UFRGS - INSTITUTO DE INFORMÁTICA - DEPARTAMENTO DE INFORMÁTICA APLICADA

INF01107 – Introdução à Arquitetura de Computadores –2011/1

Trabalho Prático 2 - Simulador AHMES

Escrever um programa para o simulador Ahmes que modifique a posição da vírgula em números representados em ponto fixo, complemento de dosi. A representação de valores em ponto fixo é composta por dois campos: parte inteira (t bits) e parte fracionária (f bits), separados implicitamente pela vírgula. A soma de (t+f) corresponde à quantidade total de bits usados na representação dos números. A vírgula não precisa estar graficamente representada se a quantidade de dígitos usada em cada um dos campos é conhecida.

Os números a serem tratados pelo programa são valores numéricos de 16 bits, representados em complemento de 2, cuja parte inteira tem t bits (t_{atual} é indicado no endereço 130). A representação destes números deve ser modificada para que a sua parte inteira passe a ter t_{novo} bits. A quantidade de bits da parte fracionária deve ser modificada ou por truncamento ou por arredondamento, conforme indicado a seguir.

Para o programa devem ser utilizados obrigatoriamente os seguintes endereços:

Endereço 128: byte mais significativo (msB) do valor de entrada

Endereço 129: byte menos significativo (lsB) do valor de entrada

Endereço 130: valor de *t* para o dado fornecido (t_{atual})

Endereço 131: valor de *t* na nova representação (t_{novo})

Endereço 132: indicador do tratamento da fração (se for 0, deve ser usado truncamento; se for 1, deve ser usado arredondamento)

Endereço 133: byte mais significativo (msB) do resultado

Endereço 134: byte menos significativo (lsB) do resultado

Endereço 135: indicador de estouro na conversão (valor 2, decimal, se ocorreu estouro na conversão; valor zero se não ocorreu estouro)

O programa deve ser escrito usando o montador Daedalus e rodar no simulador Ahmes. Os trabalhos serão corrigidos de forma automática, com valores diferentes, com alteração apenas dos dados de entrada e o reposicionamento do contador de programa. Portanto, devem ser observadas rigorosamente as seguintes especificações:

- o código do programa deve iniciar no endereço 0 da memória
- a primeira instrução executável deve estar no endereço 0
- os endereços dos dados de entrada (de 128 a 132) e dos dados de saída (133 a 135) devem ser exatamente os especificados acima
- os valores das posições de memória 128 a 132 não devem ser alterados pelo programa
- usar para variáveis adicionais os endereços de memória de 136 em diante.

O trabalho deverá ser entregue no Moodle, na área de "Entrega do Segundo Trabalho", na forma de um arquivo compactado (formato zip ou rar) composto diretamente pelos arquivos:

- arquivo executável (memória do Ahmes .mem), contendo o programa.
- arquivo com programa fonte comentado, gerado pelo Daedalus (formato .ahd). Não se esqueça de incluir seu nome completo e seu número de cartão nas primeiras linhas deste arquivo.

Para nomear os arquivos, utilize todo o seu nome, usando maiúsculas e minúsculas, sem espaços em branco e sem acentos. Assim, por exemplo, o aluno Um de Três Quatro deve denominar os seus arquivos de UmDeTresQuatro.MEM, UmDeTresQuatro.AHD e UmDeTresQuatro.ZIP (ou RAR).

Observação importante: Os trabalhos devem ser desenvolvidos individualmente. Sanções a casos de cópia, independentemente do mecanismo usado, serão aplicadas sobre todos os envolvidos.

Data de Entrega: 27/06/2011 via http://moodle.inf.ufrgs.br, até as 18h

Exemplos de casos de teste (todos os valores estão indicados no sistema decimal, como inteiros positivos)

Endereço	128	129	130	131	132	133	134	135
	msB_{dado}	lsB_{dado}	t _{atual}	t_{novo}	trunc/arred	msB_{saida}	lsB_{saida}	estouro
Caso 1	0	0	8	6	0	0	0	0
Caso 2	170	170	8	10	1	234	171	0
Caso 3	170	170	8	10	0	234	170	0
Caso 4	170	170	8	6	1	170	168	2
Caso 5	170	170	8	6	0	170	168	2
Caso 6	0	7	10	13	1	0	1	0
Caso 7	0	7	10	13	0	0	0	0
Caso 8	255	0	8	4	0	240	0	0
Caso 9	197	255	8	4	0	95	240	2
Caso 10	197	255	8	10	1	241	128	0
Caso 11	197	255	8	12	0	252	95	0
Caso 12	63	128	8	16	1	0	64	0
Caso 13	63	128	8	16	0	0	63	0
Caso 14	0	175	8	0	0	175	0	2

Representação dos de casos de teste em binário, com vírgula explícita

Endereço	128 & 129	130	131	132	133 & 134	135
	valor _{dado}	$\mathbf{t_{atual}}$	t _{novo} trunc/arred		valor _{saida}	estouro
Caso 1	0000 0000,0000 0000	8	6	0	0000 00,00 0000 0000	0
Caso 2	1010 1010,1010 1010	8	10	1	1110 1010 10,10 1011	0
Caso 3	1010 1010,1010 1010	8	10	0	1110 1010 10,10 1010	0
Caso 4	1010 1010,1010 1010	8	6	1	1010 10,10 1010 1000	2
Caso 5	1010 1010,1010 1010	8	6	0	1010 10,10 1010 1000	2
Caso 6	0000 000000,00 0111	10	13	1	0000 0000 0000 0,001	0
Caso 7	0000 000000,00 0111	10	13	0	0000 0000 0000 0,000	0
Caso 8	1111 1111,0000 0000	8	4	0	1111,0000 0000 0000	0
Caso 9	1100 0101,1111 1111	8	4	0	0101,1111 1111 0000	2
Caso 10	1100 0101,1111 1111	8	10	1	1111 0001 10,00 0000	0
Caso 11	1100 0101,1111 1111	8	12	0	1111 1100 0101,1111	0
Caso 12	0011 1111,1000 0000	8	16	1	0000 0000 0100 0000,	0
Caso 13	0011 1111,1000 0000	8	16	0	0000 0000 0011 1111,	0
Caso 14	0000 0000,10101111	8	0	0	,1010 1111 0000 0000	2