Simulando o Impacto da Organização Interna de um SSD no seu Desempenho

Vinícius Machado Francieli Boito Rodrigo Kassick Philippe Navaux

> Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS)

Escola Regional de Alto Desempenho - ERAD 24 de Abril, 2015 - Gramado, RS

Introdução

- SSD é uma alternativa recente ao HD
 - Uso de memória flash
 - Ausência de partes mecânicas
- Várias vantagens sobre o HD:
 - Consumo de energia.
 - Resistência a quedas e vibrações.
 - Produção de ruído.
- SSDs podem usar as mesmas interfaces que os HDs
- Muitos sistemas atuais foram desenvolvidos de acordo com características dos discos rígidos
- Essas otimizações nem sempre funcionam com SSDs

Motivação

- O desempenho pode variar significantimente entre modelos de SSD
 - Resultado de opções de projeto
- Fabricantes não disponibilizam informações sobre os seus modelos
- ► É importante estudar o comportamento de SSDs sob diferentes padrões de acesso

Disksim

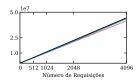
- Simulador de discos rígidos
- Microsoft Research desenvolveu uma extensão para simulação de SSDs
- ► Modelagem de um SSD genérico
- Parâmetros:
 - ► Tamanho de páginas
 - Número de chips flash
 - ► Tamanho de blocos
 - Blocos por página
 - Política de garbage collection

Testes

- Rastros sintéticos com requisições síncronas
- ▶ 300 requisições de tamanho fixo por simulação
- Simulações com quatro tipos de acesso:
 - Leitura sequencial
 - Escrita sequencial
 - Leitura aleatória
 - Escrita aleatória
- Requisições entre 8KB a 4MB
- ► Tempo do acesso obtido pela média das 300 requisições
- ► Confiança estatística de 95% com erro máximo de 5%

Parâmetros

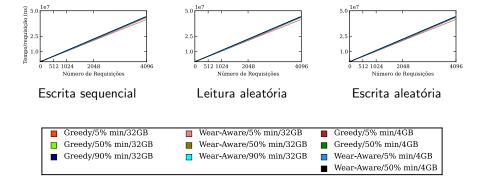
Tamanho	Tamanho	Blocos	Planes	Número	Tamanho
de	de Bloco	por	por chip	de chips	do SSD
Página		Plane	Flash	Flash	
64KB	256KB	2048	8	8	32GB
64KB	256KB	256	8	8	4GB


- ▶ Duas políticas de garbage collection: Greedy e Wear-aware.
- Garbage collection é acionado quando o percentual de blocos livre cai abaixo do limite definido.
 - ▶ 5%, 50% e 90% para o SSD de 32GB
 - ▶ 5% e 50% para o SSD de 4GB

Resultados

- Não se esperavam mudanças nos testes de leitura
- Resultados da Leitura Sequencial foram bem melhores do que a aleatória

Leitura sequencial


Leitura aleatória

- Greedy/5% min/32GB
- Greedy/50% min/32GB
- Greedy/90% min/32GB

- Wear-Aware/5% min/32GB
- Wear-Aware/50% min/32GB
- Wear-Aware/90% min/32GB
- Greedy/5% min/4GB
- Greedy/50% min/4GB
- Wear-Aware/5% min/4GB
- Wear-Aware/50% min/4GB

Resultados

- Leitura aleatória com comportamento similar aos testes de escrita
- Pequeno impacto pela alteração do modelo nesses três testes

Resultados

- Não foram notadas diferenças nas políticas de Garbage Collection
- ▶ O Modelo 5%/32GB obteve os melhores resultados
 - ► Performance 5,5% melhor do que os modelos de 50%/32GB e 90%/32GB
- ► O modelo 50%/4GB obteve os piores resultados
 - ▶ Performance 7% inferior ao modelo 5%/4GB

Conclusão

- Análise do impacto no desempenho de parâmetros da organização interna do SSD
- ► Sobrecusto de 5,5% a 7% pela execução do garbage collector
- Parâmetro de maior influência no desempenho: Quantidade mínima de blocos livres
- Não foram encontradas diferenças significativas entre os resultados para as diferentes políticas
- Performance da leitura aleatória foi inesperada

Trabalhos Futuros

- Investigar o impacto dos parâmetros nos testes de leitura aleatória
 - Estudo do código do DiskSim e o do patch de SSD
 - Uso de outros simuladores e dispositivos reais
- Repetir os testes com padrões de acesso diferentes
 - Explorar as diferenças entre as políticas