
Noname manuscript No.
(will be inserted by the editor)

Generating Steering Behaviors for Virtual Humanoids
using BVP Control

Fábio Dapper, Edson Prestes, Luciana P. Nedel

Instituto de Informática – Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves, 9500 – Campus do Vale - Bloco IV
Porto Alegre – RS – Brasil 91501-970
e-mail: {fdapper,prestes,nedel}@inf.ufrgs.br

The date of receipt and acceptance will be inserted by the editor

Abstract One of the main challenges on animating
embodied autonomous characters in real-time applica-
tions is the ability to generate believable behaviors, more
precisely, actors capable of moving in a natural and im-
provisational manner. In this paper we propose an ele-
gant and low cost solution based upon boundary value
problems (BVP) to control steering behaviors of char-
acters. We use a field potential formalism that allows
synthetic actors to move negotiating space, avoiding col-
lisions, and attaining goals, while producing very indi-
vidual paths. The individuality of each character can be
set by changing its inner field parameters leading to a
broad range of possible behaviors. To illustrate the tech-
nique potentialities, some results exploring situations as
steering behavior in corridors with collision avoidance
and competition for a goal, and searching for objects in
unknown environments are presented and discussed.

Key words Humanoid Simulation Path Planning Steer-
ing behavior Harmonic Functions Boundary Value Prob-
lems

1 Introduction

In interactive applications such as games and virtual re-
ality experiences, autonomous agents (also called non-
player characters) are characters with the ability of play-
ing a role into the environment with life-like and improvi-
sational behavior [14]. Suitable skills for these characters
(often simulating human beings) include: a realistic ap-
pearance, the ability to produce natural movements, and
the aptitude to reason and act in an unforeseeable way.
However, the high performance required for the algo-
rithms used on real-time graphics applications frequently
compel developers to look for better methods to gener-
ate more natural and unexpected simple movements. In

this way, it is possible to improve the applications be-
havior quality avoiding the high cost frequently imposed
by the use of AI methods.

The simulation of virtual humans moving into a syn-
thetic world involves the environment specification, the
definition of the agent initial position and its goal (target
position). By setting these parameters, a path-planning
algorithm can be used to find a trajectory to be followed.
However, in the real world, if we consider several persons
(all in the same initial position) looking for achieving the
same target position, each path followed will be unique.
Even for the same task, the strategy used for each person
to reach his/her goal will depend on his/her physical con-
stitution, personality, mood and reasoning. In this work
we propose an algorithm to generate interesting behav-
iors for humanoids, considering that, from a single path,
several behaviors can be explored to drive the agent from
one position to another.

Despite humanoid, autonomous agent, and behavior
are terms used in many different contexts, in this paper
we will limit its use to match our goals. For sake of sim-
plicity, we consider humanoids as a kind of embodied
autonomous agent with reactive behaviors (driven by
stimulus), represented by a computational model, and
capable of producing physical manifestations in a vir-
tual world. The term behavior will be used mainly as a
synonymous of animation or motion behavior and intend
to refer the improvisational and personalized action of a
humanoid.

In a previous work [4] we proposed a method based
on the numeric solution of the boundary value prob-
lem (BVP) to control pedestrians. We showed that a
single principle can be used to generate interesting and
complex human-like behaviors while humanoids move to
achieve a navigational task. In this paper we propose
some improvements for our initial algorithm, varying the
motion speed and proposing new possibilities to follow a
path. Some very first experiments towards to endow the

2 Fábio Dapper et al.

humanoids the ability to explore unknown environments
are also presented.

The remaining of this paper is structured as follows.
Section 2 reviews some related work on path-planning
techniques applied to virtual humans simulation. Sec-
tion 3 describes the fundamentals of the path planning
method proposed by us, as well as how we solve the BVP.
In Section 4 we detail the strategy used to handle the in-
formation about the environment and other agents and
in Section 5 how the movement and velocity of the agent
are managed. Finally, Section 6 presents our results and
Section 7 conclusions and future works.

2 Related Work

Thanks to the researches in robotics, the path-planning
problem is almost solved. However, in the computer graph-
ics domain, to find a natural and realistic way to move a
character is as important as to find a path between two
points. In order to generate realistic results and allow its
use in real-time applications, several authors proposed
motion planning solutions based on two steps. In gen-
eral, the first step is dedicated to define a valid path,
while the second adapts this path to generate a more
realistic movement.

Kuffner [5] proposed a technique with the first step
dedicated to path-planning and the second to path-following.
The 3D scenario is projected in 2D and the humanoid
treated as a disc, reducing the dimension of the planning
problem. Metoyer and Hodgings [10] proposed a similar
technique also based on two steps. In their method, the
characters have a pre-defined path to follows and this
path is smoothed and slightly changed to avoid collisions
based on force fields.

The development of randomized path-finding algo-
rithms – specially the PRM (Probabilistic Roadmaps) [6]
and RTT (Rapidly-exploring Random Tree) [8] – al-
low the use of large and most complexes configuration
spaces, and generating paths most efficiently. Thus, the
challenge becomes more the generation of realistic move-
ments than finding a valid path.

Choi et al. [2] proposed the use of a library of cap-
tured movements associated to PRM to generate realis-
tic movements in a static environment. Despite the fact
the path maps should be generated in a pre-processing
phase, the results are very realistic. Pettré et al. [11] used
a PRM to identify a free of collisions path and Bézier
curves to generate smooth paths associating it with a
motion library. As in the previous works, the motion is
also performed on a 2D environment.

Differently, Burgess and Darken [1] proposed a method
to obtain very realistic paths through a terrain using
properties of fluid simulation to produce human-like move-
ments. The authors consider that a realistic path for a
human is the one requiring the smallest amount of effort.

The most part of the works developed since now pro-
pose methods based on two separate phases. In next sec-
tions we present our own proposal for generating realistic
paths based on a single phase. Our assumption is that
realistic paths derive from human personal characteris-
tics and internal state, thus varying from one person to
another.

3 BVP-Path Planner

Recently, we proposed a framework for controlling vir-
tual humanoids in navigational tasks. It is based on po-
tential fields that do not have local minima [4,15] gen-
erated through the numeric solution of the BVP using
Dirichlet boundary conditions and the following equa-
tion

∇2 p(r) + εv.∇p(r) = 0 (1)

where v is a bias vector and ε is a scalar value.
The allowed values of the parameters ε and v gener-

ate an expressive amount of action sequences that virtual
humanoids (agents) can take to reach a specific target
(goal position). Each action corresponds to a particular
displacement that the agent performs at each step. Two
sequences are not statically defined for a same pair ε and
v. They vary according to the information gathered by
the agent to allow it to react dynamically against unex-
pected events (e.g. dynamic obstacles). Satisfactory ad-
justments of parameters ε and v generate realistic steer-
ing behaviors for agents [4].

The core of the Equation 1 is the vector v, so called
behavior vector, that acts as an external force pulling the
agent to its direction always as possible. The parameter
ε can be understood as the strength or influence of this
vector in the agent behavior. When ε = 0, Equation 1
can be reduced to

∇2 p(r) = 0

which is the Laplace’s equation and the path planner
is called harmonic functions path planner. It has been
developed by Connolly and Grupen [3] and one of its
features is to lead the agent to a path that minimizes
the collision probability.

Figure 1 shows some paths produced using the equa-
tion of Laplace and the Equation 1. In Figure 1a, Laplace’s
equation conducts the agent through a path equidistant
to the walls, which is not always adequate to simulate
humanoid motion since it looks very stereotyped. In Fig-
ure 1b-c, we can observe that adding the term εv.∇p(r)
allows the generation of different kind of paths leading
the agent, for instance, closer to the wall.

Our method starts with the discretization of the en-
vironment into a fixed homogeneous mesh with identical
cells, like an occupancy grid. Each cell (i, j) is associated
to a squared region of the real environment and stores
a potential value pi,j . Dirichlet boundary conditions are

Generating Steering Behaviors using BVP Control 3

such that, the cells with high probability of having an ob-
stacle are set to 1 (high potential) while cells containing
the target are set to 0 (low potential). The high poten-
tial value prevents the agent from running into obstacles
whereas the low potential value generates an attraction
basin that pulls the agent.

(a) (b) (c)

Fig. 1 Different paths followed by agents using Equation 1:
(a) path produced by Laplace’s equation, i.e., with ε = 0;
(b) with ε = 0.8 and v = (1, 0); (c) with ε = 0.8 and v =
(1, sin(ω ∗ t)).

Solving the BVP thus consist in interpolating the po-
tential values on the grid between the obstacles and the
target. This can be done using the Gauss-Seidel algo-
rithm which updates the potential cells according to the
equation

pi−1,j + pi+1,j + pi,j−1 + pi,j+1 − 4pi,j︸ ︷︷ ︸
∇2 p(r)

+

ε

(
(pi+1,j − pi−1,j)

2
vx +

(pi,j+1 − pi,j−1)
2

vy

)
︸ ︷︷ ︸

εv.∇p(r)

= 0 (2)

that leads us directly to the update rule

pi,j =
1
4
(pi−1,j + pi+1,j + pi,j−1 + pi,j+1) +

ε

8
((pi+1,j − pi−1,j)vx + (pi,j+1 − pi,j−1)vy) (3)

where v = (vx, vy) and ε ∈ [−2,+2].
ε must be in the interval [−2,+2], otherwise, the

boundary conditions that assert the agent – repelling
obstacles and attracting the target – are violated. Then
the method generates oscillatory and unstable behaviors
that do not guarantee the agent will reach the target.

The agent uses the gradient descent of this potential
to determine the path to follows towards the target posi-
tion. This method is formally complete, i.e., if there is a
path connecting the agent position to the target, it will
be found.

4 Environment Management

As explained in last section, our path planning method
requires the environment discretization into a regular
grid. In this section we present a strategy to implement
it by using global environment maps (one for each tar-
get) and local maps (one for each agent) to enhance the
algorithm performance, allowing the use of our method
for real-time applications.

4.1 Environment Global Map

The entire environment is represented by a set of homo-
geneous meshes {mk}, where each mesh mk is associ-
ated to an achievable target ok and has Lx × Ly cells,
denoted by {ck

i,j}. Each cell ck
i,j corresponds to a squared

region centered in environment coordinates r = (ri, rj)
and stores a particular potential value pk

i,j . Each mesh
mk stores a potential field computed by the harmonic
path planner [3] that is used by agents to reach the tar-
get ok.

In order to delimit the navigation space of agents, we
consider the environment is surrounded by static obsta-
cles. Global maps are built before the simulation starts.

Fig. 2 Agent Local Map. White, light gray and dark gray
cells comprise the update, free and border zones, respectively.
Red, black and blue cells correspond to the intermediate goal,
obstacles and the agent position, respectively.

4.2 Agent Local Map

Each agent ak has one map amk that stores the cur-
rent local information about the environment obtained
by its sensors. This map is centered in the current posi-
tion of the agent and represents a small fraction of the
global map. The area associated to each agent map cell
is smaller than the area associated to the global map
cell. The main reason is that the agent map is used to
produce refined motion, hence, the smaller cell size the
better the quality of motion; while the global map is
used only to assist the long-term agent navigation.

4 Fábio Dapper et al.

The map amk has lkx × lky cells, denoted by {ack
i,j}

and is divided in three regions: the update zone (u-zone);
the free zone (f-zone) and the border zone (b-zone), as
shown in Figure 2. In a similar way, each cell corresponds
to a squared region centered in environment coordinates
r = (ri, rj) and stores a particular potential value apk

i,j .

4.3 Updating Local Maps from Global Maps

For each agent ak, a goal ogoal(k), – where the function
goal() maps the agent number k into its current target
number – a particular vector vk, that controls its behav-
ior, and a εk that determines the influence of vk, should
be stated. The same goal, v and ε can be designated to
several agents. Vector vk and εk can be either static or
dynamic. If a variable is dynamic, then the function that
controls it must be specified.

To navigate into the environment, an agent ak uses
its sensors to perceive the world and to update its lo-
cal map with the information about obstacles and other
agents. The agent sensor set a view cone with aperture
α.

Figure 2 sketches a particular instance of the agent
local map. The u-zone cells ack

i,j that are inside the view
cone and correspond to obstacles or other agents have
their potential value set to 1. In Figure 3, as the agent
1 is inside the u-zone of agent 2 local map but out of its
view cone, it is not mapped as an obstacle into the local
map of agent 2. This procedure assures that dynamic or
static obstacles behind the agent do not interfere in its
future motion.

For each agent ak, the global descent gradient on the
cell in the global map mgoal(k) that contains its current
position is calculated. The gradient direction is used to
generate an intermediate goal in the border of the lo-
cal map, setting the potential values to 0 of a couple of
b-zone cells, while other b-zone cells are considered as
obstacles, with their potential values set to 1. In Fig-
ure 3, each agent calculates its global gradient in order
to project an intermediate goal in its own local map. As
the agent local map is delimited by obstacles, the agent
is pulled towards the intermediate goal using the direc-
tion of its local gradient. The intermediate goal helps the
agent ak to reach its target ogoal(k) while allowing it to
produce a particular motion.

In some cases, the target ogoal(k) is inside both the
view cone and the u-zone, and consequently, local map
cells associated are set to 0. The intermediate goal is al-
ways projected, even if the target is mapped onto the
u-zone. Otherwise, the agent can easily get trapped be-
cause it would be taking into consideration only the lo-
cal information about the environment, in a same way
as traditional potential fields [7].

F-zone cells are always considered free of obstacles,
even when there are obstacles inside. The absence of this
zone may close the connection between the current agent

cell and the intermediate goal due to the mapping of ob-
stacles in front of the intermediate goal. When this oc-
curs, the agent gets lost because there is no information
coming from the intermediate goal to produce a path to
reach it. F-zone cells handle the situation, always allow-
ing the propagation of the information about the goal to
the cells associated to the agent position.

After the sensing and mapping steps, the agent up-
dates the potential value of all the cells of its map using
Equation 3 with its pair vk and εk. The local potential
is partially relaxed [12] and the agent uses the gradient
descent of its position defined by

dgradk =

(
apk

px+1,py
− apk

px−1,py

2
,
apk

px,py+1 − apk
px,py−1

2

)
to determine its displacement. In the local map amk,
px = dlkx/2e and py = dlky/2e.

5 Updating the Position and Speed of Agents

In our previous work [4], the agent position at time t is
computed using the following equation

post = post−1 + step
dgrad
||dgrad||

(4)

where step is a constant that corresponds to the maxi-
mum agent displacement1. However, during the experi-
ments, we observed that, for several scenarios, this equa-
tion failed in producing realistic steering behaviors, as
observed in real world. One of the reasons is that the
agent changes its direction based solely on the gradient
descent of its position. For instance, if the agent local
map is small, its reaction time will be very short to treat
dynamic obstacles. Then, these obstacles will produce a
strong repel force that will change the agent direction
abruptly. As we can see in Figure 4, if the agent uses
only the gradient descent it will change its direction in
nearly 90◦.

Fig. 4 Agent displacement scheme

We handle this problem by changing Equation 4 into,

post = post−1 + step
dt

||dt||
(5)

with
dt = η dt−1 + (1− η) dgradt

1 This section presents the equations used by all agents.
Therefore, to make the exposion clearer we supress the su-
perscript of the terms that individualize each agent.

Generating Steering Behaviors using BVP Control 5

Fig. 3 Agents acting in an environment. Each agent senses the environment, updates its local map and navigates towards
the target o1. Obstacles are represented as (red squares) in both global environment map and agent local map; the target o1 is
represented as a blue square in the global environment map and the intermediate goal generated by each agent is represented
by a (blue square) in its local map.

where η ∈ [0, 1].
If η = 0, this equation reduces to Equation 4. If

η = 0.5, the previous agent direction (dt−1) and the
gradient descent (dgradt) influence equally the compu-
tation of the new agent direction. Figure 4 shows the
vector dt computed with η = 0.5. The parameter η can
be viewed as an inertial factor that tends to keep con-
stant the agent direction insofar η → 1. When η → 1,
the agent reacts slowly to unexpected events, increasing
its hitting probability with obstacles.

Despite Equation 5 produces good results and smoother
paths in environments with few obstacles, when the envi-
ronment is cluttered with obstacles, the behavior of the
agents are not realistic. To solve this problem, we incor-
porate the control of the speed in our model, allowing
the simulation of agents mood through its magnitude.
For instance, a tired agent will probably tend to move
slowly whereas an agent that is anxious about its work
will tend to move faster. Furthermore, the adjustment of
the speed helps to prevent collisions and adds more re-
alism to the simulation 2, e.g., when two pedestrians are
in the eminence of collision, they will naturally change
its speeds.

2 Our formalism guarantees that collisions will not happen,
however, because the sensor range or/and speed, the agent
can perceive another one only when they are about to col-
lide. To avoid abrupt changes in its direction or unnatural
movements (see Section 6.3), it can alter its speed according
to the collision risk

This consideration is incorporated in Equation 5, pro-
ducing the equation

post = post−1 + υmaxf(dgradk,dt−1)
dt

||dt||
(6)

where υmax defines the maximum agent speed and func-
tion f generates an output based on the cosine of the
angle between vectors dt−1 and dgradt, that stops the
agent movement or reduces its speed when moving to-
wards an obstacle. Function f is defined as follows.

f(x,y) =
{

0 if cos(x,y) < 0
cos(x,y) otherwise .

If the angle is higher than 180◦, then there exists
a high hitting probability and this function returns the
value 0, doing the agent to stop. Otherwise, the agent
speed will change proportionally to the collision risk de-
fined by f . In regions cluttered with obstacles, agents
will tend to move slowly. If a given agent is about to
cross the path of another one, one of them will stop and
wait until the other get through.

6 Results

In this section, the results obtained through the improve-
ments proposed in our path planner are presented. In ad-
dition, we present a preliminary result of the extension
of our framework for exploratory tasks using multiples
humanoids.

6 Fábio Dapper et al.

(a)

(b)

Fig. 6 Varying the size of the agent map

6.1 Analyzing the Agent Displacement

Figure 5 shows some results using Equation 5 without
considering variations in the agent speed. The figure
shows different paths followed by an agent only varying
the parameter η in the interval [0, 1]. We assume ε = 0.7
and v = (0.7,−0.7) constants for Equation 1.

As previously commented, the parameter η acts as
an inertial factor that tends to keep constant the agent
direction insofar η → 1. Hence, the bigger the η = 1 the
smoother the path is. In Figure 5e, the influence of η is
so strong that the agent has not been able to reach the
target position, passing by it and colliding against the
wall at the end of the corridor.

6.2 Varying the Size of the Agent Map

Interesting results can be produced in the way agents
interact with others in the environment by varying the
size of the agent map. The more information on envi-
ronment is available to the agent the more it will tend
to change its behavior to avoid regions with plenty of
obstacles. Figure 6 shows two situations where an agent
finds a group in its path. In Figure 6a, the side length of
the agent map is the half of the corridor width, while in
Figure 6b, it corresponds exactly to the corridor width.
In the first case, the agent passes in the middle of a group
with other agents, whereas in the second case, the agent
avoids the group.

The size of the local map can be controlled adap-
tively using, for example, information about the sub-
jective state of agents. This idea is yet under develop-
ment, but we obtained preliminary results in robotics
context [13] where the robot dynamically adjusts its field
of view using information coming from its sonar sensors.

6.3 Varying the Speed

As discussed before, the variation of the speed parame-
ter is very important to generate not only more realistic
simulations but also to refine the result of the collision
avoidance between agents. Figure 7 shows two experi-
ments that point out the importance of adjusting the
agent speed.

In Figure 7a, both agents keep their speed constant
during the simulation, tending to follow unnatural paths.
For instance, the blue agent described a circular path.
In Figure 7b, they vary their speed according to Equa-
tion 6, showing a natural balance in the negotiation of
the space. The blue agent stops to allow the red one get-
ting through. This reflects more adequately pedestrian
behaviors found in real world.

(a)

(b)

Fig. 7 Simulation of two agents moving one against the
other with constant speed (a), and varying the speed (b)
to negotiate the space.

6.4 Exploring an Unknown Environment

Our framework is not limited to generate pedestrian be-
haviors in path planning tasks. It can be also used for
more complex tasks as the discovery of targets in un-
known environments. In a previous publication [15] we
used a small version of this framework to endow a mobile
robot Pioneer the ability to seek targets.

Initially, potential fields of the global map cells are
updated with a low potential value, indicating that the
agent does not know its environment. Then, at each step
the agent gathers information using its sensors and adds
it into the global map. The cells covered at least one
time by the agent sensors have their potential values
updated using the relaxation process. The other cells
keep their potential value generating an attracting force
that pulls the robot towards them. Afterwards, the agent
calculates the descent gradient on the cell associated to
its current position in the global map and uses it to
generate an intermediate goal, comparable to the process
commented in Section 4.3. This intermediate goal leads

Generating Steering Behaviors using BVP Control 7

(a) (b) (c)

(d) (e) (f)

Fig. 5 Varying the parameter η in the interval [0, 1]. From (a) to (e), η is equal to 0, 0.25, 0.5, 0.75, 0.95 and 0.99, respectively.

(a) (b)

Fig. 8 Searching for an object in an unknown environment: Agent a1 visits the environment until finding the searched object
o1 (a); two agents a1 and a2 are in charge of finding the same object o1 (b).

the agent automatically towards the nearest region not
visited. These steps are very similar to the algorithm
proposed by us in a previous work [15].

Figure 8a shows the path followed by the agent a1

during the search for the object o1 and Figure 8b shows
the case where two agents a1 and a2 are searching for
the same object o1. Both situations can be easily found
in a party, where a person must find another in a large
group of people spatially distributed.

We can perceive that the agent path seems unnatu-
ral when compared to the paths generated in the previ-
ous experiments. This happens because in the previous
examples the global potential field has been computed

before the simulation starts and, while in this experi-
ment, it is calculated during the agent movement. Thus,
when the agent identifies the presence of an obstacle, it
updates the global map and relaxes its cells. After, the
system dynamics makes the agent moves to the largest
unvisited region, which can be in an opposite direction
of the global gradient descent. We are currently treating
this situation in order to make the exploratory behavior
realistic.

8 Fábio Dapper et al.

Fig. 9 Performance evaluation.

6.5 Considerations about Performance

Considering the visualization of pedestrian simulations,
for each new step the agent do, the motion planner should
provide its new position and orientation. According to
Mazarakis and Avaritsiotis [9], the frequency of human
steps varies from 0.9 to 1Hz for someone walking slowly
to 3.5Hz for someone walking very fast, with a mean
of 2Hz. Then, the performance of a real-time algorithm
should be enough to calculate until 3.5 (2 as a mean)
steps per second per agent, to animate it and to render
the complete scene.

In our experiments, we were not yet concerned by
the rendering quality, but only by the quality of the be-
haviors generated and the number of agents carried by
the algorithm. Figure 9 illustrate the results obtained
on an ATHLON 64 3500+ 2.21GHz computer with 2.0
GB RAM and graphics card nVidia 7800 GTX. For each
step of each agent, considering the mean of 2 steps per
second, we have done 60 relaxations of the matrix rep-
resenting the local map. This allows the management of
up to 300 agents concurrently. If we consider the max of
3.5 steps per second, 200 agents are allowed at the same
time.

However, this performance evaluation is simplistic,
since 3D animation and rendering is not being consid-
ered, as well as algorithm optimizations. Besides, a bet-
ter compromise between rendering, animation and path
planning algorithms can be obtained by reducing the
number of relaxations for the local maps. In several ex-
amples presented in this section, we used 30 relaxations
per step done, instead of 60.

7 Conclusions and Future Work

We presented a path planner based on a numerical so-
lution for boundary value problems to produce realis-
tic steering behaviors for virtual humans. In a previous
work [4] we demonstrated that adjusting the behavior
vector v and the parameter ε, that determines the vec-
tor influence, interesting behaviors could be produced.

In this paper, we introduced a new technique to up-
date the position of agents during the simulation, also
varying its speed. We proposed a new equation (see Equa-
tion 5) to update the agent position that includes the pa-
rameter η, representing the inertial factor, used to keep

constant the agent direction during the movement. The
possibility of varying the speed helps the agents to nat-
urally negotiate the space to try to avoid eminent colli-
sions, as shown in Figure 7. We have also demonstrated
that changing the size of local maps (that can be dynam-
ically changed) it is possible to produce different steering
behaviors, as illustrated in Figure 6.

Finally, we performed some experiments involving
the use of our method to explore unknown environments
(see Section 6.4), which can be helpful for applications
with very large environments where the topology is not
completely known.

The method proposed is formally complete and gen-
erates smooth and safe paths. However, as it comes from
harmonic functions path planner, it inherits their prob-
lems. We minimized the computational cost associated
to the convergence of the potential field using, instead
of large maps that cover all the environment, small local
maps for each agent. Basically, we use several environ-
ment maps, one for each target, agent local maps and
intermediate goals, as mentioned in Section 4. The size
of local maps is a small fraction of the global map size
and, therefore, the method has a small amount of cells
to calculate the potential field. In this way, it is possi-
ble to have several agents acting in the environment still
keeping an acceptable running time.

With the conclusion of this first part of the work,
we are now exploring the adjustment of our algorithm
to manage small groups of agents – while guaranteeing
the individual personalities and mood – to be used in
applications such as RTS (Real-Time Strategy) games.
Some efforts will also be made to increase the algorithm
performance, such as its adaptation to run into the GPU
and the use of efficient data structures, e.g. quadtrees.

References

1. Burgess, R.G., Darken, C.J.: Realistic human path plan-
ning using fluid simulation. In: Proceedings of Behav-
ior Representation in Modeling and Simulation (BRIMS)
(2004)

2. Choi, M.G., Lee, J., Shin, S.Y.: Planning biped lo-
comotion using motion capture data and probabilistic
roadmaps. ACM Trans. Graph. 22(2), 182–203 (2003).
DOI http://doi.acm.org/10.1145/636886.636889

3. Connolly, C., Grupen, R.: On the applications of har-
monic functions to robotics. International Journal of
Robotic Systems 10, 931–946 (1993)

4. Dapper, F., Prestes, E., Idiart, M.A.P., Nedel, L.P.: Sim-
ulating pedestrian behavior with potential fields. In: Ad-
vances in Computer Graphics, Lecture Notes in Com-
puter Science, vol. 4035, pp. 324–335. Springer Verlag
(2006)

5. James J. Kuffner, J.: Goal-directed navigation for ani-
mated characters using real-time path planning and con-
trol. In: International Workshop on Modelling and Mo-
tion Capture Techniques for Virtual Environments, pp.
171–186. Springer-Verlag, London, UK (1998)

Generating Steering Behaviors using BVP Control 9

6. Kavraki, L., Svestka, P., Latombe, J.C., Overmars,
M.: Probabilistic roadmaps for path planning in high-
dimensional configuration space. IEEE Transactions on
Robotics and Automation 12(4), 566–580 (1996)

7. Khatib, O.: Commande dynamique dans l’espace
opérational des robots manipulaters en présence
d’obstacles. Ph.D. thesis, École Nationale Supérieure de
l’Aéronatique et de l’Espace, France (1980)

8. LaValle, S.: Rapidly-exploring random trees: A new tool
for path planning. Tech. Rep. 98-11, Computer Science
Dept., Iowa State University (1998)

9. Mazarakis G.P., A.J.: A prototype sensor node for foot-
step detection. In: Proceeedings of the Second European
Workshop on Wireless Sensor Networks, pp. 415–418.
IEEE Press (2005)

10. Metoyer, R.A., Hodgins, J.K.: Reactive pedestrian path
following from examples. The Visual Computer 20(10),
635–649 (2004)

11. Pettre, J., Simeon, T., Laumond, J.: Planning human
walk in virtual environments. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and System,
vol. 3, pp. 3048 – 3053 (2002)

12. Prestes, E., Engel, P.M., Trevisan, M., Idiart, M.A.: Ex-
ploration method using harmonic functions. Robotics
and Autonomous Systems 40(1), 25–42 (2002)

13. Prestes, E., Trevisan, M., Idiart, M.A.P., Engel, P.M.:
Bvp-exploration: further improvements. In: IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (2003)

14. Reynolds, C.: Steering behaviors for au-
tonomous characters (1999). URL cite-
seer.ist.psu.edu/reynolds99steering.html

15. Trevisan, M., Idiart, M.A., Prestes, E., Engel, P.M.: Ex-
ploratory navigation based on dynamic boundary value
problems. Journal of Intelligent and Robotic Systems
45, 101–114 (2006)

