
Implementação do algoritmo Friends of Friends de complexidade n*log(n) para classificação de objetos astronômicos

Otávio Migliavacca Madalosso¹, Andrea Schwertner Charão¹, Haroldo Fraga de Campos Velho², Renata Ruiz² ¹ Universidade Federal de Santa Maria (UFSM)

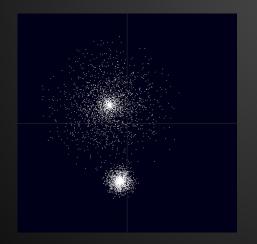
² Instituto Nacional de Pesquisas Espaciais (INPÉ)

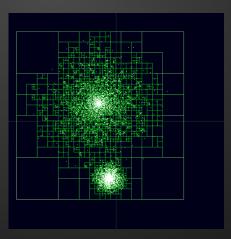
Problema

Agrupamento de corpos celestes

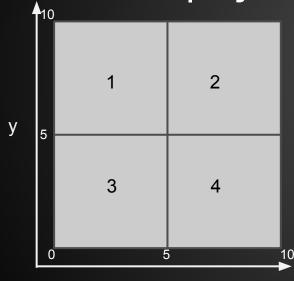
Friends of Friends

- classifica grupos de corpos celestes, agrupando-os com base na distância entre eles.
 - d(x,y) < r então x e y são "amigos"
 - se d(y,z) < r também, então z é amigo tanto de y como de x.
- Entradas do problema e saídas esperadas.

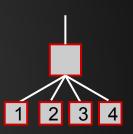

2. Algoritmo anterior

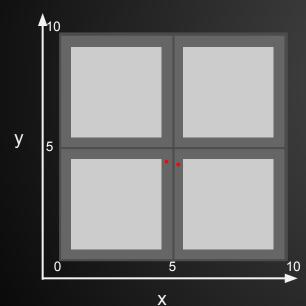

- Complexidade
- Lógica
 - Ignora corpos que já tem grupos
 - Código

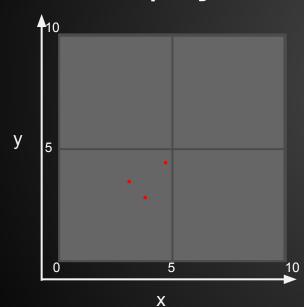
- Divisão Espaço 3D
 - Octree
 - J.Barnes e P. Hut
- Fronteiras de semi-espaços
- Semi-cubos < raio
- Relabel


Barnes-Hut Simulation

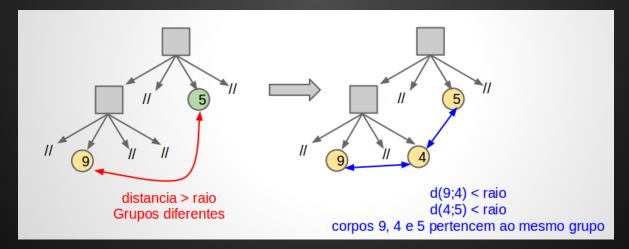
 Divisão de espaços tri-dimensionais em octrees para problemas de n-elementos




Divisão Espaço:

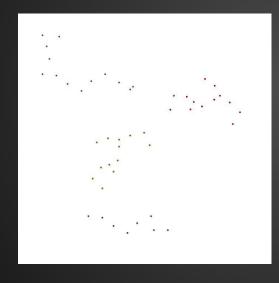

	Pos X	Pos Y
1	[0,5]	[0,5]
2	[5,10]	[0,5]
3	[0,5]	[5,10]
4	[5,10]	[5,10]

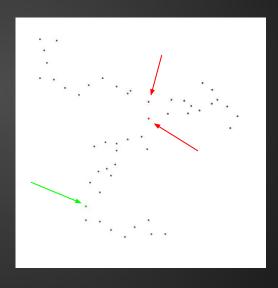
Fronteiras de semi-espaços:


Semi-espaços menor que o raio

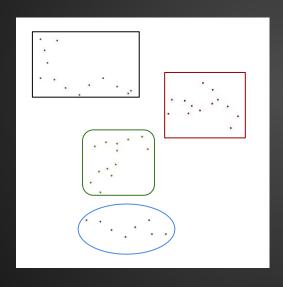
- Caso em que qualquer corpo adicionado irá pertencer ao grupo dos outros corpos alocados naquele nó.
- Vetor de grupos.

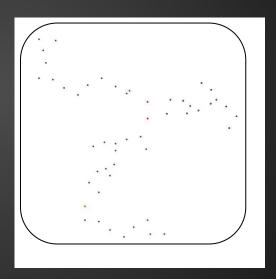
Relabel


 Novo corpo adicionado é um elo entre 2 ou mais grupos.



4. Diferenças


- Erro de resultado
 - Apurar resultados com teste controlado.
 - Imagens dos dados.


4. Diferenças - Testes controlados

4. Diferenças - Testes controlados

5. Paralelização

- OpenMP
- Divisão do problema.
 - Divisão dos dados de entrada
 - Execução paralela dos espaços
 - Junção de resultados

5. Paralelização

Cada processo criado trata de um semiespaço.

5. Paralelização

Verificação das fronteiras das árvores de cada processo

6.Tempos

- Tempo algoritmo original 26min
- Tempo algoritmo desenvolvido
- diferenças entre numero de processadores executando.
- Variação de desempenho com base no raio e na amostra utilizada.

6.Tempos

Processos	Tempo(s)
1	39,92
2	22,13
4	14,85
8	13,43

*Tempos: media de 30 execuções

6.Tempos

- Variação de acordo com raio e amostra de entrada
- Relação Speed Up e número de processos.

7. Conclusão e Projetos Futuros

- Trabalho realizado e resultados
- Portal Web
- Oportunidade novas de paralelismo (GPU)
 - Divisão e separação de entrada
 - Relabel
 - Junção dos diferentes processos

Referências

- J. Barnes and P. Hut (December 1986). "A hierarchical O(N log N) forcecalculation algorithm". Nature 324 (4): 446–449
- Ruiz, R. S. R.; Campos Velho, H. F.; Caretta, C. A. Paralelizacao do Algoritmo Friends- of-Friends para identificar Halos de Materia Escura. In: IX Workshop do Curso de Computacao Aplicada, 2009, Sao Jose dos Campos.
- Huchra, J. P. e Geller, M., J. (1982). Groups of Galaxies I. Nearby groups.
 The astrophysical, v. 257, p. 423 437

<u>Dúvidas e comentários</u>

omadalosso@inf.ufsm.br