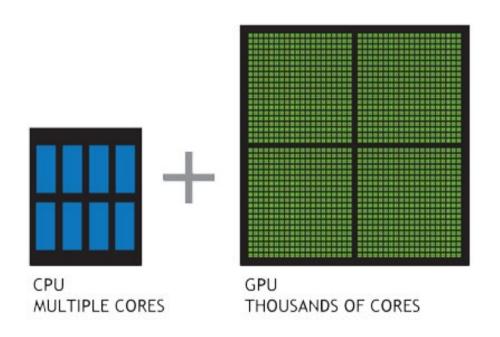
Análise de desempenho e eficiência energética de aceleradores NVIDIA Kepler

Emilio Hoffmann, Bruno M. Muenchen, Taís T. Siqueira, Edson L. Padoin e Philippe O. A. Navaux

Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUI) Universidade Federal do Rio Grande do Sul (UFRGS)

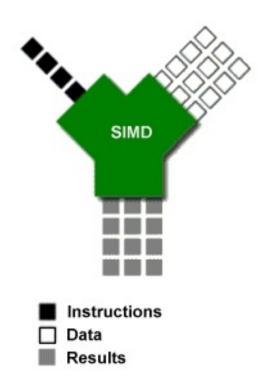
ERAD 2015 - Gramado, RS


- · Introdução
- Arquitetura das GPUs
 - · NVIDIA
- · Ambiente de testes
- · Resultados
- · Conclusão
- Trabalhos futuros
- · Bibliografia

CPU vs GPU

& ramado

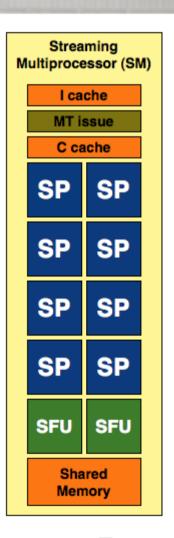
GPGPUs


- Em 2000, NVIDIA transforma GPUs em GPGPUs
 - GPUs (Graphics Processing Units) com função fixa, processamento gráfico
 - GPGPUs (General Purpouse Graphics Processing Units) passam a ser programáveis

Arquitetura de uma GPU

Classificadas como SIMD (Single Instruction Multiple Data)

& ramado


- SIMT (Single Instruction Multiple Threads)
 - Execução de instruções por grupo de Threads

Arquitetura das GPUs NVIDIA

&ramado

- SP (Streaming Processor)
 - Similar ao núcleo de uma CPU
 - Possui Pipeline completo
 - Não tem memória cache
- SM (Streaming Multiprocessor)
 - Vetor de SPs
 - Memórias Cache
 - Escalonadores
 - SFU (Special Function Units)
- Quantidade de SMs e SPs

Arquitetura NVIDIA Kepler

- SMX, Nova versão dos SMs
 - 192 CUDA Cores de precisão simples SPs
 - GK110 + 64 Unidades de precisão dupla;
 - 32 SFUs
 - 4 Escalonadores 8 Despachantes de instruções

& ramado

2 Instruções por Warp (Grupo de Threads)

Ambiente de Testes

- Hardware
 - NVIDIA Technology Center PSG Cluster
 - 30 nós com GPUs
 - Dual sockets
 - Ivy Bridge (10 cores)
 - Sandy Bridge (6 ou 8 cores)

& ramado

- Software
 - Sistema operacional CentOS 6.4 OS
 - gcc/4.6.4
 - cuda/5.0/toolkit
- Conexão
 - VPN
 - SSH

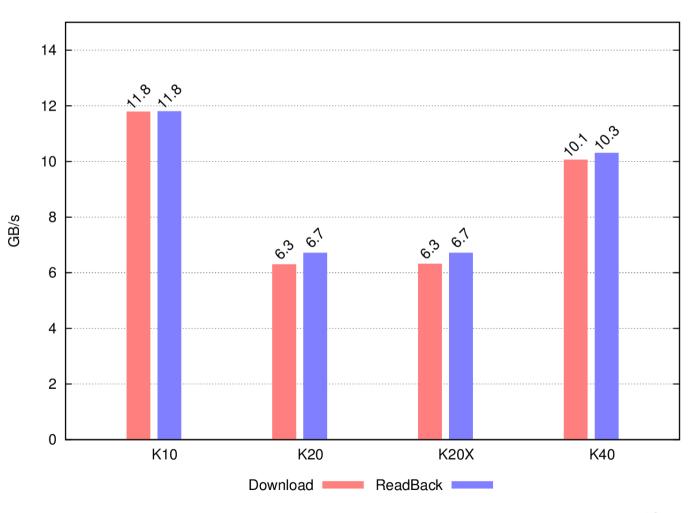
Aceleradores Utilizados

	K10m.g1	K20m	K20Xm	K40m
Memória GDDR5 (GB):	4	5	6	12
Interface memoria (Bits)	256	320	384	384
Clock da Memória (MHz):	2500	2600	2600	3004
CUDA Cores:	1536	2496	2688	2880
CLOCK SMs (MHz):	745	706	732	875
Consumo máximo (W):	117,5	225	235	235

& ramado

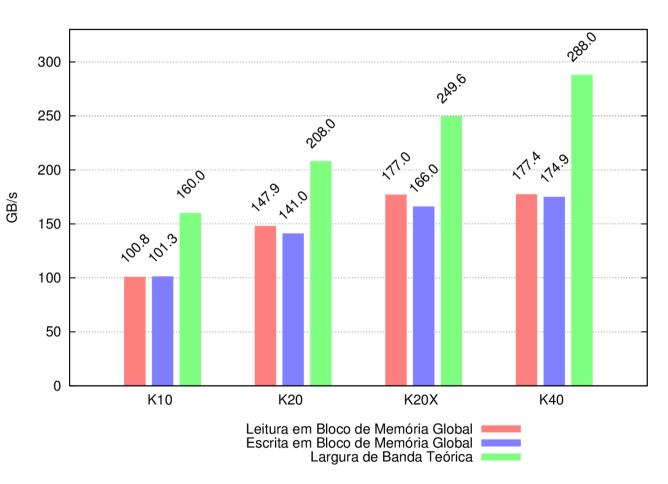
Benchmark SHOC

- Scalable HeterOgeneous Computing Benchmark suite (SHOC)
 - Dividido por categorias
 - Categoria 0 Medições de nível baixo velocidades, alimentação e memória

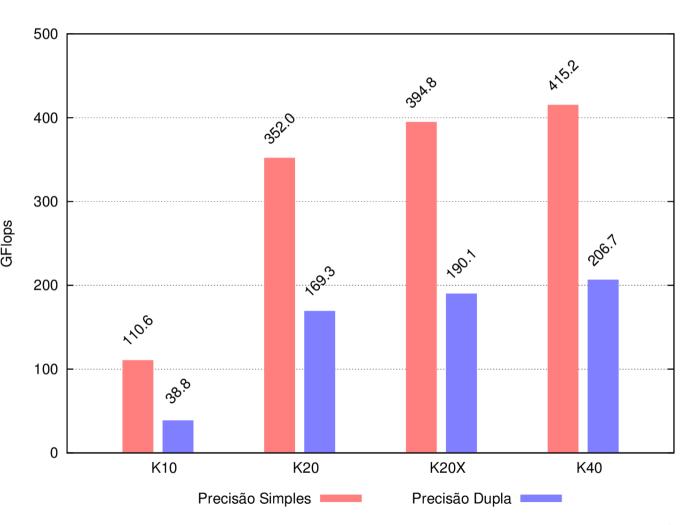

& ramado

- BusSpeed
- DeviceMemory
- Categoria 1 Medições de performance com nível mais alto
 - FFT
 - GEMM
- Categoria 2 Medições com aplicações reais

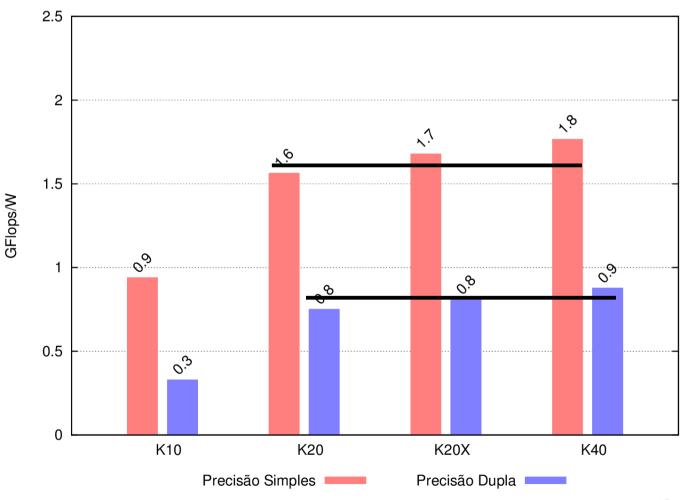
Fonte: DANALIS


Benchmark: BusSpeed Velocidade do Barramento

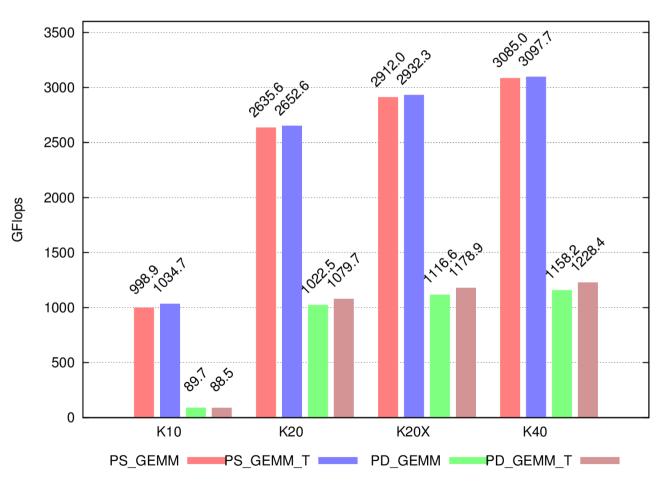
- K10 e K40
 Possuem PCI-E
 3.0
- Resultando em quase o dobro de velocidade


Benchmark: DeviceMemory Velocidade de Memória

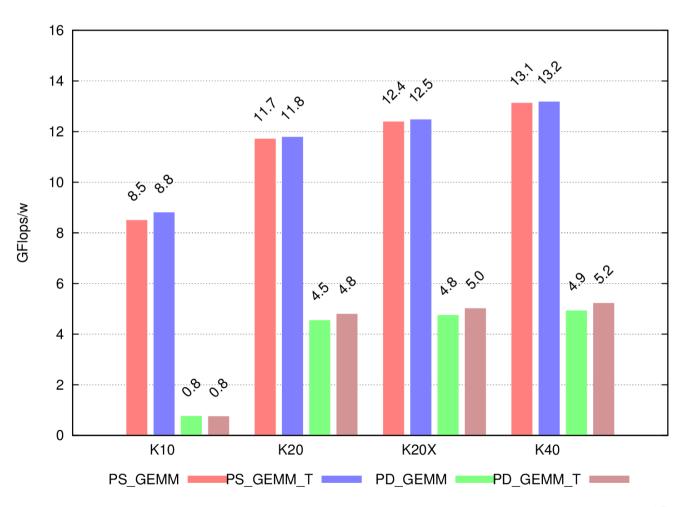
- Teórica = Interface* Frequência
- Com o SHOC obtêm-se entre
 60% e 70% da largura teórica


Benchmark: FFT Performance

- K10 >70
 MFlops/CUDA
 Core
- K20, K20x e
 K40 > 140
 MFlops/CUDA
 Core
- Interface de memória


Benchmark: FFT Eficiência energética

- K10 baixa performance = baixa eficiência
- Outras tem performance e potencia parecidas


Benchmark: GEMM Performance

- GK 104 na k10 baixa performance precisão dupla
- Resultado semelhante ao FFT

Benchmark: GEMM Eficiência Energética

- GK 104 na k10 baixa performance precisão dupla
- Resultado semelhante ao FFT

Conclusão

 Utilizado o benchmark SHOC para avaliar quatro aceleradores NVIDIA

& ramado

- K10, K20, K20x e K40
- Performance:
 - 3 TFlops com precisão simples
 - 1,2 TFflops com precisão dupla.
- Eficiência energética:
 - 13,2 GFlops/w com precisão simples
 - 5,2 GFlops/w com precisão dupla
- Aplicações científicas utilizam dados com precisão dupla

Trabalhos Futuros

- Ampliar aceleradores
 - Intel Xeon Phi
- Submissão de um artigo para WSCAD 2015
 - Jetson TK1
- Benchmarks da categoria 2

Fonte: NVIDIA

#ramado

Fonte: AMD

Fonte: Intel

Fonte: Intel

- AHMED, M. F.; HARIDY, O. A comparative benchmarking of the FFT on Fermi and Evergreen GPUs. In: IEEE. Performance Analysis of Systems and Software (ISPASS), 2011 IEEE International Symposium. [S.I.], 2011. p. 127–128.
- BELL, N.; GARLAND, M. Efficient Sparse Matrix-Vector Multiplication on CUDA. Dezembro 2008.
- BELL, N.; GARLAND, M. Análise de Desempenho da Arquitetura CUDA Utilizando os NAS Parallel Benchmarks. Dezembro 2009.
- DANALIS, A. et al. The scalable heterogeneous computing (SHOC) benchmark suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units. [S.I.: s.n.], 2010. p. 63–74.
- DETOMINI, R. C. Exploração de Paralelismo em Criptografia Utilizando GPUs. Tese (Doutorado) Universidade Estadual Paulista, 2010.
- FUJIMOTO, N. Dense matrix-vector multiplication on the CUDA architecture. Parallel Processing Letters, World Scientific, v. 18, n. 04, p. 511–530, 2008.
- GARLAND M. LE GRAND, S. . N. J. . A. J. . H. J. . M. S. . P. E. . Y. Z. . V. V. Parallel Computing Experiences with CUDA. 2008.
- GREEN 500. Acesso em: 03.nov.2014. Disponível em: http://www.green500.org.
- HEMSOTH, N. Mission Possible Greening the HPC Data Center. 2009. Acesso em: 22.out.2014. Disponível em: https://computing.llnl.gov/tutorials/pthreads.
- KIRK, D. B.; WEN-MEI, W. H. Programming massively parallel processors: a hands-on approach. [S.I.]: Newnes, 2012.
- LINDHOLM JOHN NICKOLLS, S. F. O. J. M. E. Tesla: A Unified Graphics and Computing Architecture. IEEE Micro, p. 39–55, Junho 2008.

- MUENCHEN, B. M. GPGPU: comparação de aceleradores AMD, NVIDIA e INTEL utilizando a biblioteca OPENCL. 2013.
- NVIDIA. NVIDIA Tesla C870 GPU Computing Processor Board. Abril 2008.
- NVIDIA. Tesla C1060 Computing Processor Board . Setembro 2008.
- NVIDIA. NVIDIA's Next Generation CUDA Compute Architecture: FERMI. 2009.
- NVIDIA. Tesla M2050 and Tesla M2070/M2070Q Dual-Slot Computing Processor Modules. Agosto 2010.
- NVIDIA. TESLA C2050 AND TESLA C2070 COMPUTING PROCESSOR BOARD. 2011.
- NVIDIA. Tesla C2075 Computing Processor Board. Setembro 2011.
- NVIDIA. Tesla M2090 Dual-Slot Computing Processor Module. Junho 2011.
- NVIDIA. NVIDIA's Next Generation CUDA Compute Architecture: KEPLER. 2012.
- NVIDIA. Tesla K10 GPU Accelerator. Junho 2012.
- NVIDIA. Tesla K20X GPU Accelerator. Novembro 2012.
- NVIDIA. CUDA C Programming Guide v5.5. Julho 2013.
- NVIDIA. O que é computação com GPU? 2013. Acesso em: 01.nov.2013. Disponível em: http://www.nvidia.com.br/object/what-is-gpu-computing-br.html.
- NVIDIA. Tesla K20 GPU Accelerator. Julho 2013.

Bibliografia

- NVIDIA. Tesla K40 GPU Accelerator. Novembro 2013.
- NVIDIA. CUDA C Programming Guide v6.5. Agosto 2014.
- NVIDIA. CUDA GPUs. 2014. Acesso em: 18.out.2014. Disponível em: https://developer.nvidia.com/cuda-gpus.
- OHSHIMA, S. et al. Parallel processing of matrix multiplication in a CPU and GPU heterogeneous environment. In: High Performance Computing for Computational Science-VECPAR 2006. [S.I.]: Springer, 2007. p. 305–318.
- ROSE, C. A. F. D. Caderno dos Cursos Permanentes. 2006.
- SHOC. 2012. Acesso em: 21.out.2014. Disponível em: https://github.com/vetter/shoc.
- SPAFFORD, K. et al. Accelerating S3D: a GPGPU case study. In: SPRINGER. Euro-Par 2009—Parallel Processing Workshops. [S.I.], 2010. p. 122–131.
- STRATTON, J.; STONE, S.; HWU, W. mei. Mcuda: An efficient implementation of CUDA kernels on multicores. [S.I.], 2008.
- TEAM, D. SHOC: The Scalable HeterOgeneous Computing Benchmark Suite. 2011.
- YANO, L. Avaliação e comparação de desempenho utilizando CUDA. Junho 2010.
- ZANOTTO, L.; FERREIRA, A.; MATSUMOTO, M. Arquitetura e Programação de GPU Nvidia. 2012.
- ZHANG, Y. Performance and Power Comparisons Between Fermi and Cypress GPUS. Dezembro 2013.

Análise de desempenho e eficiência energética de aceleradores NVIDIA Kepler

Obrigado!

Emilio Hoffmann, Bruno M. Muenchen, Taís T. Siqueira, Edson L. Padoin e Philippe O. A. Navaux

Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUI) Universidade Federal do Rio Grande do Sul (UFRGS)

ERAD 2015 - Gramado, RS

