Modelagem da Tomografia Quântica via VPE-qGM

Introdução

por

Julio Machado, Lucas Agostini, Anderson Avila e Murilo schmalfuss

Orientadora: Profa. Dra. Renata Hax Sander Reiser
Universidade Federal de Pelotas
CDTEC - CC e EC
ERAD 2015

Sumário

Introdução

- 1 Introdução
- 2 Computação Quântica
- 3 Esfera de Bloch
- 4 Tomografia Quântica
- 5 Algoritmo Pais-Filho
- **6** Considerações Finais

Computação Quântica

Vantagens

- Prevê computadores quânticos com melhor desempenho que computadores clássicos;
- Origem do desempenho: fenômenos da mecânica quântica;
- Aplicações: algoritmos quânticos de busca, fatoração, criptografia, etc.

Dificuldades

- Complexidade de interpretação dos fenômenos quânticos;
- Indisponibilidade de hardware quântico;
- Ineficiência da simulação de sistemas quânticos em computadores clássicos:
 - Custo computacional associado à transformações quânticas.

Computação Quântica

Áreas de Aplicações

- Visa o desenvolvimento de novas tecnologias para armazemamento, transporte e melhor desempenho no processamento de informações;
- Desenvolvimento de novos algoritmos pela aplicação:
 - superposição de estados → paralelismo quântico;
- Integração com outras áreas para modelagem da incerteza:
 - IA modelagem de (emoções) agentes que compõem sistemas computacionais (Raghuvanshi, A. and Perkowski (2010))

Introdução Computação Quântica Interpretações de emoções Estudo de Caso Estudo de Caso Considerações Finais

Objetivos

Objetivo Geral

 Apresentar exemplos de como o espaço de estados quânticos pode representar emoções (agentes) e de como visualizá-las geometricamente.

Objetivo Específico

- Representar geometricamente estados quânticos na esfera de Bloch.
- Estudar a modelagem de emoções pela aplicação de propriedades (emaranhamento e superposição) de estados quânticos.
- Desenvolver estudo de caso:
 - Algoritmo: modelagem do comportamento entre os dois agentes pelo emaranhamento de estados quânticos;

Conceitos Básicos

Vetor de Estado

Introdução

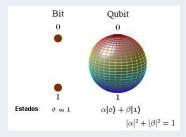
- Qubit Amplitudes / Estados da Base $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$;
- Vetor de Estado: $(\alpha, \beta)^t$;
- Normalização do Vetor de Estado: $\alpha^2 + \beta^2 = 1$.

Evolução do Sistema Quântico

- Transformações unitárias |ψ⟩ ⇒ U|φ⟩;
- Preservação da normalização do vetor de estado |ψ⟩;
- $U^t U = 1$ (U^t) transposta conjugada de U.

Sistemas Compostos

- Sistemas quânticos multi-qubit;
- $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ e $|\varphi\rangle = \gamma|0\rangle + \delta|1\rangle$:
 - $|\psi\rangle \times |\varphi\rangle = \alpha \gamma |00\rangle + \alpha \delta |01\rangle + \beta \gamma |10\rangle + \beta \delta |11\rangle$;
- Crescimento exponencial do espaco de estados.

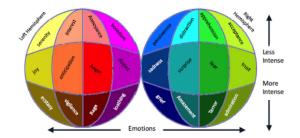


Bit Quântico

Introdução

Representação da Informação

• Computação Clássica x Computação Quântica;



Introdução Computação Quântica Interpretações de emoções Estudo de Caso Estudo de Caso Considerações Finais

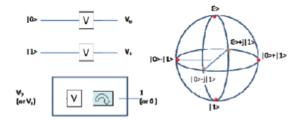
Esfera Quântica de Emoções

Roda de emoções

• Combina o paralelismo quântico com a propriedade de emaranhamento.

Planificação do Espaço Tridimensional Associado à Esfera de Bloch

Roda de emoções: Combina emoções de acordo com [Plutchik08]


 Estende a interpretação de apenas uma emoção e sua intensidade às interpretações simultâneas de múltiplas emoções.

Introdução Computação Quântica Interpretações de emoções Estudo de Caso Estudo de Caso Considerações Finais

Tomografia Quântica

Representação Emoção × Intensidade - Roda de Emoções

- o tipo de emoção como uma fase
- a intensidade da emoção como um ponto

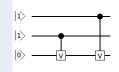
Tomografia Quântica

Representação do cálculo de V_0 :

$$V_{0} = \frac{1}{2} \begin{bmatrix} j+1 & j-1 \\ j-1 & j+1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} j+1 \\ j-1 \end{bmatrix} = \frac{1}{2} (j+1)|0\rangle + \frac{1}{2} (j-1)|1\rangle$$

$$\frac{1}{2} \begin{bmatrix} j+1 \\ j-1 \end{bmatrix} * (j-1) = \frac{1}{2} \begin{bmatrix} j^{2}-1 \\ j^{2}-2j+1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1-1 \\ -1-2j+1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -2 \\ -2j \end{bmatrix} = \begin{bmatrix} -1 \\ -j \end{bmatrix} = \begin{bmatrix} 1 \\ j \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} j+1 \\ j-1 \end{bmatrix} * (j+1) = \frac{1}{2} \begin{bmatrix} j^{2}+2j+1 \\ j^{2}-1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1+2j+1 \\ -1-1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2j \\ -2 \end{bmatrix} = \begin{bmatrix} j \\ -1 \end{bmatrix} = \begin{bmatrix} j \\ 1 \end{bmatrix}$$


Interpretações de emoções

Algoritmo Pais-Filho: Descrição

Algoritmo Pais-Filho: Representação no QCedit

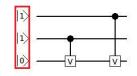
Introdução

- Verifica em uma única medida se o filho está feliz ou não:
- Cada agente é modelado por um qubit;
- Comunicação entre agentes é modelada pelo emaranhamento e sobreposição de três estados quânticos;
- Operações: porta V e controlada CV;
- Modelagem de emoções: felicidade
 - Estado Clássico |0> --> estado inativo
 - Estado Clássico |1 > -- > estado ativo

Estudo de Caso

Algoritmo Pais-Filho: Descrição

Interpretações de emoções


Algoritmo Pais-Filho: Descrição

Interpretações de emoções

	(1	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0
	0	0	1	0	0	0	0	0
	0	0	0	1	0	0	0	0
$C_{0,2} V \bigotimes Id =$	0	0	0	0	$\frac{1}{2}(j+1)$	$\frac{1}{2}(j-1)$	0	0
	0	0	0	0	$\frac{1}{2}(j-1)$	$\frac{1}{2}(j+1)$	0	0
	0	0	0	0	0	0	$\frac{1}{2}(j+1)$	$\frac{1}{2}(j-1)$
	0	0	0	0	0	0	$\frac{1}{2}(j-1)$	$\frac{1}{2}(j+1)$

Algoritmo Pais-Filho: Evolução

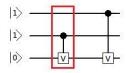
Interpretações de emoções

Notação de Dirac


Notação Matricial

Estudo de Caso

$$|S_0\rangle = |110\rangle$$


$$|110\rangle = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

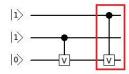
$$|S_1\rangle = (CV_1,_2 \bigotimes Id)|S_0\rangle$$

Algoritmo Pais-Filho: Evolução

Interpretações de emoções

Notação de Dirac

Notação Matricial


$$|S_{1}\rangle = (CV_{1,2} \bigotimes Id)|S_{0}\rangle \qquad \begin{pmatrix} Id_{2} & 0_{2} & 0_{2} & 0_{2} \\ 0_{2} & V & 0_{2} & 0_{2} \\ 0_{2} & 0_{2} & Id_{2} & 0_{2} \\ 0_{2} & 0_{2} & 0_{2} & V \end{pmatrix} \cdot |S_{0}\rangle = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \frac{1}{2}[j+1] & \frac{1}{2}[j-1] \end{pmatrix}$$

Algoritmo Pais-Filho: Evolução

Interpretações de emoções

Notação de Dirac

Notação Matricial

$$|S_2\rangle = (CV_{0,2}|S_1\rangle)$$

$$\begin{pmatrix} Id_2 & 0_2 & 0_2 & 0_2 \\ 0_2 & Id_2 & 0_2 & 0_2 \\ 0_2 & 0_2 & V & 0_2 \\ 0_2 & 0_2 & 0_2 & V \end{pmatrix} \cdot |S_1\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

Interpretações de emoções

O Filho tem o seu estado alterado:

$$|S_0\rangle$$
 $|S_2\rangle$ Resultado da Medida $|110\rangle$ --> $-|111\rangle$ --> $\{$ O Filho torna - se ativo

O filho fica em "cat state":

$$|S_0\rangle \qquad |S_2\rangle \qquad \text{Resultado da Medida}$$

$$|101\rangle \qquad --> \qquad \frac{1}{2}((1+j)|100\rangle + (-1+j)|101\rangle) --> \left\{\begin{array}{ll} |100\rangle, \ p=\frac{1}{2}\text{O permanece inativo} \\ |101\rangle, \ p=\frac{1}{2}\text{O filho torna- se ativo} \end{array}\right.$$

Conclusões

Introdução

Resultados Parciais Alcançados

- O trabalho introduziu a definição de métodos para descrição dos circuitos quânticos a partir dos padrões estabelecidos para os circuitos clássicos.
- Apresentou-se uma estudo para modelagem de emoções baseada em estudo de caso: Algoritmo Pais-Filho.
- Considerou-se conceitos da CQ (emaranhamento, superposição e tomografia quântica) como área estratégica para o desenvolvimento científico e tecnológico.

Continuidade

• Estudo de como representar conceitos da Logica Fuzzy usando registradores e estados da CQ.

Agradecimentos

- Grupo de Pesquisa: LUPS
- FAPERGS (PqG 002/2014, processo 309533/2013-9,)
- MCTI/CNPQ (Universal processo 448766/2014-0)

Mais informações:

E-mail: julio.mds.neto@gmail.com

