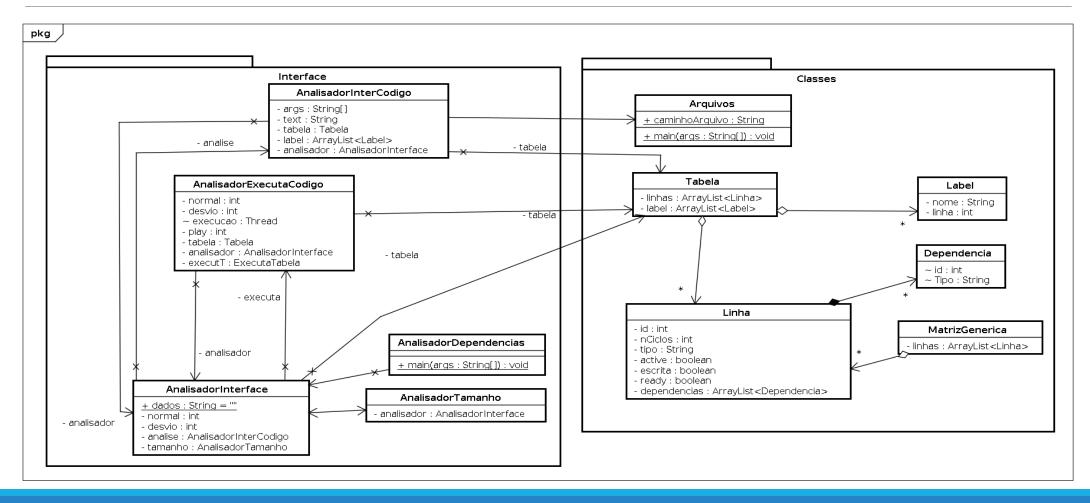
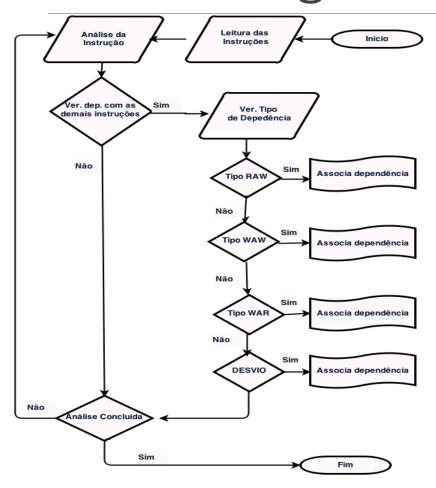
Extensão do simulador de dependências em nível de instrução AD3W para agregar maior interação com o usuário e tratamento de instruções MIPS

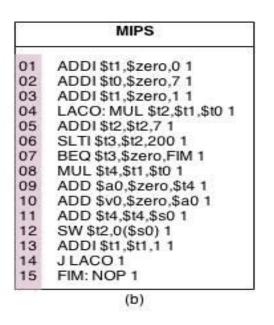
TIAGO SIQUEIRA BRUM, GUILHERME SCHIEVELBEIN, ALEXANDRE DOS SANTOS ROQUE

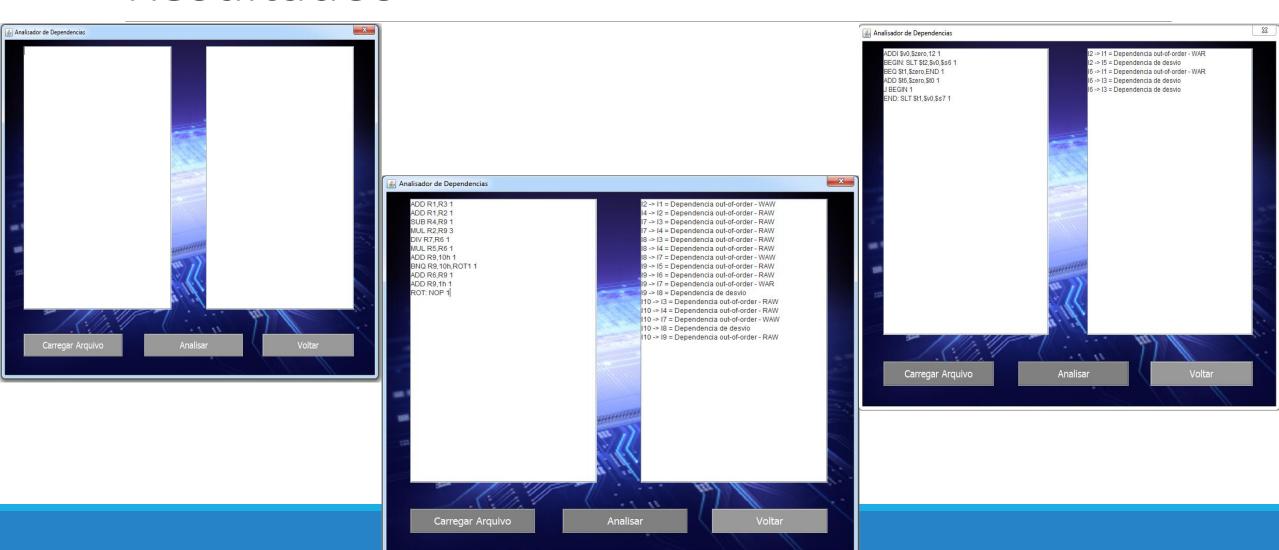

Introdução

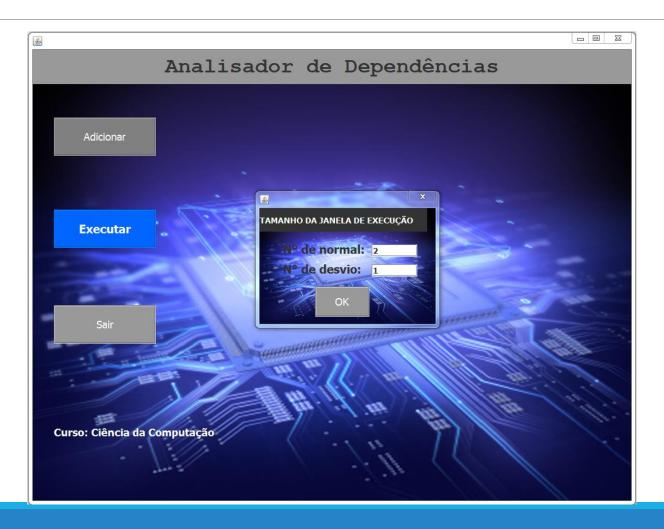
Com o Pipeline de Instruções é possível obter maior desempenho computacional.


Dependências:

- RAW
- WAW
- WAR
- Desvios


Metodologia


Metodologia



PSEUDO ADD R1,R3 1 02 ADD R1,R2 1 SUB R4,R9 1 MUL R2, R9 3 05 DIV R7.R6 1 MUL R5,R6 1 07 ADD R9,10h 1 BNQ R9,10h,ROT1 1 09 ADD R6,R9 1 ADD R9,1h 1 ROT: NOP 1 (a)



≜ Analisador de Dependencias ∑								
DECODIFICAÇÃO		JANELA DE INSTRUÇÕES	EXECUÇÃO		ESCRITA		CICLOS	
DI 1 11 13 15 17 19 111	DI 2 12 14 16 18 110	 11,12, 12,13,14, 13,14,15,16, 14,15,16,17,18,19,110, 16,17,18,19,110,111, 17,18,19,110,111, 18,19,110,111, 19,110,	UF0 11 12 13 14 15 16 17 111 19 110	UF1	WB1 11 12 13 14 15 16 17 111 19 110	WB2	1 2 3 4 5 6 7 8 9 10 11 12	
100% V							tar	

Trabalhos Futuros

Sugerir modificações para o algoritmo, evitando as dependências entre as intrusões, através do algoritmo de Tomasulo

Referências

- Ribeiro, A. I. J. T., & Rimsa, A. (2008). Técnica Motivacional Para o Ensino de Arquitetura de Computadores com Ênfase nos Grandes Desafios da Computação. Em Workshop sobre Educação em Arquitetura de Computadores-WEAC.
- Gonçalves, A. N., Gonçalves, R. L., Martini, J. A. (2007). R10k: Um Simulador de Arquitetura Superescalar. Em Workshop Sobre Educação em Arquitetura de Computadores—WEAC.
- Maia, D. W., Vieira, M. M., & Pessoa, R. F. (2009). PS-CAS MIPS: Um simulador de pipeline do processador MIPS 32 bits para estudo de Arquitetura de Computadores. Em Workshop sobre Educação em Arquitetura de Computadores.
- Brorsson, M. (2002, May). MipsIt: a simulation and development environment using animation for computer architecture education. Em *Proceedings of the 2002 workshop on Computer architecture education: Held in conjunction with the 29th International Symposium on Computer Architecture* (p. 12). ACM.
- Avelar, C. P., Jonathan Filho, J. C., Carvalho, V., & Martins, C. A. (2008). MPDSim: Simulador didático do Pipeline do MIPS de 32 bits. In Workshop sobre Educação em Arquitetura de Computadores WEAC (Vol. 2008, pp. 9-12).
- Hennessy, J. L., & Patterson, D. A. (2008). Arquitetura de computadores: uma abordagem quantitativa. Elsevier.
- Grunbacher, H. (1998). Teaching computer architecture/organisation using simulators. In Frontiers in Education Conference, 1998. FIE'98. 28th Annual. IEEE.
- Macêdo, J. A. D., & Dickman, A. G. (2009). Simulações computacionais como ferramentas auxiliares ao ensino de conceitos básicos de eletricidade. XVIII Simpósio Nacional de Ensino de Física, Vitória-ES, 1-12.
- Dongarra, J. Foster, I. Fox, G. Gropp, W. Kennedy, K. Torczon L. and White A. (2003) Sourcebook of Parallel Computing. Morgan Kaufmann Publishers, San Francisco, USA.
- Coutinho, L. M., Mendes, J. L., & Martins, C. A. (2006). Web-MHE: Ambiente web de auxílio ao aprendizado de hierarquia de memória. In Workshop sobre Educação em Arquitetura de Computadores-WEAC.
- Schievelbein, G; Losekan. M; Roque, Alexandre; Silva, Denílson R. AD3W: Um simulador educacional para análise de dependências de dados em nível e instrução. *International Journal of Computer Architecture Education, v. 2, p. 41-44,* 2013.