow without SKF to
evaluate adding RLE to only LLFlow, and the authors did not provide the pre-trained models nor
the code for the RetinexNet with the SKF framework.
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