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ABSTRACT

Oral cancer is the sixth most common kind of human cancer. Early detection is crucial for

lowering patient mortality. Two staining techniques, Argyrophilic staining of Nucleolar

Organizer Regions (AgNORs) and Papanicolaou staining, can assist in early detection.

However, manual counting and interpretation of these techniques are time-consuming,

labor-intensive, and error-prone. This thesis proposes two convolutional neural network

(CNN) based methods to address these shortcomings. The first method automatically

segments individual nuclei and AgNORs in microscope slide images and counts the num-

ber of AgNORs within each nucleus. The second method automatically segments and

classifies morphological features in Papanicolaou-stained microscope slide images. Both

methods were trained and evaluated on new image datasets of epithelial cells from oral

mucosa, with ground truth annotated by specialists. The effectiveness of our models

was evaluated against a group of human experts. Our CNN-based joint segmentation

and quantification of nuclei and NORs in AgNOR-stained images achieved an Intraclass

Correlation Coefficient (ICC) of 0.91 for nuclei and 0.81 for AgNORs, indicating strong

agreement with experts. Our CNN model for automatic segmentation and classification

of cells in Papanicolaou-stained images also demonstrated expert-level performance, with

ICC values above 0.84 for all cell types, showing excellent or good agreement for most

cell types. Both methods were significantly faster than manual analysis, reducing the pro-

cessing time from hours to minutes. These results highlight their potential to accelerate

diagnostic workflows. Our trained models, code, and datasets are available on GitHub

and can stimulate new research in early oral cancer detection.

Keywords: Deep Learning. Convolutional Neural Networks. Image Segmentation. Ag-

NOR. Papanicolaou.



Métodos Baseados em CNN e Conjuntos de Dados para Segmentação e Contagem

de Núcleos e AgNORs em Imagens Coradas com AgNOR e para Segmentação e

Classificação de Células em Imagens Coradas com Papanicolaou

RESUMO

O câncer oral é o sexto tipo mais comum de câncer humano. A detecção precoce é crucial

para reduzir a mortalidade dos pacientes. Duas técnicas de coloração, coloração argiro-

fílica das Regiões Organizadoras Nucleolares (AgNORs) e Papanicolaou, podem auxiliar

na detecção precoce dos sinais deste tipo de câncer. No entanto, a contagem e a interpreta-

ção manual dessas técnicas são demoradas, trabalhosas e propensas a erros. Esta disserta-

ção propõe dois métodos baseados em redes neurais convolucionais (CNN) para resolver

essas limitações. O primeiro método segmenta automaticamente núcleos individuais e

AgNORs em imagens de lâminas de microscópio e conta o número de AgNORs dentro

de cada núcleo. O segundo método segmenta e classifica automaticamente características

morfológicas em imagens de lâminas de microscópio coradas por Papanicolaou. Ambos

os métodos teiveram seus modelos (CNNs) treinados e avaliados em novos conjuntos de

dados de imagens de células epiteliais da mucosa oral, com Ground Truth anotado por

especialistas. A eficácia de nossos modelos foi avaliada em comparação com um grupo

de especialistas humanos. Nossos modelos baseados em CNN para segmentação e quan-

tificação conjunta de núcleos e NORs em imagens coradas por AgNOR, bem como nosso

modelo para segmentação e classificação automática de células em imagens coradas por

Papanicolaou, ambos alcançaram níveis de desempenho semelhantes aos de especialistas,

com significância estatística verificada, sendo ordens de magnitude mais rápidos do que

a segmentação e contagem/classificação manual realizada pelos especialistas. Tais resul-

tados destacam seu potencial para acelerar os fluxos de trabalho de diagnóstico. Nossos

modelos treinados, código e conjuntos de dados estão disponíveis no GitHub e podem

estimular novas pesquisas na detecção precoce de câncer oral.

Palavras-chave: Aprendizado Profundo. Redes Neurais Convolucionais. Segmentação

de Imagens. AgNOR. Papanicolaou.
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1 INTRODUCTION

Oral cancer stands as the sixth most prevalent human cancer globally and the most

prevalent in the head and neck region (Vigneswaran; Williams, 2014), with an annual

estimate of 657,000 new cases and 300,000 deaths (OCF, 2024b). The mortality rates

associated with oral cancer have been steadily rising over the past decade, underscoring

the urgency for improved diagnostic methodologies. Unfortunately, the diagnosis often

occurs at advanced stages, as physical examinations and biopsies are typically sought

only after symptoms manifest, leading to significant challenges in treatment efficacy and

patient survival rates (OCF, 2024b). Moreover, survivors often endure considerable func-

tional and cosmetic impairments due to the aggressive nature of the tumor and the treat-

ment (OCF, 2024b). However, early detection of oral cancer signs through cytopathology

offers a promising avenue for timely intervention. Two prominent techniques, AgNOR

staining and Papanicolaou staining, have emerged as valuable tools for identifying cellular

abnormalities indicative of malignancy.

AgNOR staining, though gradually supplanted by immunohistochemistry, remains

cost-effective and accessible, particularly in resource-limited settings (Jajodia et al., 2017).

This technique relies on quantifying the number of stained Argyrophilic Nucleolar Orga-

nizer Regions (AgNORs) in cell nuclei, serving as a marker for proliferative activity and

malignant potential. The AgNOR count has been correlated with the degree of cellu-

lar proliferation, offering valuable insights into the progression of oral cancer (Tyagi et

al., 2020). The technique has demonstrated utility in distinguishing between benign and

malignant lesions, aiding in the early detection of oral cancer signs (Tyagi et al., 2020).

Papanicolaou staining has demonstrated success in early detection of cervical can-

cer, contributing to a progressive reduction in mortality rates (Bedell et al., 2019). Lever-

aging its ability to highlight cellular abnormalities, including changes in nuclear volume,

shape, and staining properties, we believe that Papanicolaou staining holds promise for

identifying early signs of malignant alterations in oral cells. The American Dental Asso-

ciation expert consensus group has advocated for the use of oral cytology tests in general

dental practice, particularly when tissue biopsy is not feasible, underscoring the impor-

tance of reliable screening methodologies (Lingen et al., 2017).

Despite their utility, both AgNOR and Papanicolaou staining techniques neces-

sitate skilled pathologists for evaluation, hindering scalability and timely diagnosis. To

address this challenge, this work proposes leveraging deep learning, specifically convolu-
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(a) Input.
(b) Automatic
segmentation.

(c) Removal of
potential overlaps. (d) Ground truth.

Background Individual Cytoplasm AgNOR

Source: The Authors.

Figure 1.1 – Example of automatic nuclei and AgNOR segmentation in oral cells using our CNN.
(a) AgNOR-stained cytological slide image provided as input. (b) Automatic segmentation pro-
duced by our model, with nuclei, AgNORs, and background shown in orange, blue, and gray,
respectively. (c) Result obtained after discarding potentially-overlapping nuclei, which tend to
hide AgNORs. (d) Ground truth segmentation.

tional neural networks (CNNs), for automatic segmentation and analysis of slide images

from both staining techniques. This thesis asserts the feasibility of employing CNN mod-

els to accelerate evaluation processes, achieving expert-level performance while taking

less than a minute to process hundreds of images.

Contributing to this endeavor, our work introduces CNN-based methodologies tai-

lored to each of these staining techniques. For AgNOR staining, we present a compre-

hensive approach encompassing automatic segmentation and quantification of nuclei and

AgNORs, supported by a diverse image dataset annotated by specialists (UFRGS AgE-

COM (Rönnau et al., 2023c)). This method utilizes the number of stained AgNORs within

cell nuclei as an indicator of proliferative activity and malignant potential, facilitating

early detection of oral cancer signs. Fig. 1.1 illustrates the use of our model to segment

nuclei and AgNORs, where the cytological slide image and its corresponding ground

truth are shown alongside the automatic segmentation results, demonstrating the efficacy

of our approach. Similarly, for Papanicolaou staining, our methodology enables per-pixel

segmentation and classification of cellular structures, complemented by a rich dataset

comprising images from various oral mucosa conditions (UFRGS Pap-OMD (Rönnau et

al., 2024)). By leveraging the enhanced cell contrast provided by Papanicolaou staining,

our CNN model can accurately identify suspicious cells and clusters, facilitating early

detection of malignant transformations. Fig. 1.2 further illustrates the application of our

CNN-based model in segmenting nuclei, cytoplasms, and cell clusters, highlighting its

ability to identify various types of nuclei and cellular structures with high precision.

Our CNN models offer efficient, scalable, and accurate solutions for assisting early
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(a) Input.
(b) Our segmentation

and classification. (c) Ground truth.

Background Individual Cytoplasm Cytoplasm of Cell Cluster
Superficial Cell Nucleus Intermediate Cell Nucleus Suspicious Cell Nucleus

Source: The Authors.

Figure 1.2 – Segmentation and classification of a Papanicolaou-stained image from the test set of
our dataset of epithelial cells from the oral mucosa. (a) Input image. (b) Our model’s automatic
segmentation and classification, with individual cytoplasms, cell clusters, and background colored
in orange, blue, and gray, respectively. The different types of nuclei are shown in yellow (suspi-
cious), red (superficial), and cyan (intermediate). (c) Ground truth. Note the proper classification
of cell structures.

detection of oral cancer and improve patient outcomes. The availability of annotated

datasets (Rönnau et al., 2023c; Rönnau et al., 2024) and model implementations (Rönnau

et al., 2023b) underscores our commitment to fostering reproducibility and facilitating

further research in this critical domain.

1.1 Thesis statement

The central idea behind this research can be stated as:

It is possible to develop deep learning models for efficient automatic segmenta-

tion and analysis of oral cytology images stained using AgNOR and Papanicolaou

techniques, achieving expert-like performance levels. The resulting models should

provide scalable solutions for assisting healthcare professionals in early detection

of oral cancer signs.

We demonstrate this statement by designing and training CNN models, building

datasets, and comparing the results produced by our models with the ones provided by

a group of expert cytopathologists. Our CNN models achieved expert-like performance

level with verified statistical significance, while being orders of magnitude faster than the

manual segmentation and counting/classification performed by the specialists.

The contributions of this thesis include:

• A methodology for developing and evaluating deep learning models for cytopathol-
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ogy applications;

• A CNN-based approach for automatic joint segmentation and quantification (count-

ing) of nuclei and AgNORs in AgNOR-stained images (Section 4.2);

• An AgNOR-stained image dataset of epithelial cells from oral mucosa containing

1,171 slide images from 48 patients, annotated by specialists (Section 4.1);

• A semi-automatic image annotation strategy to reduce the workload from specialists

to produce ground truth image annotations (Section 4.1.1);

• An algorithm for identifying overlapping nuclei and excluding them from AgNOR

counting (Section 4.2.3.1).

• A CNN model for automatic segmentation and classification of cells in Papanicolaou-

stained images as suspicious, superficial, intermediate, or anucleate squamous. It

also classifies cell clusters as suspicious or non-suspicious (Section 5.2). Ours is

the first automatic solution to simultaneously perform both segmentation and clas-

sification of cells and cell clusters in Papanicolaou-stained images;

• A Papanicolaou-stained image dataset of the oral mucosa cells with 1,563 images

from 52 patients, annotated by specialists (Section 5.1).

The results of the work on the CNN-based approach for segmenting and count-

ing AgNORs has been published in the journal Computer Methods and Programs in

Biomedicine (Rönnau et al., 2023a). The work on the Papanicolaou method was sub-

mitted for publication and is currently under review.

1.2 Structure of the thesis

The remaining of this thesis is structured as follows: Chapter 2 provides back-

ground information on oral cancer, AgNOR and Papanicolaou staining techniques, and on

deep learning methodologies for image segmentation. Chapter 4 presents the model for

segmenting and counting AgNORs in AgNOR-stained images. Chapter 5 describes the

the model for segmenting and classifying cells and cell clusters in Papanicolaou-stained

images. Chapters 4 and 5 detail the methodology for developing and evaluating deep

learning models for cytopathology applications, encompassing data collection and anno-

tation, model development and training, and evaluation. The evaluation and results of the

two models are presented in Sections 4.3 and 5.3, respectively. Chapter 6 concludes the

thesis and discusses some directions for future work.
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2 BACKGROUND

This chapter provides background information on oral cancer, AgNOR and Papan-

icolaou staining techniques, and on deep learning methods for medical imaging segmen-

tation. Section 2.1 provides an overview of oral cancer, its prevalence, and the importance

of early detection. Section 2.2.1 introduces the AgNOR staining technique, its relevance

in cytopathology. Section 2.2.2 presents the Papanicolaou staining technique. Section 2.3

discusses deep learning methodologies for image segmentation.

2.1 Oral Cancer and the Importance of Early Detection

Oral cancer is the sixth most common kind of human cancer worldwide and the

most prevalent in the head and neck region (Vigneswaran; Williams, 2014). The incidence

of oral cancer has been steadily increasing over the past decade, with an estimated 657,000

new cases and 300,000 deaths annually (OCF, 2024a). Despite advances in surgical and

treatment modalities, the five-year survival rate for oral cancer remains below 60% (OCF,

2024b). Late diagnosis is a significant factor contributing to the poor prognosis of oral

cancer, as it often leads to advanced-stage disease and limited treatment options (OCF,

2024b). The aggressive nature of oral cancer and its treatment can result in significant

functional, cosmetic, and emotional burdens for survivors, affecting their quality of life

and overall well-being (OCF, 2024b).

Early detection of oral cancer is crucial for improving patient outcomes and reduc-

ing mortality rates. Cytopathology, the study of pathologies that manifest at the cellular

level, offers a promising avenue for early diagnosis and intervention. By analyzing cellu-

lar abnormalities indicative of malignancy, pathologists can identify potentially malignant

lesions in their early stages, enabling timely treatment and improved survival rates (Lin-

gen et al., 2017). Two prominent cytopathology techniques, AgNOR and Papanicolaou

staining, have emerged as valuable tools for identifying cellular abnormalities in oral cells,

providing insights into the proliferative activity and malignant potential of tissues (Tyagi

et al., 2020; Bedell et al., 2019). These staining techniques enhance the visibility of cellu-

lar structures, enabling pathologists to identify abnormal nucleolar morphology and cel-

lular changes characteristic of malignant transformations (Rajput; Tupkari, 2010; Shiraz

et al., 2020). Leveraging the power of these staining techniques, coupled with advanced

image analysis methodologies like the use of CNNs for automatic segmentation of cell
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structures, holds immense potential for improving the accuracy and efficiency of detect-

ing the early signs of oral cancer.

Cytopathology is a branch of pathology that focuses on the study of cellular ab-

normalities and diseases. It plays a crucial role in the early detection, diagnosis, and man-

agement of various cancers and other pathological conditions. Cytopathology techniques

involve the collection of cells or tissues from the body, their preparation on glass slides,

and their staining with dyes to enhance cellular structures and facilitate microscopic ex-

amination. Two widely used staining techniques in cytopathology are the AgNOR and

Papanicolaou staining techniques, which are instrumental in identifying cellular abnor-

malities indicative of malignancy. These staining techniques provide valuable insights

into the proliferative activity, nuclear morphology, and chromosomal abnormalities of

cells, enabling pathologists to make accurate diagnoses and treatment decisions. The fol-

lowing sections provide an overview of the AgNOR and Papanicolaou staining techniques

and their relevance in cytopathology.

2.2 Preparation of Microscope Slides

The preparation of microscope slides is a critical step in cytopathology, ensuring

the accurate identification and analysis of cellular abnormalities. Traditionally, smearing

techniques have been used to prepare slides, where cells collected from tissue samples are

spread directly onto a glass slide. This method, although simple, has limitations such as

uneven distribution of cells, air-drying artifacts, and the presence of obscuring blood or

mucus.

In recent years, liquid-based cytology (LBC) has emerged as a superior alternative

to traditional smear techniques. In LBC, cells are collected and suspended in a liquid

medium, which is then processed to create a thin, uniform layer of cells on a slide. This

method reduces the presence of obscuring material and artifacts, providing clearer, more

consistent samples for examination (Strander et al., 2007). See Fig. 2.1 for a comparison

of traditional smearing and LBC techniques.
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Conventional Smear Liquid-Based Cytology (LBC)

Source: The Authors.

Figure 2.1 – Comparison of traditional smearing and liquid-based cytology (LBC) techniques for
preparing microscope slides for Papanicolaou staining. In the conventional smearing technique,
cells are spread directly onto a glass slide, leading to uneven distribution, air-drying artifacts, and
obscuring material. In liquid-based cytology (LBC), cells are collected and suspended in a liq-
uid medium, which is then processed to create a thin, uniform layer of cells on a slide, reducing
artifacts and providing clearer samples for examination. The image on the left corresponds to a
sample from our dataset (Rönnau et al., 2024), while the image on the right is from the CRIC
dataset (Rezende et al., 2021). They were prepared using conventional smearing and LBC tech-
niques, respectively.

2.2.1 The AgNOR Staining Technique

The AgNOR staining technique is widely used for identifying Nucleolar Orga-

nizer Regions (NORs) in cells. NORs are chromosomal regions whose number and size

in a cell are indicative of its metabolic activity and proliferative potential, making them

valuable markers for assessing cell growth and proliferation (Jajodia et al., 2017; Tyagi

et al., 2020). AgNOR staining enhances the visibility of NORs, enabling pathologists to

identify cells with abnormal nucleolar morphology, such as increased size, number, or

staining intensity, which are characteristic of malignant transformations (Rajput; Tupkari,

2010). The AgNOR staining technique has been instrumental in improving the accuracy

of cancer diagnosis and has been shown to be a valuable adjunct to traditional histopatho-

logical methods (Caldeira et al., 2011).

2.2.2 The Papanicolaou Staining Technique

The Papanicolaou staining technique, also known as Pap smear, is a widely used

method for detecting cervical cancer. Papanicolaou staining enhances cell contrast, facil-

itating accurate morphological analysis and enabling the identification of cellular abnor-
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Skip connections

Bottleneck

Source: The Authors.

Figure 2.2 – An overview of the encoder-decoder architecture for semantic image segmentation.
The encoder processes the input image and compresses it into a fixed-size context vector. The
decoder then takes this context vector and generates the segmented output image. Additionally,
skip connections are used to pass high-resolution features from the encoder to the decoder, en-
hancing the decoder’s ability to produce a detailed and accurate segmentation map, identifying
and classifying each pixel in the image.

malities, such as changes in nuclear volume, shape, and staining properties (Shiraz et al.,

2020). The technique has been instrumental in reducing cervical cancer mortality rates

through early detection and intervention (Bedell et al., 2019).

2.3 Deep Learning Methods for Medical Imaging Segmentation

Deep learning has revolutionized the field of medical imaging segmentation, pro-

viding automated, accurate, and efficient solutions for various applications (Hesamian et

al., 2019). These methodologies leverage the power of convolutional networks (CNNs) to

learn complex patterns and features from large datasets of medical images (Wang et al.,

2022), enabling them to perform segmentation tasks with high precision. The most com-

monly used architecture in deep learning for medical image segmentation is the encoder-

decoder structure (Long; Shelhamer; Darrell, 2015), which combines a feature extraction

network (encoder) with a reconstruction network (decoder) to generate pixel-wise seg-

mentation masks. This architecture, which includes the U-Net (Ronneberger; Fischer;

Brox, 2015) and its variations, is particularly effective for tasks that require the segmen-

tation of images with a small number of training samples. The U-Net architecture, for

instance, has been widely used to segment various types of medical images, including

MRI scans, CT scans, and histopathology images. Fig. 2.2 shows the general structure of
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an encoder-decoder network.

In addition to the encoder-decoder architectures, several other popular image seg-

mentation methods have been developed and successfully applied in medical imaging.

These include fully convolutional neural networks (FCNs) (Noh; Hong; Han, 2015) that

are a type of CNN where the fully connected layers are replaced with convolutional layers,

enabling the network to produce spatially dense predictions (Long; Shelhamer; Darrell,

2015). FCNs are capable of learning to segment images of any size and have been effec-

tively used for various medical imaging tasks, including organ and lesion segmentation.

Mask R-CNN extends the Faster R-CNN framework by adding a branch for predicting

segmentation masks on each Region of Interest (RoI), in parallel with the existing branch

for classification and bounding box regression (He et al., 2017). This method has shown

excellent performance in instance segmentation tasks, making it useful for segmenting in-

dividual objects. The DeepLab family of models employs dilated convolutions to capture

multi-scale contextual information, along with conditional random fields (CRFs) for pre-

cise boundary delineation (Chen et al., 2017). DeepLab has been particularly successful

in handling the complex and varied shapes found in medical imaging data. For volumetric

medical imaging data, such as 3D MRI or CT scans, 3D convolutional networks are used

to capture spatial context in three dimensions (Çiçek et al., 2016). These networks extend

the 2D CNN architectures to process 3D inputs, making them ideal for tasks that require

the analysis of volumetric data, such as brain tumor segmentation.

Overall, deep learning methods for medical imaging segmentation have been ap-

plied to a wide range of tasks, including the segmentation of tumors, organs, and cells.

These methods have shown remarkable success, often outperforming traditional image

segmentation techniques in terms of both accuracy and efficiency (Wang et al., 2022;

Rasheed et al., 2023; Amorim, 2020; Hesamian et al., 2019; Pham; Xu; Prince, 2000).

However, the success of deep learning methods in medical imaging segmentation is highly

dependent on the quality of the training data. High-quality, annotated datasets are crucial

for training robust and accurate models. Furthermore, the specific task at hand also plays

a significant role in determining the most suitable deep learning method to use.

2.3.1 Semantic Image Segmentation

In the context of this work, semantic image segmentation is the most appropriate

deep learning method due to its ability to classify each pixel in an image into a predefined
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category. This method is particularly well-suited for the future objective of calculating the

ratios between nuclei and nucleolar organizer regions (NORs) in AgNOR-stained images,

and cytoplasm and nuclei in Papanicolaou-stained images.

Advantages of Semantic Image Segmentation:

• Pixel-wise Classification: Semantic segmentation provides a detailed pixel-wise

classification of different cellular components, which is essential for accurate quan-

titative analysis. This allows for precise measurement of the areas of nuclei, NORs,

and cytoplasm, facilitating the calculation of ratios between these components;

• Comprehensive Tissue Structure Analysis: By classifying all pixels in an image,

semantic segmentation offers a comprehensive view of the tissue structure. This

holistic approach is crucial for understanding the spatial relationships between dif-

ferent cellular components, which can provide valuable insights into the pathology

of the sample;

• Simplicity and Efficiency: Semantic segmentation models, particularly those based

on the encoder-decoder architecture, are relatively simple to implement and train.

They can achieve high accuracy even with a limited number of training samples,

making them ideal for medical image segmentation tasks;

• Robustness to Variability: Semantic segmentation can handle variability in staining

intensity, cell shape, and size, which are common challenges in medical image

analysis. This robustness ensures reliable performance across different samples

and conditions.

The goal is to accurately segment and classify nuclei, cytoplasm, and NORs to

enable the calculation of the nucleus-to-NOR and cytoplasm-to-nucleus ratios. Semantic

segmentation is particularly well-suited for this task because it can delineate the bound-

aries of these components with high precision. The resulting segmentation maps provide

the necessary data for detailed morphological and quantitative analysis. In conclusion,

compared to other techniques like object detection, semantic image segmentation is the

most suitable method for this work due to its ability to provide detailed, pixel-wise clas-

sification of cellular components, which is essential for accurate quantitative analysis in

AgNOR- and Papanicolaou-stained images. This approach lays a strong foundation for

future advancements in automated cytopathological diagnostics.
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3 RELATED WORKS

This chapter reviews relevant works on the automatic segmentation and classifi-

cation of cells in AgNOR- and Papanicolaou-stained images. The chapter is organized

into two sections: Section 3.1 presents the related works on AgNOR-stained images and

datasets, and Section 3.2 presents the related works on Papanicolaou-stained images and

datasets.

3.1 Related Works on AgNOR-Stained Image Segmentation and Datasets

The segmentation and classification of cells’ structural components in microscope

slide images is an important problem in pattern recognition, with numerous applications

in health sciences. Examples of techniques include segmentation of cytoplasm and nu-

cleus (Li et al., 2012), segmentation and classification of cell types (Gençtav; Aksoy;

Önder, 2012), cell segmentation in the presence of overlapping boundaries (Zhang et al.,

2016), and segmentation of nuclei in fluorescence images (Gharipour; Liew, 2016). Tra-

ditional techniques, such as the ones just mentioned, typically use thresholding, energy

minimization, or a combination of both. For detailed discussions on deep-learning-based

image-segmentation techniques for medical images in general, we refer the reader to the

surveys by Hesamian et al. (2019), and by Wang et al. (2022). Pham, Xu and Prince

(2000) provide a comprehensive discussion of non-learning-based methods for medical

image segmentation. Next, we concentrate on related techniques for segmenting AgNOR-

stained images, which is the focus of our work.

3.1.1 Segmentation of AgNOR-Stained Images

Amorim et al. (2020b) performed segmentation of AgNOR-stained images using

ResNet-18 (He et al., 2016) for feature extraction and U-Net (Ronneberger; Fischer; Brox,

2015) for image reconstruction. The resulting CNN was trained on a dataset containing

2,540 images of cervical cells obtained from three patients (Amorim et al., 2020a). Com-

pared to Amorim et al.’s CNN, our model exhibits better generalization properties. While

it can correctly segment the AgNOR-stained cells from Amorim et al. (2020a)’s dataset

(Fig. 4.9), Amorim et al. (2020b)’s model was unable to properly segment many images
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from our dataset (Figs. 4.8 and 4.10), even when retrained on it.

Bell et al. (2006) used high dynamic range (HDR) images obtained from multi-

ple exposures to segment AgNOR-stained images exploiting the contrast between nuclei

and AgNORs. The technique takes as input multiple pre-segmented images containing a

single nucleus (at known position) per image. This limits its use to environments where

these strict conditions can be satisfied. In contrast, our method only requires standard

images, is automatic, and applied to whole images.

Several researchers used threshold-based AgNOR segmentation for various appli-

cations. Ferreira et al. (2011) used color thresholding to segment nuclei and AgNORs in

ameloblastoma cells. Their goal was to estimate the mean number of AgNORs per cell.

The technique presumes that nuclei, AgNORs, and cytoplasm/image background have

distinct colors. While this is often true, images exhibiting low contrast between nuclei

and background are common (Fig. 4.8 (b) and (d), Fig. 4.10 (c) and (h)). The result-

ing segmentation tends to exhibit low-fidelity contours. The pixel-level accuracy of the

segmentation process has not been reported, only the result of a qualitative evaluation per-

formed by two observers. Since Ferreira et al.’s code is not publicly available, we cannot

compare their results with ours on a common dataset.

Both García-Vielma et al. (2016) and Teresa et al. (2007) used thresholding per-

formed by third-party software to segment nuclei and AgNOR. García-Vielma et al. man-

ually defined the thresholding parameters. The area of the AgNORs in each nucleus was

then estimated using the segmentation. Teresa et al. used a two-step thresholding applied

first to nuclei and then to AgNORs, with the goal of measuring AgNOR area and Ag-

NOR/nucleus area ratio. Cucer et al. (2007) segmented nuclei and AgNOR by manually

tracing their contours, from which they computed AgNOR/nucleus area ratios.

All these thresholding applications require user input specifying one or more

threshold values, and are less concerned about the accuracy and time-efficiency of the

segmentation process. In turn, our solution can segment AgNOR-stained images auto-

matically with satisfactory accuracy in an efficient way.

3.1.2 AgNOR-Stained Image Datasets

While there are several datasets of Papanicolaou-stained images publicly avail-

able, according to a recent survey (Jiang et al., 2022), Amorim et al. (2020a)’s CCAgT

dataset is the only previously publicly available AgNOR-stained image dataset, and com-
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Table 3.1 – Publicly-Available Annotated AgNOR-stained image datasets.

Dataset Patients Nuclei AgNORs Cell type Images Resolution

Ours (UFRGS AgECOM) 48 3,310 12,337 Oral 1,171 2560×1920
CCAgT 3 4,515 12,196 Cervical 2,540 1600×1200

prised of cervical cells. Our dataset (UFRGS AgECOM) is publicly available (Rönnau

et al., 2023c), contributes to fill this gap by providing a diverse dataset of epithelial oral

cells. It contains 1,171 images from 48 individuals annotated by specialists. Table 3.1

summarizes the characteristics of these two datasets.

3.2 Related Works on Papanicolaou-Stained Image Segmentation and Datasets

The segmentation and classification of cells in Papanicolaou-stained images is a

challenging problem due to the frequent presence of artifacts, such as debris and high

background noise, as well as to occurrence of defocused images. The literature on this

topic is vast, with traditional methods based on thresholding, clustering, and morphologi-

cal operations, and more recent methods based on deep learning. This section reviews the

most relevant automatic methods and datasets for the analysis of Papanicolaou-stained

images. Such methods include both traditional image processing and deep learning tech-

niques.

3.2.1 Segmentation of Papanicolaou-Stained Images

Traditional image processing techniques are based on thresholding, clustering,

and morphological operations. Boughzala et al. (2016) investigated the impact of color

spaces in K-means segmentation of cytoplasms and nuclei of cervical cells using a pri-

vate dataset. Bandyopadhyay and Nasipuri (2020) used K-means clustering to segment

the nuclei from isolated cervical cells in images from the Herlev dataset (Jantzen et al.,

2005). Plissiti, Nikou and Charchanti (2010) employed morphological analysis to detect

cell nuclei candidates that are refined in a second step using a priori knowledge about

the shape of the nuclei. The detection technique is only applied to sub-regions of the

images defined by binary masks obtained using thresholding. In a subsequent work (Plis-

siti; Vrigkas; Nikou, 2015), the authors proposed a method based on super-pixels, and

more recently (Plissiti et al., 2018), they explored several methods, including Support
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Vector Machines (SVM), Multi-layer Perceptron (MLP), and Convolutional Neural Net-

work (CNN) to classify cervical cells from the SIPaKMeD dataset (Plissiti et al., 2018)

among the following types: superficial/intermediate, parabasal, koilocytotic, metaplas-

tic, and dyskeratotic. Ragothaman et al. (2016) proposed an unsupervised segmentation

method using Gaussian mixture models (GMM) to identify cytoplasms and nuclei in cer-

vical cells from a private dataset. The method employs a shape-based analysis of the

nucleus region to deal with false-positive segmentation of nuclei caused by the presence

of debris and other artifacts.

Deep learning methods have been increasingly employed to accelerate the diag-

nostic and improve the accuracy of the results in cytopathology (Jiang et al., 2022; Wang

et al., 2022). The encoder-decoder architecture (Long; Shelhamer; Darrell, 2015) is the

most commonly used, with the U-Net (Ronneberger; Fischer; Brox, 2015) and its varia-

tions being the most popular networks for medical image segmentation, due to its ability

to segment images with a small number of training samples. Matias et al. (2021) explored

several CNN models pre-trained on the ImageNet dataset (Russakovsky et al., 2015) for

segmentation of nuclei in Papanicolaou-stained images. The authors concluded that a U-

Net architecture with a ResNet (He et al., 2016) as its encoder performed better than the

other tested models. They used the UFSC OCPap dataset of oral cytology images (Matias

et al., 2021) (described in Sub-section 3.2.2) to train and evaluate the models. Rasheed et

al. (2023) used a variation of the U-Net dubbed C-UNet (Cervical-UNet) to segment cell

nuclei from a Papanicolaou-stained cervical image dataset (Zhang et al., 2019). Both of

these methods only segment nuclei. Zhao et al. (2022) introduced SPCNet, a star-convex

polygon-based CNN for automatic segmentation of cervical cells in Papanicolaou-stained

images. SPCNet can segment cytoplasms of adherent cells, but it does not segment nuclei

or provide cell type classification.

None of these CNN methods perform simultaneous segmentation and classifi-

cation of nuclei, cytoplasms, and cell clusters. Moreover, none of them have publicly

available pre-trained versions of their models. Our CNN model performs automati0c seg-

mentation of cell nuclei, cytoplasms, and cell clusters in Papanicolaou-stained images. It

also automatically classifies cell types among suspicious, superficial, intermediate, anu-

cleate squamous, and binucleate, based on their nucleus types. It classifies cell clusters as

suspicious or non-suspicious.
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UFRGS Pap-OMD UFSC OCPap LBCP MDE-Lab SIPaKMeD Cervix93 CRIC

Source: The Authors.

Figure 3.1 – Example of images from different datasets. In all datasets, with the exception of the
UFSC OCPap, cell cytoplasms and nuclei are discernible in essentially all cells.

3.2.2 Papanicolaou-stained Datasets

Most available datasets of Papanicolaou-stained images are of cervical cells. A

recent survey (Jiang et al., 2023) only reports a single Papanicolaou-stained image dataset

of oral mucosa cells, the UFSC OCPap dataset (Matias et al., 2021). This dataset consists

of 1,934 whole slide images obtained from two patients. The dataset contains annotations

for nuclei only: binary segmentation masks, bounding boxes, and classification as normal

or abnormal nuclei. Unfortunately, the images in this dataset contain numerous artifacts

and high background noise level that significantly degrade the quality of the images, often

resulting in non-discernible cell cytoplasms and nuclei. Fig. 3.1 (second column) shows

examples of images from this dataset.

The Liquid-Based Cytology Pap Smear dataset (LBCP) by (Hussain et al., 2020)

contains 963 whole slide images of Papanicolaou-stained cervical cells from 460 patients.

The images are annotated with four sub-categories of cervical lesions: negative for in-

traepithelial lesion or malignancy (NILM), low-grade intraepithelial lesions (LSIL), high-

grade intraepithelial lesions (HSIL), and squamous cell carcinoma (SCC). The dataset

images show well-defined cells and nuclei with high density of objects per image.

Byriel (1999) introduces the cervical cell MDE-Lab dataset containing 500 whole

slide images, as well as individual images per cell. The dataset is annotated with the fol-

lowing cell classifications: columnar epithelial, squamous epithelium from the parabasal,
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intermediate, and superficial layers, and non-keratinizing mild, moderate, and severe dys-

plasia. The dataset also includes manually-defined areas for the cells’ cytoplasms and

nuclei.

Plissiti et al. (2018) introduced the SIPaKMeD dataset containing 966 whole slide

images of Papanicolaou-stained cervical cells. The authors do not provide the number

of patients or the groups they belong to. The dataset is annotated with five cell classes:

superficial/intemediate, parabasal, koilocytitic, metaplastic, and dyskeratotic. The dataset

includes manually-defined areas for the cytoplasms and the nuclei of the cells.

Cervix93 (Phoulady; Mouton, 2018) is a dataset containing 93 whole slide im-

ages of Papanicolaou-stained cervical cells. It contains nucleus annotations and is di-

vided into three classes: negative, low-grade squamous intraepithelial lesions (LSIL), and

high-grade squamous intraepithelial lesions (HSIL). No information about the number of

patients or patient groups is provided by the authors.

CRIC (Rezende et al., 2021) is a dataset containing 400 whole slide images of

Papanicolaou-stained cervical cells. The dataset is annotated with six classes: negative,

atypical squamous cells of undetermined significance (ASC-US), low-grade squamous in-

traepithelial lesions (LSIL), high-grade squamous intraepithelial lesions (HSIL), atypical

squamous cells, and squamous cell carcinoma. The dataset is divided into 11,534 cells

and is part of the CRIC Cervix collection.

We evaluated our CNN model on our dataset of oral mucosa cells (UFRGS Pap-

OMD), plus on the five public datasets of cervical cells mentioned above: LBCP, MDE-

Lab, SIKaKMeD, Cervix93, and CRIC. We choose not to include the UFSC OCPap

dataset since its images contain many non-discernible nuclei and cytoplasms (Fig. 3.1).
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4 AUTOMATIC SEGMENTATION AND QUANTIFICATION OF NUCLEI AND

AGNORS IN AGNOR-STAINED IMAGES

This chapter presents our work on automatic segmentation and quantification of

nuclei and AgNORs in AgNOR-stained images. We start by describing our dataset of

AgNOR-stained images from the oral mucosa, UFRGS AgECOM (Rönnau et al., 2023c),

which was annotated by specialists. We then present our CNN model for image segmen-

tation, which was trained on this dataset. The model performs per-pixel segmentation

and classification of AgNOR-stained cell nuclei and AgNORs. We then describe the al-

gorithm to analyze the contours of the segmented objects and reject overlapping nuclei.

We show the results of our model on a set of images from our dataset as well as from

another publicly avaiable dataset. Finally, we compare the results of our model with the

ones produced by three human experts using Intraclass Correlation Coefficient (ICC).

4.1 Building Our AgNOR-stained Cell Dataset

Given our dataset’s key role in the CNN architecture selection process, its con-

struction is presented before the CNN model itself, which is described in Section 4.2.

The dataset was created from microscope slides containing patients’ brushed epithelial

cells from oral mucosa. The cells were collected from borders between normal tissue and

abnormal wounds, and stained with argyrophilic staining methods (Trere, 2000). They

were photographed using an Olympus CX41RF Binocular Microscope, using 100× mag-

nification, with a mounted camera QImaging MicroPublisher 5 RTV. The dataset consists

of 1,171 2,560×1,920-pixel RBG images.

4.1.1 Semi-Automatic Dataset Annotation

The annotation process was performed semi-automatically starting with a boot-

strap CNN to propose initial segmentation annotations that were then reviewed by special-

ists. To train and test this bootstrap CNN, 80 images from multiple patients were chosen

at random from the images in our dataset and manually annotated using labelme (Wada,

2016) (Fig. 4.1). The pixels corresponding to nuclei and AgNORs were delimited and

the remaining area was considered as background (Fig. 4.2 left). The annotated images
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Figure 4.1 – Creation of a bootstrap CNN for AgNOR-stained image segmentation. A small
number of images (80) was manually annotated by specialists using labelme (Wada, 2016). The
annotated images were used to train a bootstrap CNN to automatically segment AgNOR-stained
images.

(a) Suitable nucleus. (b) Unsuitable (overlapping) nuclei.

Source: The Authors.

Figure 4.2 – Images with labelme annotation markups for suitable nucleus and AgNORs (left) and
for unsuitable nucleus and AgNORs (right).

were divided into three subsets: training (60 images), validation (10 images), and test (10

images). To increase the number of training samples, a pipeline of image augmentation

was built using Albumentations (Buslaev et al., 2020). The pipeline consisted of random

brightness and contrast changes, vertical and horizontal flips, and two so-called elastic

transformations. Each transformation has a 50% chance of being applied, and they are

applied sequentially. The order of transformations is randomized for each image. This

setup ensures variability in augmentation, ranging from no transformations to all trans-

formations being applied. This data augmentation pipeline was applied six times to each

of the 60 images in the initial training set, resulting in a training set with 420 images (60

original + 360 augmented).

The architecture of the bootstrap CNN consisted of ResNet-101 (He et al., 2016)

as the encoder and U-Net (Ronneberger; Fischer; Brox, 2015) as the decoder. We chose

ResNet-101 because it is used for feature extraction by Mask-RCNN (He et al., 2017),

and U-Net because of its success in medical image segmentation. The combination of

an encoder and a decoder is known as an encoder-decoder architecture. This kind of
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architecture has been widely used in medical imaging segmentation (Minaee et al., 2022;

Ghosh et al., 2019; Hesamian et al., 2019). The model was implemented using the Python

library Segmentation Models (Yakubovskiy, 2019). Despite the fact that the model was

trained on an RTX 8000 with 48GB of RAM, the large size of our images would constrain

the batch size to only two images. To reduce the stochastic learning behavior caused by

training with such small batch size, the images were rescaled to 1280×960 (1/4 of their

original resolution). This approach was later disregarded in favor of slicing the images

to avoid possible distortions that could affect the segmentation results. The rescaling led

to a batch size of 10 images. The model was initialized with weights from the ImageNet

dataset (Russakovsky et al., 2015) and fine tuned on our dataset for 100 epochs with a

learning rate starting at 10-4 and reduced by a factor of 25% when no improvements were

obtained for ten consecutive epochs. The loss function used was the sum of the categorical

cross entropy (CE) and Dice loss (Yakubovskiy, 2019). The best model, obtained in

the 30th epoch, was chosen among all epochs using Dice score as the model selection

criterion. The resulting bootstrap CNN achieved a Dice score of 0.81 and intersection

over union (IoU) of 0.75 on the test set.

We use Dice score and IoU to evaluate the performance of our model as they

are widely used in the literature for image segmentation tasks (Amorim et al., 2020b;

Yakubovskiy, 2019; Ronneberger; Fischer; Brox, 2015; Kirillov et al., 2019; Chaurasia;

Culurciello, 2017). The Dice score is defined as follows:

Dice score =
2TP

2TP + FP + FN
(4.1)

Where TP, FP, and FN are the number of true positive, false positive, and false

negative pixels, respectively. The IoU is defined as:

IoU =
TP

TP + FP + FN
(4.2)

The Dice score (Equation 4.1) and IoU (Equation 4.2) range from 0 to 1, with higher

values indicating better performance. The Dice score is more sensitive to false positives,

while the IoU is more sensitive to false negatives.

The bootstrap CNN was then used to propose segmentation annotations for 558

unannotated images (Fig. 4.3 top). The predicted segmentation masks were post-processed

using OpenCV (Bradski, 2000) to extract the contours of the nuclei and AgNORs. The
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Figure 4.3 – Joint refinement of our AgNOR-stained image segmentation CNN and dataset annota-
tion. (top) A bootstrap CNN was used to segment AgNOR-stained images. Using labelme (Wada,
2016), specialists revised the predicted annotations. The revised images were used to train an
improved segmentation CNN, as well as to select the best segmentation architecture. (bottom)
The improved CNN was used to segment the remaining unannotated images, which were in turn
revised by the specialists. The final dataset was used for fine-tuning the three best segmentation
architectures, from which we chose the top one as our final AgNOR-stained image segmentation
CNN.

extracted contours were analyzed using the algorithm described in Section 4.2.3.1 before

being converted into labelme annotations. These annotations were validated by special-

ists, who used labelme to adjust or discard incorrect segmentation and include potentially

missing ones. This process is summarized in Fig. 4.3 (top). The resulting set of 638 (558

+ 80) annotated and validated images were then used to train an improved segmentation

CNN (shown in orange in the rightmost part of Fig. 4.3 top).

4.1.2 Improving the Model for Annotation

An improved segmentation CNN was trained using the annotated images generated

by the previously described process (Fig. 4.3 top). Its training regime was similar to

the one used for the bootstrap CNN, except that no data augmentation was used, and

the images and masks in the training and validation sets were sliced into four quadrants

instead of being rescaled. Such slicing resulted in four new images and masks with 1/4 of

the original resolution and no overlapping among the quadrants. Sliced images and masks

containing only background pixels were discarded, as they contribute little additional

information. We choose to call the slided images and masks as quadrants as opposed

to patches given that patches are often used to refer to subimages of any size and shape,
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while quadrants are subimages that are always of the same size and shape and are obtained

by dividing the original image into four equal parts.

To train the improved segmentation CNN, the image dataset was again divided

in three sets: training, validation, and testing. The dataset split occurred in such a way

that all cell images of a patient appeared only in one of the devised sets. The training set

included 26 patients and 861 quadrant images, while the validation and test sets included

7 patients each. The validation set contained 234 (1280×960) quadrant images. The test

set consisted of 103 images kept in their original resolution (2560×1920). Training was

performed for 100 epochs using a batch size of 10 images.

When using the improved segmentation CNN for prediction, the input shape of

the first layer was changed to match the shape of the original images (2560×1920 with

three color channels). The increased number of images and the training with sliced im-

ages improved the results compared to the bootstrap CNN. It achieved better performance,

with Dice score of 0.86 and IoU of 0.77. The improved segmentation CNN replaced the

bootstrap one and was used to propose segmentation annotations for an extra set of 533

images, which were subsequently validated by the specialists (Fig. 4.3 bottom). In total,

the specialists produced and/or validated annotations for 1,171 images. Out of these, 169

images were considered by them to contain “unsuitable” nuclei for AgNOR counting pur-

poses. An image was considered unsuitable if it did not contain any discernible nuclei or

if it was not possible for one to accurately tell if objects in the nuclei were AgNORs or

foreign elements. Nevertheless, we kept these so-called unsuitable images in the dataset

as negative examples, with their corresponding ground truth masks containing only back-

ground pixels. Fig. 4.4 shows examples of unsuitable images. Suitable images examples

can be seen in Figs. 4.8, 4.7, 4.9 and 4.10. The final dataset then consists of 1,171 images

from 48 patients, with an average of 24 images per patient. It was used for fine-tuning the

top three AgNOR-stained image segmentation CNNs (Fig. 4.3 bottom right).

4.2 Our AgNOR Image Segmentation Model

To arrive at the most appropriate CNN model for our application, we explored

many combinations of encoder and decoder architectures, as well as different loss func-

tions. We also exploited transfer learning for image segmentation (Raghu et al., 2019;

Ghosh et al., 2019) to take advantage of large scale pre-trained models. Transfer learn-

ing has been largely applied to medical imaging datasets (Hesamian et al., 2019; Wang
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Source: The Authors.

Figure 4.4 – Examples of unsuitable images. They have nuclei partially occluded by fungi or
materials with high silver precipitation levels. Nuclei and AgNORs with indistinguishable borders
are also unsuitable.

et al., 2022; Jiang et al., 2022). Given the numerous options available for encoders and

decoders (Huang et al., 2017; Tan; Le, 2019; Szegedy et al., 2016; He et al., 2016; Xie

et al., 2017; Simonyan; Zisserman, 2014; Yakubovskiy, 2019), we evaluated 51 network

architectures combining 17 encoders with three decoders and two loss functions (Dice

loss (Yakubovskiy, 2019) and Focal loss (Lin et al., 2017)). In total, we trained and

evaluated 102 models using 638 images from our dataset, distributed as training (413),

validation (122), and test (103) images.

We used transfer learning for all trained models. The encoders were initialized

with weights from the ImageNet dataset (Russakovsky et al., 2015) and the decoders were

initialized with random values. The models were then fine tuned on our dataset for 100

epochs with a learning rate starting at 10-4 and reduced by a factor of 25% when no im-

provements were obtained for ten consecutive epochs. All dataset splits were performed

on a patient level (i.e., all images from the same patient were either in the training, in the

validation, or in the test dataset). The list of all evaluated encoders, decoders, and loss

functions is shown in Table 4.1.

The three best performing architectures were then retrained using our training and

validation sets to obtain our final segmentation CNN (Fig. 4.3 bottom right). Next, we
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Table 4.1 – Performance of the 102 CNN models trained and evaluated on a subset of our dataset.
These models combine 17 encoders, three decoders, and two loss functions. The best results for
each decoder and loss function are highlighted in bold.

Loss function → CE + Dice loss Focal loss

Decoder → FPN LinkNet U-Net FPN LinkNet U-Net

Encoder ↓ Loss Dice IoU Loss Dice IoU Loss Dice IoU Loss Dice IoU Loss Dice IoU Loss Dice IoU
DenseNet-121 0.0996 0.9046 0.8444 0.0985 0.9052 0.8453 0.0972 0.9073 0.8477 0.0902 0.9112 0.8534 0.0981 0.9032 0.8430 0.1005 0.9009 0.8400
DenseNet-169 0.0862 0.9169 0.8603 0.1830 0.8218 0.7459 0.0940 0.9096 0.8507 0.0908 0.9102 0.8517 0.0882 0.9129 0.8552 0.0923 0.9088 0.8518
DenseNet-201 0.0932 0.9111 0.8533 0.0943 0.9100 0.8522 0.0961 0.9074 0.8485 0.0911 0.9103 0.8522 0.0973 0.9039 0.8453 0.0974 0.9038 0.8435
EfficientNet-B0 0.1184 0.8877 0.8215 0.1244 0.8802 0.8130 0.1134 0.8913 0.8248 0.1082 0.8932 0.8288 0.1214 0.8804 0.8097 0.1042 0.8971 0.8333
EfficientNet-B1 0.1123 0.8922 0.8273 0.1083 0.8955 0.8307 0.1025 0.9027 0.8410 0.1049 0.8965 0.8324 0.1086 0.8927 0.8271 0.1926 0.8088 0.7291
EfficientNet-B2 0.1026 0.9014 0.8392 0.1998 0.8046 0.7257 0.1033 0.9013 0.8403 0.1040 0.8972 0.8335 0.1958 0.8056 0.7281 0.1026 0.8987 0.8365
EfficientNet-B3 0.1089 0.8961 0.8326 0.1072 0.8972 0.8331 0.1125 0.8923 0.8300 0.1043 0.8971 0.8362 0.1072 0.8943 0.8297 0.1153 0.8868 0.8226
Inception V3 0.1012 0.9042 0.8431 0.0979 0.9064 0.8455 0.0995 0.9039 0.8443 0.0940 0.9070 0.8481 0.1016 0.8996 0.8393 0.0936 0.9077 0.8485
ResNet-18 0.1021 0.9019 0.8395 0.1089 0.8964 0.8321 0.1083 0.8958 0.8328 0.0970 0.9044 0.8439 0.1062 0.8951 0.8331 0.0957 0.9057 0.8453
ResNet-34 0.1057 0.8983 0.8381 0.1062 0.8981 0.8357 0.0992 0.9042 0.8435 0.1088 0.8924 0.8306 0.1006 0.9008 0.8396 0.0930 0.9081 0.8501
ResNet-50 0.1112 0.8939 0.8313 0.1074 0.8968 0.8342 0.1058 0.8988 0.8384 0.1030 0.8986 0.8368 0.1050 0.8965 0.8350 0.0984 0.9027 0.8427
ResNet-101 0.1048 0.9018 0.8418 0.1014 0.9036 0.8425 0.1021 0.9015 0.8398 0.1019 0.8997 0.8384 0.1900 0.8115 0.7342 0.0998 0.9018 0.8413
ResNet-152 0.1011 0.9047 0.8447 0.1966 0.8087 0.7311 0.1015 0.9045 0.8448 0.0959 0.9051 0.8449 0.1915 0.8101 0.7312 0.0938 0.9072 0.8489
ResNeXt-50 0.0982 0.9067 0.8481 0.1032 0.9028 0.8412 0.0984 0.9055 0.8464 0.1015 0.9000 0.8391 0.0912 0.9099 0.8507 0.0958 0.9054 0.8466
ResNeXt-101 0.1010 0.9044 0.8448 0.0990 0.9057 0.8460 0.0977 0.9060 0.8470 0.0983 0.9032 0.8433 0.0991 0.9023 0.8425 0.0938 0.9073 0.8478
VGG16 0.1055 0.8982 0.8334 0.1146 0.8898 0.8238 0.1082 0.8949 0.8312 0.1129 0.8882 0.8218 0.1905 0.8109 0.7330 0.1041 0.8970 0.8343
VGG19 0.1152 0.8902 0.8235 0.1548 0.8510 0.7769 0.1150 0.8887 0.8243 0.1103 0.8909 0.8268 0.1155 0.8859 0.8198 0.1053 0.8958 0.8341

discuss the process of training and evaluating the 102 model candidates, followed by the

training and evaluation of the best three performing models to arrive at our final model.

4.2.1 Training and Evaluating 102 Model Candidates

The architectures of the 102 model candidates (Table 4.1) were implemented us-

ing the Python library Segmentation Models (Yakubovskiy, 2019) and trained in parallel

using three Nvidia RTX 8000 GPUs with 48 GB of memory each. The models using

FPN (Kirillov et al., 2019), DenseNet-169 (Huang et al., 2017), DenseNet-201 (Huang et

al., 2017), ResNet-152 (He et al., 2016), ResNeXt-101 (Xie et al., 2017), EfficientNet-

B1 (Tan; Le, 2019), EfficientNet-B2 (Tan; Le, 2019), and EfficientNet-B3 (Tan; Le, 2019)

required two GPUs for training. The others were trained on a single GPU. The models

were trained and tested under the same regime described in section 4.1.2, except for the

batch size reduced to 8 images to ensure the models fit in the GPU memory.

The number of epochs was set to 100 after performing some pre-training experi-

ments to find a number large enough to allow all models to reach a plateau during training.

This is illustrated in Fig. 4.5, which shows the training, validation, and test values for the

loss, Dice score, and IoU for the 102 evaluated models. For each trained model, weights

were saved at the end of each epoch. After training was concluded, the weights from all

epochs were individually loaded and tested against the test set. This process is illustrated

in the rightmost column of Fig. 4.5. The weights leading to the best Dice score for each

model were selected as the final weights for that model. The initial learning rate value
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Figure 4.5 – Training, validation, and test values for the loss, Dice score, and IoU for the 102
evaluated models. The different colors represent the various combinations of backbones, decoders,
and loss functions used. The first row displays the logarithmic loss of all the models during
training. It can be observed that, after 100 epochs, the training loss continued to decrease, while
the validation and test losses plateaued around the 50th epoch. The second and third rows show
the Dice score and IoU, respectively. The same pattern can be seen, with validation and testing
plateauing around the 50th epoch.
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Table 4.2 – Comparison of the models trained on the subset dataset and the incremented dataset.

Test dataset → Subset Complete

Encoder Decoder Train
dataset ↓ Loss Dice IoU Loss Dice IoU

DenseNet-169 FPN
Subset

0.0862 0.9169 0.8603 0.1182 0.8879 0.8230
DenseNet-169 LinkNet 0.0918 0.9129 0.8552 0.1222 0.8863 0.8210
DenseNet-169 U-Net 0.0965 0.9081 0.8501 0.1325 0.8759 0.8100

DenseNet-169 FPN
Complete

0.0804 0.9220 0.8686 0.1041 0.9006 0.8391
DenseNet-169 LinkNet 0.0799 0.9239 0.8705 0.1038 0.9025 0.8405
DenseNet-169 U-Net 0.0862 0.9174 0.8619 0.1107 0.8956 0.8324

(10-4) was also set based on pre-training experiments that showed it led to more stable

learning.

On average, each model took 6 hours and 23 minutes to train. The total time re-

quired to train all models was over 652 hours. The results of the trained models are shown

in Table 4.1. For each model, we show the value of the loss function, Dice coefficient,

and IoU metrics.

4.2.2 Training the Best Models on the Complete Dataset

In the experiments reported in Table 4.1, the encoder DenseNet-169 achieved the

highest Dice score with all three decoders. The best performing model based on the

highest Dice score for each decoder (FPN, LinkNet, and U-Net) was selected for further

training and evaluation. They were retrained using a complete version of our dataset. The

retraining occurred under the same regime used to train the 102 models (Section 4.2.1),

except that the selected models were initialized with the weights obtained during the se-

lection phase (Subset in Table 4.2), as opposed to with the weights from the ImageNet

dataset (Russakovsky et al., 2015). The retraining included 1,002 images containing at

least one visible nucleus with AgNORs (i.e., images from the subset of suitable images).

They were split into sets of 788 and 214 images for training and testing, respectively. No

validation split was used. All images from the same patient were either in the training or

in the test set. The images and masks in the training set were sliced into four quadrants,

with no overlap among the quadrants. The resulting mask and image quadrants contain-

ing only background pixels were not used for training. The results of the retraining are

shown in Table 4.2. The training and test sets in Subset are contained in the Complete

training and test sets. The model consisting of DenseNet-169 + LinkNet with Focal loss
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Figure 4.6 – Our CNN architecture. Its encoder (downsampling portion) consists of the encoding
layers of a DenseNet-169. Its decoder uses the upsampling layers of a LinkNet. The encoding
layers bypass spatial information to the corresponding decoding layers using skip connections.
The resulting architecture exploits the benefits of feature-map concatenation and skip connec-
tions: feature propagation reinforcement, feature reuse, and reduction in the number of required
parameters.

performed best on the complete dataset. Thus, our selected CNN architecture uses the en-

coding layers of a DenseNet-169 in combination with the upsampling layers of a LinkNet

as its decoder (Fig. 4.6). The resulting architecture exploits the benefits of feature-map

concatenation and skip connections, achieving feature propagation reinforcement, feature

reuse, and reduction in the number of required parameters.

4.2.3 Quantifying AgNORs per Nucleus

Before counting the number of AgNORs per nucleus, the system discards seman-

tically invalid (segmented) nuclei and AgNORs: nuclei containing no AgNORs, as well

as AgNORs not contained by any nucleus. It also removes nuclei and AgNORs whose

sizes are outside some specified intervals. For images captured with 100× magnification,

nuclei with sizes bigger than 67,000 pixels or smaller than 1,000 pixels, and AgNORs

with sizes bigger than 3,600 pixels or smaller than 6 pixels are eliminated. These thresh-

olds were determined after analyzing 1,002 images from 48 patients whose segmentation

have been validated by specialists. For those images, the maximum and minimum nuclei

sizes were 66,129 and 1,196 pixels, respectively, with average of 15,783 and standard de-

viation of 6,670 pixels. Likewise, the maximum and minimum AgNOR sizes were 3,521

and 6 pixels, respectively, with average of 92 and standard deviation of 171 pixels.

Our system uses OpenCV (Bradski, 2000) to extract contours and their hierar-



41

chy from segmented elements, allowing us to identify which AgNORs belong to which

nucleus and count them.

4.2.3.1 Discarding Overlapping and Distorted Nuclei

Overlapping nuclei tend to hide AgNORs, thus affecting their true count. We de-

veloped a contour analysis algorithm (CAA) to optionally detect and discard potentially

overlapping and distorted nuclei. Since cell nuclei tend to define a convex shape, the algo-

rithm works by comparing the percentage difference in the number of pixels contained by

each segmented nucleus and by its corresponding convex hull. If the difference exceeds

the empirically defined threshold of 5%, the segmented element is discarded since it most

likely contains recesses found in overlapping and deformed nuclei (Fig. 4.7). The 5%

threshold value was determined based on the contours in the ground truth of over 890 im-

ages. Nuclei deformation may result from slice manipulation or improper segmentation

(e.g., due to occlusion - Fig. 4.7 c). Another option is to use morphological operations to

erode the nucleus and then determine whether this resulted in the nuclei being separated.

However, this approach is most effective when nuclei are not too close together, which

limits its applicability in our case.

4.2.3.2 Classifying AgNORs Based on Their Relative Sizes

The size and number of AgNORs in nuclei can be an indicator of lesions with

malignant potential (Jajodia et al., 2017). Our system can classify AgNORs as “clusters”

(big) or “satellites” (small), depending on their relative sizes according to other AgNORs

in the same nucleus. Thus, two AgNORs with the same size, but in different nuclei can

be classified differently. To address this subtle issue, we trained a decision tree classifier

using Scikit-Learn (Pedregosa et al., 2011). Our decision tree model takes as features the

ratios of the sizes (in pixels) between the AgNOR itself and three measures: the size of

the nucleus to which it belongs to, the size of the biggest AgNOR, and the size of the

smallest AgNOR, both in the given the nucleus. The model was trained using annotated

data generated by specialists, which included 749 “clusters” and 173 “satellites”. The

data was split into training (70%) and test (30%) sets. The resulting model estimates

the number of “clusters” and “satellites” in each nucleus, and achieved 0.84 and 0.80 of

precision and recall, respectively. We believe that information about size and number of

AgNORs may lead to new insights on the dynamics of pre-cancer development.
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Figure 4.7 – Examples of use of the contour analysis algorithm. In (a) and (b) the algorithm
detected and discarded overlapping nuclei. In (c) it detected and discarded a severely deformed
nuclei segmentation.
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4.3 Results

This section presents some results and compares our method to Amorim et al.

(2020b)’s on both our (UFRGS AgECOM (Rönnau et al., 2023c)) and their (CCAgT

(Amorim et al., 2020a)) datasets. We also compared our results on the same datasets

with the thresholding segmentation (Ferreira et al. (2011), García-Vielma et al. (2016),

and Teresa et al. (2007)). Since the details of the thresholding segmentation used in

these works are not available (Section 3.1.1), we applied thresholding segmentation using

ImageJ (Schneider; Rasband; Eliceiri, 2012) and manually adjusted the threshold values

for each image aiming for the best possible results. Color thresholding was performed in

four steps: first, we applied a Gaussian blur using σ = 3 pixels; second, we segmented

the pixels corresponding to nuclei by interactively selecting values for hue, saturation,

and brightness; third, we segmented the pixels corresponding to AgNORs in a similar

fashion; fourth, we combined the segmentation masks and saved the result as an RGB

image. Pixels not corresponding to nuclei nor to AgNORs were considered background.

Although heavily relying on user interaction and being time-consuming, this process tends

to produce poorly segmented and noisy results (see second row of Fig. 4.8). Manually

segmenting each input image shown in Fig. 4.8 using color thresholding took an average

of 2 minutes and 40 seconds per image. In comparison, our model can segment hundreds

of images under one minute.

Segmentation results for typical as well as challenging scenarios in both datasets

are shown in Fig. 4.8 (UFRGS AgECOM) and Fig. 4.9 (CCAgT). In both figures, column

(a) shows images exhibiting high contrast between one nucleus and the corresponding

background; (b) shows one cell sprinkled with foreign objects that can be confused with

AgNORs; (c) shows one cell close to a mass of organic material collected during the

brushing processes with silver precipitation; and (d) shows nuclei that appear fainted with

respect to the background. For the examples shown in Fig. 4.8, our results nicely match

the ground truth. In contrast, Amorim et al.’s technique and color thresholding do not

produce satisfactory segmentation.

4.3.1 Quantifying AgNORs per Nucleus Results

To evaluate our system’s performance, we compare the predicted nuclei and Ag-

NORs to the ground truth masks provided by specialists. The analysis consisted of calcu-
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Figure 4.8 – Comparison of segmentation results produced by our model, by Amorim et al.’s,
and with color thresholding for typical and challenging images from our dataset. Amorim et al.’s
results are shown considering retraining on our dataset (UFRGS AgECOM), and image cropping
and resizing to match the image dimensions in their dataset. Threshold segmentation represents
the works by Ferreira et al., García-Vielma et al., and Teresa et al.
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Figure 4.9 – Segmentation results produced by our method, Amorim et al.’s, and thresholding
segmentation on images of the CCAgT dataset. Our method produced segmentation results that
better match the ground truth in all tested scenarios.
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Table 4.3 – Results of our method for counting nuclei and AgNORs.

Dataset Metric Nucleus AgNOR

Ours
Precision
Recall

0.9420
0.9002

0.8155
0.7379

CCAgT
Precision
Recall

0.8864
0.7732

0.8823
0.6799

lating the number of true positive, false positive, and false negative nuclei and AgNORs

in the predicted segmentation. A true positive corresponds to a predicted object (nuclei or

AgNOR) intersecting at least 50% of the corresponding pixel mask in the ground truth.

A false positive corresponds to a predicted object not found in the ground truth. If a

prediction misses an object in the ground truth, this is a false negative.

In total, 214 images were used, corresponding to the test set of our dataset. The

images contain 541 annotated nuclei and 2,270 AgNORs. Out of those, our method cor-

rectly identified (true positives) 487 nuclei and 1,675 AgNORs. There were 30 false

positive and 54 false negative nuclei, 379 false positive and 595 false negative AgNORs.

Applying the same method on Amorim et al.’s CCAgT dataset, we used our retrained

model described in subsection 4.3.3. The test set from CCAgT contains 331 images, 626

nuclei, and 1,896 AgNORs (Amorim et al., 2020a). Our method was capable to correctly

identify (true positives) 484 nuclei and 1,289 AgNORs. It produced 62 false positives and

142 false negatives for nuclei, 172 false positives and 607 false negatives for AgNORs.

Table 4.3 summarizes the precision and recall results of our method on both

datasets. It performed well on both, despite the fact that the CCAgT dataset consists

of cervical cells (Amorim et al., 2020a).

4.3.2 Quantifying AgNORs in User Selected Nuclei

As part of a protocol when manually counting AgNORs, experts tend to restrict

themselves to 20 up to 100 nuclei (Rajput; Tupkari, 2010), often selecting the best ones

in a set of slide images. Thus, we provide our users the ability to indicate, for each

image, which nuclei should be considered for counting. This is particularly useful for

images with low contrast or containing fungi and other organic materials, and allows users

to better reproduce their daily working process. Currently, this is done by interactively

specifying a rectangle (bounding box) around the each selected nucleus in the slide image
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using labelme.

When we applied our method to our test set considering only nuclei within bound-

ing boxes drawn by specialists, the number of nuclei and AgNORs was reduced to 242

and 922, respectively. In this scenario, the values of precision and recall for nuclei in-

creased to 1.0 and 0.99, respectively, and for AgNORs they increased to 0.86 and 0.92,

respectively. These numbers represent a significant improvement over the “in-the-wild”

results shown in Table 4.3.

4.3.3 Comparison with Other Segmentation Model

The results presented in Figs. 4.8 and 4.9 show that thresholding segmentation,

even when specifically adjusted for each image does not produce satisfactory results.

Thus, in this section we restrict the comparison of our results with Amorim et al.’s, since

they also use a CNN.

Fig. 4.8 shows that our model properly segments nuclei and AgNORs under a

variety of conditions. This section compares our results with Amorim et al.’s on both

datasets. Since Amorim et al.’s model originally uses 1600×1200-pixel images as in-

put (Amorim et al., 2020b), while the images in our dataset have 2560×1920 pixels, we

ensure compatibility in the tests on our dataset applying the following strategies before

prediction:

i. Cropping: Crop the central portion of the images and masks in our dataset to match

Amorim et al.’s model input size. Cropped images with no nucleus (7 in total) were

discarded;

ii. Resizing: Resize the images and masks in our dataset to match Amorim et al.’s model

input size;

iii. Retraining: Retrain Amorim et al. (2020b)’s model on the resized versions of the im-

ages and masks in our dataset. For this, we used the code provided by the authors (Amorim,

2020). The model was initialized and trained as described in their paper (Amorim et al.,

2020b). The retrained model was used for prediction on the resized images.

Fig. 4.8 illustrates the segmentation results produced by Amorim et al.’s model

under these three scenarios. In all of them, the results are not consistent with the ground

truth, containing a number of false positives and false negatives. It worth noting that the

retrained model did not show significant improvement over the other two.

We also tested our model on the CCAgT dataset of cervical cells provided by
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Table 4.4 – Comparison of model metrics in the AgNOR datasets.

Dataset Model Method Dice* IoU*

Ours

Ours - 0.9025 0.8405

Amorim et al.
Crop 0.3889 0.3744
Resize 0.5118 0.4463
Retrain 0.5512 0.4970

CCAgT
Ours

Pad 0.6173 0.5631
Resize 0.7327 0.6619
Retrain 0.8075 0.7388

Amorim et al. - 0.8340 0.6813
* Values consider the background class.

Table 4.5 – Performance comparison of our model with human experts on 291 images from 6 new
patients.

Patient Count Expert 1 Expert 2 Expert 3 Our Solution

A
# Nuclei 79 59 79 76
# AgNOR 225 179 277 247

B
# Nuclei 58 54 60 60
# AgNOR 135 132 147 153

C
# Nuclei 60 53 60 59
# AgNOR 148 124 157 137

D
# Nuclei 52 49 52 52
# AgNOR 118 117 129 131

E
# Nuclei 44 42 44 43
# AgNOR 117 118 124 119

F
# Nuclei 81 69 82 71
# AgNOR 274 238 307 290

Total
# Nuclei 374 326 377 361
# AgNOR 1,017 908 1,141 1,077

Time ≈ 2h ≈ 3h ≈ 2h 2m26s

Amorim et al.. Again, to ensure the compatibility in the tests on their dataset, we apply

the following strategies before using our model for prediction:

i. Padding: Our model supports images with various sizes, but our CNN architecture

requires their dimensions to be multiples of 32. Thus, we zero-padded 16 rows of pixels

at the bottom of the images and masks in the dataset. The corresponding rows were

removed from the segmentation results;

ii. Resizing: Resize the images and masks in the CCAgT dataset to match the input shape

of our model;

iii. Retraining: Retrain our model on the resized images and masks from the CCAgT

dataset. The model was initialized with the weights obtained from training on our dataset.

Fig. 4.9 compares the segmentation results produced by our method under these

three scenarios and by Amorim et al.’s considering examples from four classes of images.
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For these examples, our method outperformed Amorim et al.’s, better matching the ground

truth in all scenarios.

Table 4.4 summarizes the performance of the two models on both datasets across

the considered scenarios, using Dice score and intersection over union (IoU). Our method

achieved significantly higher scores when evaluated on our dataset. For the CCAgT

dataset, our retrained model achieved better IoU score and a Dice score very close to the

one obtained by Amorim et al.’s. This highlights the robustness of our CNN architecture

and its ability to handle different datasets.

Fig. 4.10 also illustrates the robustness of our method on a variety of challenging

images from our test dataset. Note how its results match the ground truth. For comparison,

we show the results produced by Amorim et al.’s model retrained and evaluated on resized

images of our dataset.

Limitation: Our CNN architecture requires the dimensions of the input images to

be multiples of 32, which is due to the convolutional and pooling layers of its encoder.

This limitation is easily overcome by padding the input images and discarding the cor-

responding rows/columns in the segmentation results, as demonstrated in the case of the

CCAgT dataset (Fig. 4.9).

4.3.4 Comparing Our Model with Human Experts

We validate the robustness of our CNN model by comparing its performance

against conventional counting (i.e., visual inspection) of nuclei and AgNORs performed

by three human experts on a selected set of nuclei in 291 AgNOR-stained images from

six new patients. These images were captured using a Nikon Eclipse SI microscope with

a Nikon Prime CAM 6 camera (different equipment from the one used to capture the

training dataset).

The results of this experiment are summarized in Table 4.5, which includes subject-

wise comparisons for nuclei and AgNORs. The number of nuclei identified by the experts

ranged from 326 to 377, while the number of AgNORs ranged from 908 to 1,141. Our

model identified 361 nuclei 1,077 AgNORs. Table 4.5 also compares the amount of time

taken to perform the task. Our solution took 2 min and 26 sec on an RTX 3090 GPU. On

a laptop with an RTX 2060 GPU, the time was 3 min and 10 sec. These times include

loading, predicting, finding and discarding overlapped nuclei, and saving results to disk.

The experts took from two to three hours. Since this is a visually tiring process, they
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Figure 4.10 – Application of our method on a series of challenging images from our test dataset.
(a) and (b) depict nuclei close to foreign objects. (c) depicts a cloudy nuclei. (d) and (e) show
examples of silver precipitation resulting in dark spots outside the nuclei that resemble AgNORs.
(a), (b), (e), (f), and (g) show highly contrasted nuclei with respect to the cytoplasm. (h) shows a
fainted nucleus near a mass of organic material with some silver precipitation on top. The results
produced by our model shows that it can robustly segment nuclei and AgNORs under various
conditions. The ground truth and the results produced by the version of Amorim et al.’s model
retrained and evaluated on resized images are shown for comparison.
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performed the task in multiple sessions.

We use the Intraclass Correlation Coefficient (ICC) to assess agreement between

experts and our solution, employing the two-way mixed effects model based on single

ratings. This analysis was conducted using IBM SPSS Statistics (IBM Corp., 2023). The

calculated ICC value for nuclei is 0.91, with a p-value < 0.001 and a 95% confidence

interval of [0.89, 0.93]. For AgNORs, the ICC value is 0.81, with a p-value < 0.001 and a

95% confidence interval of [0.77, 0.84]. According to Koo and Li (2015), agreement val-

ues above 0.90 represent excellent agreement and values between 0.75 and 0.90 indicate

good agreement. Thus, our solution achieved strong agreement with the experts, with the

low p-values confirming the statistical significance of these results.

Given its high agreement with human experts, our solution is currently in use in the

graduate program of the Faculty of Dentistry at UFRGS, in parallel with the conventional

method, in an experimental phase seeking validation for clinical use.
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5 AUTOMATIC SEGMENTATION AND CLASSIFICATION OF CELLS IN

PAPANICOLAOU-STAINED IMAGES

This chapter presents our work on automatic segmentation and classification of

cells in Papanicolaou-stained images. We start by describing our dataset of Papanicolaou-

stained images from the oral mucosa, UFRGS Pap-OMD (Rönnau et al., 2024), which

was annotated by specialists. We then present our CNN model for image segmentation,

which was trained on this dataset. The model performs per-pixel segmentation and clas-

sification of Papanicolaou-stained cell nuclei and cytoplasm. We then describe the im-

provements we made to the model to better segment Papanicolaou-stained images. These

improvements include the addition of a new layer and two post-processing steps. We

show the results of our model on our dataset as well as on five publicly available datasets

of Papanicolaou-stained images from cervix cells. Finally, we compare the results of

our model with the ones produced by three human experts using Intraclass Correlation

Coefficient (ICC).

5.1 Our Papanicolaou-stained Oral Mucosa Dataset

Our dataset of Papanicolaou-stained images from the oral mucosa, dubbed UFRGS

Pap-OMD (Rönnau et al., 2024), consists of 1,563 Papanicolaou-stained images from the

oral mucosa of 52 patients. On average, the dataset contains 2.69 cells per image with

standard deviation of 3.06. The images were acquired using a Nikon Eclipse SI mi-

croscope with a Nikon Prime CAM 6 camera, with resolution of 1, 920 × 1, 080 pixels

and three color channels (RGB). These images were annotated by specialists using the

software labelme (Wada, 2016). The specialists used labelme to interactively define poly-

gons delimiting individual elements for the following classes, whose color annotations

are shown in parentheses: individual cytoplasm (orange), squamous cell (green), superfi-

cial cell nucleus (red), intermediate cell nucleus (cyan), suspicious cell nucleus (yellow),

binucleate nuclei (purple), cytoplasms of cell cluster (blue). The remaining pixels were

considered background (gray). Fig. 5.1 shows examples of images from our annotated

dataset along with their corresponding color annotations overlaid on them.

For the development and testing of our CNN model, we used 1,163 images from

32 patients. The training, validation, and test sets contained 925, 123, and 115 images,
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(a) Image (b) Annotation

Background Individual Cytoplasm
Cytoplasm of Cell Cluster Squamous Cell
Superficial Cell Nucleus Intermediate Cell Nucleus
Suspicious Cell Nucleus Binucleate Cell Nucleis

Source: The Authors.

Figure 5.1 – Examples of annotated images from our dataset. (a) Original images. (b) Expert’s
annotations overlaid on (a).

respectively. The splits of the dataset were done at the patient level (i.e., all images from

any given patient only appear either in the training, validation, or test set).

The remaining 400 images from 20 individuals were reserved to statistically com-

pare the results of our model with the ones produced by three human experts (Sub-

section 5.3.2). To be able to evaluate our model in all expected scenarios, these 20 in-

dividuals were chosen from four groups, with five individuals in each group. The groups

comprise, respectively: (i) patients with squamous cell carcinoma (SCC); (ii) patients

with oral potentially malignant disorders (OPMD); (iii) patients exposed to carcinogens

(e.g., tobacco and alcohol) but without lesions in the oral mucosa (EXP); and (iv) control

group consisting of healthy patients (CTL).
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5.2 Our Papanicolaou Image Segmentation Model

Our model performs per-pixel segmentation and classification of Papanicolaou-

stained cell nuclei and citoplasm. Cell nuclei can be classified as suspicious (nuclear

atypia), superficial, intermediate, and binucleate based on their morphological and stain-

ing properties. Individual cells are classified after their nuclei types, or as anucleate squa-

mous if they have no nucleus. A cell cluster corresponds to a number of cells grouped

together and is considered suspicious if at least one cell in the cluster contains a suspicious

nucleus. The cytoplasm of individual cells and the aggregated cytoplasms of cell clusters

belong to different pixel classes. Squamous cells are anucleate. Background pixels form

an additional class of pixels. Fig. 5.1 shows examples of images from our dataset, with

the corresponding annotated classes.

We use transfer learning for image segmentation to train our model. Transfer

learning is a popular technique to take advantage of pre-trained large-scale models (Raghu

et al., 2019; Ghosh et al., 2019) and has been largely applied to medical imaging datasets

(Hesamian et al., 2019; Wang et al., 2022; Jiang et al., 2022). There are numerous options

available for encoders and decoders (Huang et al., 2017; Tan; Le, 2019; Szegedy et al.,

2016; He et al., 2016; Xie et al., 2017; Simonyan; Zisserman, 2014; Yakubovskiy, 2019).

We base our model on the architecture we used in our previous work for AgNOR-stained

image segmentation (Rönnau et al., 2023a). It is an encoder-decoder architecture con-

sisting of DenseNet-169 + LinkNet (Huang et al., 2017; Chaurasia; Culurciello, 2017),

which was selected after a systematic evaluation of 102 alternatives involving multiple

encoders, decoders, and loss functions. This architecture was then customized to improve

the quality of the segmentation results for Papanicolaou-stained images, and fine-tuned

on our own dataset. The customization is discussed in Section 5.2.1, and the resulting

architecture is shown in Fig. 5.2.

To implement the customized architecture, we use the Segmentation Models li-

brary (Yakubovskiy, 2019). The model was initialized with weights from the ImageNet

dataset (Russakovsky et al., 2015) and trained using the Adam optimizer (Kingma; Ba,

2014) with a learning rate of 10-4 and a batch size of 8 images. The images were resized

to 960× 544 pixels to fit in the GPU memory. We resize the image height to 544 instead

of 540 (half the number of image rows) because the DenseNet-169 model implemented

by Segmentation Models requires input shapes with dimensions multiple of 32 to prevent

shape mismatch errors.
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Figure 5.2 – Architecture of our CNN model. The encoding layers are based on DenseNet-
169 (Huang et al., 2017), and the decoding layers are based on LinkNet (Chaurasia; Culurciello,
2017). The decoder is modified by replacing the regular softmax layer with a temperature scal-
ing softmax (shown in blue) with a temperature parameter value of 0.1 to increase the confidence
of the predictions and avoid the bias towards the prediction of background pixels. The model’s
prediction is further processed by a semantic reclassification and a segmentation artifact removal
steps. See Sections 5.2.1 to 5.2.4 for details about these components.

The model was trained for twenty epochs, each containing ten thousand batches of

8 images. We used image augmentation functions provided by TensorFlow to artificially

increase the number of training samples applying brightness, contrast, hue, and saturation

changes with 50% of chance of occurrence (brightness delta ∈ [-0.2,0.2], contrast ∈ [0.6,

1.6], hue delta ∈ [-0.2, 0.2], saturation ∈ [0.6, 1.6]). The model weights were saved to disk

at the end of each epoch. The training was performed on a RTX 3090 GPU with 24 GB of

memory and took 28 hours. After the training finished, all saved weights were loaded and

evaluated on the test set. For the tests, we first predicted the segmentation mask for each

image in the test set at 960× 544 resolution. Then, we resized the predicted segmentation

mask to the original image resolution (1, 920×1, 080) using nearest neighbor resampling.

Finally, we evaluated the resized mask against the ground truth segmentation mask using

the Dice score and Intersection over Union (IoU) metrics. The best performing weights

on the test set were selected for the final model, which achieved a Dice score of 0.66 and

IoU of 0.65.

5.2.1 Improving Segmentation and Generalization

Papanicolaou-stained images typically have a significantly larger number of back-

ground pixels compared to nuclei pixels (see Fig. 5.5), which tends to introduce some

pixel classification bias towards background. Also, cytoplasm pixels from individual
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cells and from clusters of cells look similar, introducing some ambiguity to the model.

To address these issues, we extended the base architecture with a new layer and added

two "post-processing" steps. Together, these three new components help to improve the

model’s segmentation and classification results. The first new layer is temperature scaling

softmax (TSS). It replaces the original softmax layer and helps to avoid the bias towards

the prediction of background pixels. The post-processing steps consist of semantic re-

classification (SR) and segmentation artifact removal (SAR). The details involving TSS,

SR and SAR are presented in sub-sections 5.2.2 to 5.2.4. Fig. 5.5 shows the application of

these components to images from six different datasets (including five of cervical cells),

which exhibit significantly different characteristics in terms of colors, cell sizes, back-

ground noise, etc. This demonstrates the effectiveness of our solution to generalize to

images with highly-distinct spatial features.

5.2.2 Temperature Scaling Softmax Layer

Temperature Scaling Softmax (TSS) is a technique for calibrating the confidence

of a model’s predictions. As such, it can improve the reliability of the confidence scores

associated with those predictions, and set more appropriate thresholds, potentially im-

proving classification decisions. Calibrated confidence scores can provide more realistic

uncertainty estimates, which is essential in applications involving medical images, where

handling uncertainty is critical.

The calibrated probabilities pi are obtained by dividing the model’s predicted log-

its zi by a “temperature” parameter T before applying the regular softmax function:

pi =
exp(zi/T )∑
j exp(zj/T )

(5.1)

According to Equation 5.1, a value of 0 < T < 1 stresses the differences among

the estimated probabilities, indicating higher confidence in the predictions. For choosing

the value of T , we trained two models using T = 0.1 and T = 0.5. Applied to the

validation dataset, the model trained with T = 0.1 achieved Dice and IoU scores of 0.71

and 0.7, respectively, while the model trained with T = 0.5 obtained Dice and IoU scores

of 0.69 and 0.68, respectively. When using regular softmax, the obtained Dice and IoU

scores were 0.6 and 0.59, which demonstrates the benefits of TSS over regular softmax

for our model. Thus, we use a temperature parameter value T = 0.1 to make the model’s
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(a) Input.
(b) Prediction without

TSS. (c) Prediction with TSS. (d) Ground truth.

Background Individual Cytoplasm Cytoplasm of Cell Cluster
Superficial Cell Nucleus Intermediate Cell Nucleus Suspicious Cell Nucleus

Source: The Authors.

Figure 5.3 – The impact of temperature scaling softmax (TSS) on avoiding the bias towards the
prediction of background pixels over nuclei pixels on Papanicolaou-stained images. (a) Input
image. (b) Prediction using a model trained with a regular softmax layer. (c) Prediction using
our model trained with TSS, but before applying the semantic reclassification and artifact removal
post-processing steps (see Sections 5.2.3 and 5.2.4). (d) Ground truth. TSS improves prediction
confidence and segmentation.

predictions more confident and avoid the bias towards the prediction of background pixels.

Fig. 5.3 illustrates the benefits of TSS in our model. Fig. 5.3 (b) shows the predicted result

for the image shown in (a) obtained by replacing our model’s TSS layer with a regular

softmax layer. Note various nuclei incorrectly classified as background (gray). Fig. 5.3

(c) shows the prediction produced by our model trained with its TSS layer, where the bias

towards the background has been fixed. The ground truth is shown in (d).

5.2.3 Semantic Reclassification Step

Since clusters are formed by sets of individual cells touching each other, their cy-

toplasms may be mistaken with ones of individual cells, and vice-versa (Fig. 5.4b (top

row)). To solve this ambiguity, we extract the contours for the union of all pixels from

these two classes using OpenCV (Bradski, 2000). Each contour containing a single nu-

cleus is then classified as an individual cell, while the ones containing multiple nuclei

are classified as a clusters of cells. Contours with no nucleus are classified as anucleate

(squamous cells). We also extract the contours of the union of all pixels from each nu-

cleus. Each nucleus is then classified based on the class with the largest number of pixels

(i.e., suspicious, superficial, or intermediate). For example, if a nucleus contour contains

more pixels from the intermediate cell nucleus class, it is classified as an intermediate cell

nucleus. Fig. 5.4c (top row) illustrates the result of the reclassification process applied to

cytoplasm pixels of two cells as well as to the nucleus (yellow and cyan) of one of the cells



58

R
ec

la
ss

ifi
ca

tio
n

A
rt

ifa
ct

s
R

em
ov

al

(a) Input (b) Prediction (c) Result

Background Individual Cytoplasm
Cytoplasm of Cell Cluster Intermediate Cell Nucleus
Suspicious Cell Nucleus

Source: The Authors.

Figure 5.4 – Applying semantic reclassification and segmentation artifact removal to the prediction
of the model. Input images (a). Prediction of our model (b) to the input image. Result after
semantic reclassification (top) and artifact removal (bottom) (c) properly match the ground truth
(not shown).

shown in (b). Individual cells are classified based on their nucleus type. Clusters are clas-

sified as either suspicious, if they contain at least a suspicious nucleus, or non-suspicious,

otherwise.

5.2.4 Segmentation Artifact Removal Step

After semantic reclassification, we may still face some segmentation artifacts.

These consist mostly of small structures with less than 100 pixels, which are then dis-

carded. The number of 100 pixels was empirically defined. Fig. 5.4c (bottom row) shows

a result obtained after the removal of segmentation artifacts misclassified as cytoplasm

of cell clusters in (b). The final segmentation output is assembled, converted to RGB for

visualization, and saved to disk.

Table 5.1 shows the average Intersection over Union (IoU) values for the classi-

fication results produced by our system applied to two different test sets: (i) our original

test set (OTS) consisting of 115 images; and (ii) our additional test set (ATS) containing

400 images used to compare the performance of our system with human experts (Sec-

tion 5.3.2). Note the steady increase in the IoU values in both datasets as our solution
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Table 5.1 – Progression of the average Intersection over Union (IoU) values for the classification
results produced by our system as it goes from model prediction to reclassification and artifact
removal, evaluated in two test sets. OTS and ATS stand for Original Test Set and Additional Test
Set, respectively.

Average IoU

Dataset Prediction Reclassification Artifacts Removal

OTS (115 images) 0.65 0.75 0.77
ATS (400 images) 0.78 0.81 0.82

pipeline progresses from model prediction to semantic reclassification and artifact re-

moval, highlighting the improvements introduced by these post-processing steps.

5.3 Results

This section presents the results of applying our model to our dataset of oral mu-

cosa cells and to five public datasets of cervical cells, each presenting distinct features

(e.g., color versus gray scale, different cell colors, different background colors and inten-

sity levels, etc.). The use of such diverse datasets demonstrate the ability of our model to

generalize to different scenarios, showing that it can be used to segment and classify not

only images of the oral mucosa, but cervical images as well. We also compare the results

of our model with the ones produced by three human experts on an annotated dataset with

400 images from 20 patients. Our solution can process a Full HD image on an RTX 3090

GPU in 0.63 seconds. Given that none of the techniques discussed in Section 3.2 can

segment/classify both cytoplasms and nuclei and no publicly-available pre-trained mod-

els or implementations of these techniques are available, we do not include comparisons

with them.

5.3.1 Results on Ours and on Five Public Datasets

We evaluate the performance of our model on six datasets of Papanicolaou-stained

images, consisting of our own dataset of oral mucosa cells (UFRGS Pap-OMD) plus

five public datasets of cervical cells: LBCP (Hussain et al., 2020), MDE-Lab (Byriel,

1999), SIPaKMeD (Plissiti et al., 2018), Cervix93 (Phoulady; Mouton, 2018), and CRIC

(Rezende et al., 2021). The images of these datasets were acquired using different micro-
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Figure 5.5 – Results of our model applied to images from our dataset and from five public datasets
of cervical cells. (first row) Input images. (second row) Our model’s predictions before any
post-processing. (third row) Results after the semantic reclassification step. (fourth row) Results
after the segmentation-artifact removal step. Despite the high variability in the input images,
the predictions of our model already correspond to the final results or are very close to them.
The reclassification and artifact-removal post-processing steps only make minor changes to the
predictions, providing some “final touch". Examples of pixel reclassification and artifact removal,
and their corrected values are highlighted by yellow and green outlines, respectively (bottom of
the figure).

scopes and cameras, and have different resolutions and color channels. Fig. 5.5 shows the

results of applying our model to images from the six datasets, showing the progression of

the segmentation and classification process as the input images advance in our pipeline

(prediction, semantic reclassification, and artifact removal). The results show that our

model generalizes well to the images from these diverse datasets.

The results on the LBCP, MDE-Lab, and CRIC datasets show that our model is

robust to background artifacts and successfully classifies such objects as background. The

results on the SIPaKMeD and Cervix93 datasets show that our model is able to correctly

segment and classify cells in high-density slides, as well as to work with gray-scale im-

ages.

Fig. 5.6 illustrates the quality of the segmentation produced by our model on im-

ages from our dataset displaying different types of cells, from anucleate, intermediate,
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Figure 5.6 – Examples of segmentation produced by our model on images from our dataset (not
used in the model’s training) displaying different types of cells and clusters. The first row shows
the input images. The second row shows the results produced by our model after prediction and
the post-processing steps, nicely matching the ground truth shown in the third row.

and superficial, as well as suspicious and non-suspicious clusters. These images were

selected among the 400 images used for evaluating the performance of our model against

the human experts and, as such, were not in the training set. Note how our model results

nicely match the ground truth.

5.3.2 Comparing Our Model with Human Experts

We compare our model’s results with the ones produced by three human experts

on an additional annotated dataset (ATS) consisting of 400 images from 20 patients. The

dataset was annotated by experts using the same procedure described in Section 5.1. The

patients in the dataset belong to four groups (five patients in each group): (i) patients with

squamous cell carcinoma (SCC); (ii) patients with oral potentially malignant disorders

(OPMD); (iii) patients exposed to carcinogens (e.g., tobacco and alcohol) but without

lesions in the oral mucosa (EXP); and (iv) control group consisting of healthy patients

(CTL). One patient from each group was randomly selected to have a total of 60 annotated

images. The remaining patients had each 10 annotated images. We choose to have one

patient from each group with a larger number of annotated images to allow more accurate

comparison between our model and the experts at a patient level.
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Table 5.2 – Intraclass Correlation Coefficient (ICC) values and confidence intervals (95%) consid-
ering cells and clusters of various types identified by: three human specialists (Specialists Only);
and the same three human specialists and our model (Specialists and Our Model) in a dataset with
400 images from 20 patients. Note the improvement of the ICC values for 4 of the 5 types of
cells/clusters when including our model results.

Cell/Cluster Type ICC Confidence Interval (95%) p-value

Cluster 0.974 [0.950, 0.989] <0.001
Suspicious cluster 0.848 [0.704, 0.932] <0.001
Superficial Cells 0.906 [0.827, 0.957] <0.001
Intermediate Cells 0.883 [0.788, 0.946] <0.001
Suspicious Cells 0.879 [0.771, 0.945] <0.001

We compared the classification results (for the various types of cells and clus-

ters) produced by our model and by the three human experts. The resulting Intraclass

Correlation Coefficients (ICCs) are shown in Table 5.2 for the three experts only (Spe-

cialists Only), as well as for the experts and our model together (Specialists and Our

Model). The ICC values were computed considering a confidence interval of 95%, us-

ing the 400 images from 20 patients. The low p-values (< 0.001) for all classes confirm

the results’ statistical significance. The improvements in the ICC values for 4 of the 5

types of cell/clusters when including our model demonstrates that it achieves consistent

expert-level performance.

We also calculate the ICC for the randomly selected patients who had 60 annotated

images. The results in Table 5.3 show the ICC values and confidence intervals (95%) for

each patient and object class. According to the criteria described by (Koo; Li, 2015),

our results show excellent or good agreement between our model and the experts for all

patients and object classes, except for the suspicious cell and suspicious cluster classes of

patient (C). As shown in Table 5.2, the ICC for the suspicious cell and for the suspicious

cluster classes in the whole dataset were 0.879 and 0.848, which correspond to excellent

agreements. The ICC for the remaining object classes for patient (C) are 0.91 for cluster,

0.82 for superficial cell, and 0.86 for intermediate cell. The zero ICC value for the class

of suspicious cells from patient (C) is explained by the existence of only 6 such cells, on

which there was no agreement among the three experts: our model classified two cells

as suspicious, while experts #1, #2, and #3 reported, respectively, one, zero, and one

cell as suspicious, with no agreement among the three, resulting in an ICC value among

themselves of -0.11. Although ICC values are typically between 0 and 1, the negative

value in this particular case indicates that the experts were highly inconsistent in their

answers. The low agreement for the suspicious cluster for patient (C) (ICC value of 0.55)
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Table 5.3 – Intraclass Correlation Coefficient (ICC) values and confidence intervals (95%) per
object class for four randomly selected patients (with 60 images each) from different groups,
identified by our model and by three human specialist.

Patient Group Cell/Cluster Type ICC Confidence Interval (95%) P-value

(A) SSC

Cluster 0.90 [0.59, 0.79] <0.001
Suspicious Cluster 0.92 [0.64, 0.82] <0.001
Superficial Cell 0.73 [0.27, 0.55] <0.001
Intermediate Cell 0.79 [0.36, 0.63] <0.001
Suspicious Cell 0.76 [0.32, 0.58] <0.001

(B) OPMD

Cluster 0.96 [0.79, 0.90] <0.001
Suspicious Cluster 0.80 [0.37, 0.63] <0.001
Superficial Cell 0.91 [0.61, 0.82] <0.001
Intermediate Cell 0.93 [0.68, 0.84] <0.001
Suspicious Cell 0.77 [0.32, 0.59] <0.001

(C) Exposed

Cluster 0.91 [0.62, 0.81] <0.001
Suspicious Cluster 0.55 [0.11, 0.38] <0.001
Superficial Cell 0.82 [0.41, 0.66] <0.001
Intermediate Cell 0.86 [0.49, 0.72] <0.001
Suspicious Cell 0.00 [-0.1, 0.11] 0.62

(D) Control

Cluster 0.89 [0.56, 0.77] <0.001
Suspicious Cluster 0.82 [0.42, 0.66] <0.001
Superficial Cell 0.92 [0.65, 0.82] <0.001
Intermediate Cell 0.86 [0.48, 0.71] <0.001
Suspicious Cell 0.82 [0.41, 0.66] <0.001

is also due to the existence of only 4 suspicious clusters for this patient. In comparison,

patients (A), (B), and (D) have, respectively, 68, 45, and 43 suspicious cells, and 13,

11, and 15, suspicious clusters. Given the small number of suspicious cells/clusters for

patient (C), a single missed suspicious cell/cluster, by either our model or by an expert,

has a significant impact on the ICC value.

5.3.3 Discussion

We are currently using our system to detect suspicious cells and clusters. Patients

with a nucleus-cytoplasm ratio greater than 0.17 in their suspicious cells or presenting

suspicious clusters are referred to close monitoring by experts.

Our model was able to correctly segment the important classes for determining

the malignancy of oral mucosa cells (suspicious cells and clusters, cytoplasms, superficial

cells, and intermediate cells) and was able to generalize well to images from other datasets

of Papanicolaou-stained images. However, currently it is not as accurate in segmenting

binucleate cells. This is not a limitation of the model itself, but rather results from the low

number of examples of this class in the training dataset. Even though anucleate cells were

not included in our evaluation against the experts, our model is capable of segmenting

them correctly as shown in Fig. 5.6. While the other classes in our dataset (suspicious
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Figure 5.7 – Comparison of results produced by our model and by other segmentation architectures
(PP-LiteSeg and SegFormer) on four images from our dataset.

cell, cytoplasm, cluster, superficial cell, and intermediate cell) have over 400 examples

each, the anucleate and binucleate classes have only 121 and 37 examples, respectively.

This shortcoming is not critical for the purpose of our model, (spotting suspicious oral

mucosa cells), and it can be addressed by collecting more images with examples of these

classes and fine-tuning the model.

5.3.3.1 Experiments with Different Architectures

During the development of our work, new architectures were proposed in the lit-

erature. We tested a few of them, including PP-LiteSeg (Peng et al., 2022) and Seg-

former (Xie et al., 2021). We fine tuned these models on our dataset and compared their

segmentation with the ones produced by our model. The results showed that our model

outperformed the predictions by PP-LiteSeg and Segformer. Fig. 5.7 compares the results

of applying PP-LiteSeg, SegFormer, and our model on four images from our dataset. The

results show that our model is able to segment and classify the cells more accurately than

PP-LiteSeg and Segformer. Our model correctly classifies cell nuclei classes, and more

precisely segments the cytoplasm outlines.

We also explored Segment Anything (Kirillov et al., 2023), a model for instance

segmentation. However, it does not perform semantic segmentation, which is required for
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our work in order to categorize cell nuclei, and cytoplasm/clusters of cells. As such, we

decided not to pursue further experiments with it at that time. All the tested architectures

hold promises for future work and may be considered for further experiments.
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6 CONCLUSIONS

We presented two CNN-based methods for automatic segmentation and classifi-

cation of oral mucosa cells. Our first method is an efficient solution for automatically

segmenting and counting the number of AgNORs in cytological images. Our method

can discard overlapping and distorted nuclei, and further classify the detected AgNORs

based on their relative sizes. Users can specify the nuclei for AgNOR counting and clas-

sification by annotating the images with rectangles delimiting the regions of interest. Our

segmentation CNN can process 100 high-resolution images under one minute on a laptop.

We also introduced an annotated AgNOR-stained image dataset of epithelial cells from

the oral mucosa containing 1,171 images from 48 patients (Rönnau et al., 2023c). To

the best of our knowledge, this is the most diverse annotated AgNOR dataset available.

We demonstrated the effectiveness and robustness of our solution on many challenging

configurations on two datasets. On our dataset, our method achieved Dice and IoU scores

of 0.90 and 0.84, respectively, indicating very good agreement with the ground truth. On

a third-party dataset of cervical images, Dice and IoU scores were 0.80 and 0.74, respec-

tively. Our solution achieved a performance similar to human experts on a set of 291

images from 6 new patients, while significantly reducing the time required to quantify the

number of AgNORs per nuclei. The results of this experiment show high ICC values and

low p-values, confirming their statistical significance and agreement with human experts.

Our second method is a CNN-based solution for automatic segmentation and clas-

sification of Papanicolaou-stained oral mucosa cells. Individual cells are classified as

either suspicious, superficial, intermediate, anucleate, or bi-nucleate. Clusters of cells are

classified as suspicious or non-suspicious. To the best of our knowledge, ours is the first

technique that simultaneously performs segmentation and classification of Papanicolaou-

stained cells. Our model achieved expert-level performance in an experiment comparing

its results with the ones of three human experts on a set of 400 images of the oral mucosa

from 20 patients. The results of this experiment show high ICC values and low p-values,

confirming their statistical significance. We also presented a Papanicolaou-stained image

dataset of oral mucosa cells containing 1,563 Full HD images from 52 patients, annotated

by specialists. This is the most diverse oral mucosa cell dataset in terms of number of pa-

tients, containing a balanced number of images from four classes of patients: with squa-

mous cell carcinoma; with oral potentially malignant disorders; exposed to carcinogens,

but without lesions in the oral mucosa; and healthy. We evaluated the performance of our
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model on our dataset and on five public datasets of cervical cells. The results show that

despite being trained on images of oral mucosa, our model generalizes well to images

from different datasets, with different characteristics (e.g., captured with different mi-

croscopes and cameras, and having different resolutions, colors, background intensities,

noise levels, and Papanicolaou staining methods). The results on these datasets exhibit

high-quality segmentation and plausible classification (no ground truth is available). This

suggests that our model can be successfully used, especially after some fine-tuning, for

segmentation and classification of other types of Papanicolaou-stained images, helping in

the detection of other types of cancer.

Our methods can be used to assist pathologists in detecting the first signs of oral

cancer, especially in resource-limited settings, where AgNOR and Papnicolaou staining

technique are still widely used. Our models and datasets are publicly available (Rönnau

et al., 2023a; Rönnau et al., 2023c; Rönnau et al., 2024) and we hope they can help

practitioners and stimulate new research in early oral cancer detection.

6.1 Future Work

There are several directions for future work that could further improve the per-

formance and usability of our methods. The development of an end-to-end model for

AgNOR-stained datasets that not only segments the images but also outputs the count

of AgNORs directly is a promising direction. The development of a similar end-to-end

model for Papanicolaou-stained images that outputs not only the segmentation of the im-

ages but also the number of cells in each class and the overall nuclei/cytoplasm ratio per

cell or cell cluster is another promising future work. Training our Papanicolaou CNN with

additional examples of anucleate and binucleate cells would improve the model’s perfor-

mance on these types of cells. Fine-tuning our model for other types of Papanicolaou-

stained images is also a promising direction for future exploration. We also envision the

development of a unified software tool that integrates both methods, allowing users to

analyze both AgNOR-stained and Papanicolaou-stained images in a single environment.

This tool could also include a user-friendly interface for annotating images, training new

models, and evaluating the performance of the models. The development of a web-based

version of this tool would make it accessible to a broader audience.
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APPENDIX A — RESUMO EXPANDIDO

Esta dissertação apresenta dois métodos baseados em redes neurais convolucionais

(CNN) para segmentação e contagem de núcleos e AgNORs em imagens coradas pelo

processo AgNOR, além da segmentação e classificação de células em imagens coradas

pelo processo Papanicolaou. Para desenvolver e avaliar os métodos propostos, foram

construídos dois conjuntos de imagens de células da mucosa oral coradas com AgNOR e

Papanicolaou, respectivamente, anotadas por especialistas.

O conjunto de imagens de células coradas pelo processo AgNOR é composto por

1.171 imagens de 48 pacientes. Este conjunto é o mais diversificado disponível em termos

de número de pacientes, sendo o primeiro de células da mucosa oral. O conjunto de

imagens de células coradas pelo processo Papanicolaou é composto por 1.563 imagens de

52 pacientes, sendo o mais diversificado em número de pacientes para células da mucosa

oral coradas este processo. Ambos os conjuntos foram anotados por especialistas e estão

disponíveis publicamente.
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Figure A.1 – Aplicação do nosso método em uma série de imagens desafiadoras do nosso conjunto
de dados de teste. (a) e (b) mostram núcleos próximos a objetos estranhos. (c) mostra um núcleo
nublado. (d) e (e) mostram exemplos de precipitação de prata resultando em manchas escuras
fora dos núcleos que se assemelham a AgNORs. (a), (b), (e) e (f) mostram núcleos altamente
contrastados em relação ao citoplasma. Os resultados produzidos pelo nosso modelo comparados
ao padrão ouro mostram que ele pode segmentar robustamente núcleos e AgNORs sob várias
condições.

Nosso modelo para segmentação e contagem de núcleos e AgNORs foi avaliado

em um conjunto de 291 imagens de células coradas pelo processo AgNOR anotadas por

especialistas. O modelo obteve resultados superiores aos métodos de segmentação de
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núcleos e AgNORs da literatura. Em uma comparação com especialistas humanos, o

modelo proposto alcançou um Coeficiente de Correlação Intraclasse (ICC) de 0,91 para

núcleos e 0,81 para AgNORs, com p-value < 0.001, indicando forte concordância com

os especialistas. A Fig. A.1 mostra exemplos de segmentação produzidos pelo modelo

proposto.

Nosso modelo para segmentação e classificação de células coradas pelo processo

Papanicolaou foi avaliado em um conjunto de 400 imagens anotadas por especialistas.

O modelo demonstrou capacidade de generalização para diferentes conjuntos de ima-

gens. Em uma comparação com especialistas humanos, o modelo proposto alcançou ICCs

acima de 0,84 para todos os tipos de células, mostrando excelente ou boa concordância

para a maioria dos tipos de células. A Fig. A.2 mostra exemplos de segmentação e classi-

ficação produzidos pelo modelo proposto.
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Figure A.2 – Exemplos de segmentação produzidos pelo nosso modelo em imagens do nosso
conjunto de dados (não utilizadas no treinamento do modelo) exibindo diferentes tipos de célu-
las e aglomerados. A primeira linha mostra as imagens de entrada. A segunda linha mostra os
resultados produzidos pelo nosso modelo após a predição e as etapas de pós-processamento, cor-
respondendo bem ao padrão ouro mostrada na terceira linha.

Nossos modelos atingiram níveis de precisão e concordância comparáveis ao de

especilistas humanos e atendem ao requisito de escalabilidade para o uso difundido dos

testes de AgNOR e Papanicolaou, auxiliando profissionais de saúde na detecção precoce

de câncer bucal. Nossos modelos são capazes de processar centenas de imagens de alta

resolução em cerca de 1 minuto, sendo significativamente mais rápidos do que a análise

manual. Os modelos treinados, o código e os conjuntos de dados estão disponíveis no
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GitHub e podem estimular novas pesquisas na detecção precoce do câncer oral (Rönnau

et al., 2023a; Rönnau et al., 2023b; Rönnau et al., 2023c; Rönnau et al., 2024).
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