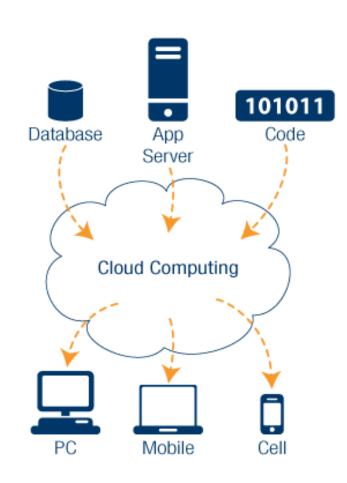


Panorama de Aplicações de Alto Desempenho em Nuvem

Jonathan Patrick Rosso, Claudio Schepke

jonathan.p.rosso@gmail.com, claudioschepke@unipampa.edu.br

Ciência da Computação – Campus Alegrete


Roteiro

- Conceitos e Definições
- Vantagens Modelo Público e Privado
- Computação em Nuvem e Alto Desempenho
- Principais Trabalhos
- Considerações Finais

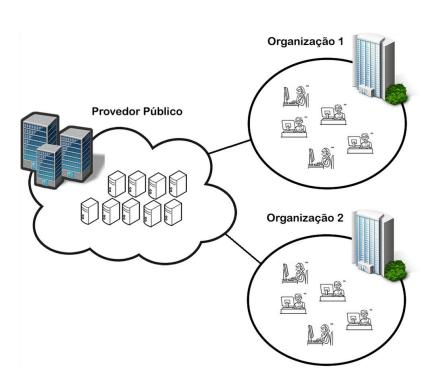
Computação em Nuvem

Mudança como os recursos são adquiridos e utilizados.

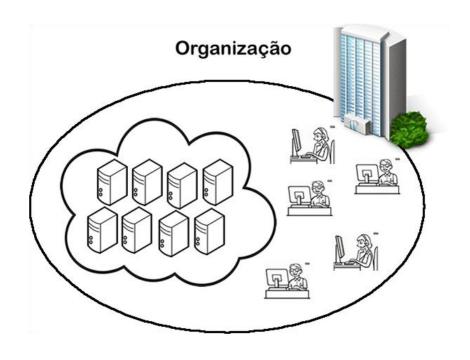
- Recursos são adquiridos e liberdos conforme a demanda;
- Acesso através da internet;
- Pagamento baseado no uso.

Características Essenciais

- Autoatendimento sob demanda.
 - Adquirir recursos sem iteração com provedor.
- Amplo acesso a serviços de rede.
 - Acessar recursos de qualquer lugar através da internet.
- Pool de recursos.
 - Recursos compartilhados por vários clientes.
- Serviços Mensuráveis.
 - Serviços são medidos e tarifados.
- Elasticidade rápida.
 - Recursos alocados e liberados conforme a necessidade.

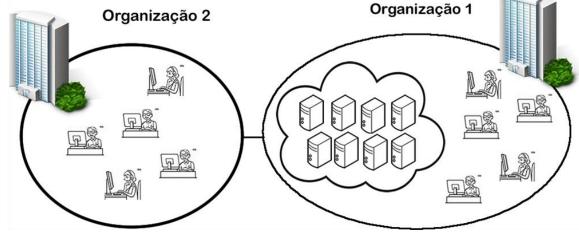

Modelos de Serviço

Modelos de Implementação

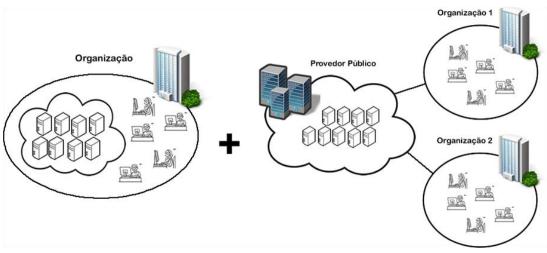

Nuvem Pública

Computação como serviço público

Nuvem Privada

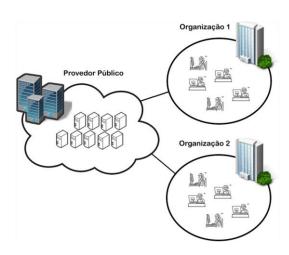

Uso exclusivo de uma organização

Modelos de Implementação


Nuvem Comunitária

Organizações com interesses em comum

Nuvem Híbrida

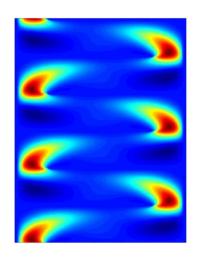

União de duas ou mais nuvens

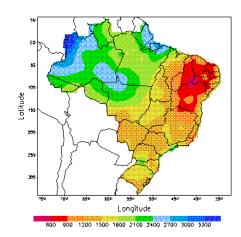
Vantagens ambiente Público e Privado

Nuvem Pública

- Paga-se apenas pelo que usa.
- Elasticidade ("recursos infinitos").
- Redução em Investimento em TI.

Nuvem Privada


- Maior eficiência na utilização dos recursos;
- Maior segurança;
- Economia de Energia.


Computação em Nuvem e Alto Desempenho

Alternativa para a execução de aplicações científicas

- Grande variedade de recursos.
- Rápida configuração de ambientes e alocação de recursos.
- Mais barata que supercomputadores.
- Mais fácil de configurar que grades computacionais.

Simulação de Fluidos

Previsão do Tempo

Genoma Humano

Artigo	Testes	Ambiente
Navaux et al. 2012	Benchmarks	Nuvem Pública
Coutinho et al. 2012	Benchmarks	Nuvem Pública
Shad et al. 2010	Benchmarks	Nuvem Pública
Isoup et al. 2011	Benchmarks	Nuvem Pública
Alves and Drummond 2014	Benchmarks e Aplicações reais	Nuvem Pública
Khurshid et al. 2009	Benchmarks	Nuvem Privada
Maron et al. 2012	Benchmarks	Nuvem Privada
Strazdins et al. 2012	Benchmarks e Aplicações Reais	Nuvem Públcia e Privada

Navaux et al. 2012

- Avaliaram o desempenho, eficiência de custo e desenvolvimento em três provedores de nuvem pública.
- Utilizaram o benchmarks para os testes.
- Concluiram que o melhor provedor de nuvem depende do tipo e comportamento da aplicação.
- Nuvens podem ser de 27% a 41% mais eficientes do que clusters.

Coutinho et al. 2012

- Avaliaram o desempenho no ambiente de nuvem pública.
- Experimentos com benchmarks especíicos sobre aspectos de CPU, memoria, I/O e rede.
- Resultado variação nas medições mesmo em instâncias de mesma capacidade e mesma zona de disponibilidade.
- Fatores como horário de utilização e tipo de conta do usuário influenciam no desempenho.

Shad et al. 2010

- Objetivo avaliar desempenho
- Ambiente Amazon EC2
- Resultado variação no tempo de execução com uma diferença de 24% em alguns casos

Isoup et al. 2011

- Objetivo avaliar desempenho
- Ambiente Google e Amazon
- Resultado variação média mensal de 50%

Alves and Drummond 2014

- Análise de desempenho de uma aplicação científica em duas nuvens públicas e ambiente nativo.
- Resultados decréscimo significativo no tempo causado pelo overhead de virtualização e pelo compartilhamento de recursos.

Strazdins et al. 2012

- Avaliação de benchmarks e aplicações científicas. Em Nuvem públicas, privadas e cluster nativo, com benchmarks e aplicações científicas;
- Resultados uso intensivo dos dados pode impactar na performace.

Khurshid et al. 2009

- Avaliado o desempenho de rede (benchmarks).
- Ambiente de nuvem Privada com Open Cirrus.
- Resultados mostraram que configurações internas e características de rede afetam o desempenho.

Maron et al. 2012

- Avaliar o impacto de ferramentas de nuvem (benchmarks).
- Ambientes OpenNebula e OpenStack.
- Resultados mostraram que as ferramentas influenciam no desempenho.

Considerações Finais

- Computação em Nuvem pode ser uma ótima alternativa para alto desempenho, dependendo do tipo de aplicação.
- Pequenos centros de pesquisa e organizações com pouco investimento.
- Execuções em curto período de tempo.
- Principais desafios estão ligados à variabilidade de desempenho, causado pelo compartilhamento de recursos físicos, e pelo overhead do software de virtualização.

Bibliografia

- [1] NAVAUX, P. O., CARISSIMI, A., ROLOFF, E., and DIENER, M. (2012). High Performance Computing in the Cloud: Deployment, Performance and Cost Efficiency.
- [2] COUTINHO, E. F., Rego, P. A., Gomes, D. G., and de Souza, J. N. (2012). Análise de Desempenho com Benchmarks em um ambiente Público de computação em Nuvem.
- [3] SCHAD, J., Dittrich, J., and Quiane-Ruiz, J.-A. (2010). Runtime Measurements in the Cloud: Observing, Analyzing, and Reducing Variance.
- [4] Iosup, A., Yigitbasi, N., and Epema, D. (2011). On the Performance Variability of Production Cloud Services.
- [5] Alves, M. and Drummond, L. (2014). Análise de desempenho de um simulador de reservatórios de petróleo em um ambiente de computação em nuvem.
- [6] Khurshid, A., Al-Nayeem, A., and Gupta, I. (2009). Performance evaluation of the Illinois Cloud Computing Testbed.

.

Bibliografia

- [7] Maron, C. A., Griebler, D., Vogel, A., and Schepke, C. (2012). Avaliação e Comparação do Desempenho das Ferramentas Openstack e Opennebula.
- [8] Strazdins, P. E., Cai, J., Atif, M., and Antony, J. (2012). Scientific Application Performance on hpc, Private and Public Cloud Resources: A case Study Using Climate, Cardiac Model Codes and the npb Benchmark Suite.
- [9] MELL, P. M.; GRANCE, T. SP 800-145. The NIST Definition of Cloud Computing. Gaithersburg, MD, United States, 2011.
- [10] BUYYA, R.; BROBERG, J.; GOSCINSKI, A. M. Cloud computing: Principles and paradigms. [S.I.]: John Wiley & Sons, 2010.
- [11] VAQUERO, L. M. et al. A break in the clouds: Towards a cloud definition. SIGCOMM Comput. Commun. Rev., ACM, New York, NY, USA, v. 39, n. 1, p. 50–55, dez. 2008.

Obrigado

Perguntas?

Jonathan Patrick Rosso, Claudio Schepke jonathan.p.rosso@gmail.com, claudioschepke@unipampa.edu.br

Panorama de Aplicações de Alto Desempenho em Nuvem

Jonathan Patrick Rosso, Claudio Schepke Jonathan.p.rosso@gmail.com

Ciência da Computação – Campus Alegrete