Metodologia

Análise preliminar parcial do reuso de traços em arquiteturas ARM

Giovane de Oliveira Torres¹

Rodrigo Costa de Moura Prof. Dr. Maurício Lima Pilla (Orientador)

> Ciência da Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas gdotorres@inf.ufpel.edu.br

> > 24 de abril de 2015

¹Bolsista PIBIC/CNPa

- 1 Introdução
 Arquiteturas ARM
 Reuso de Traços
- 2 Objetivos
- 3 Metodologia
- 4 Resultados
- **5** Conclusões e Trabalhos Futuros

Introdução

Motivação

- Demandas atuais
 - Desempenho
 - Redução do consumo de energia
- Difícil especialização do hardware em aplicações de propósito geral

Resultados

Melhorias no desempenho de processadores do estado da arte

Introdução

Introdução

Arquiteturas ARM

- Objetiva o baixo consumo de energia
- Processador possibilita ter número relativamente pequeno de transistores
- Altamente modular
- Particularidade: Instruções condicionais

Introdução

Reuso de Traços

- Técnica que visa reduzir quantidade de instruções executadas
- Reutiliza sequências dinâmicas de instruções
- Conjunto de instruções com uma determinada entrada gera a mesma saída
- Armazenados em um buffer quando executados para poderem ser analisados se os mesmos serão reusados

Objetivos

Objetivo Geral

 Fazer análise do potencial da técnica de reuso de traços numa arquitetura ARM

Objetivos Específicos

- Analisar a quantidade de redundância encontrada em aplicações dentro do domíno de reuso as quais não englobam alguns tipos de instruções
 - Instruções que envolvem operações em ponto flutuante
 - Instruções de interrupções de software
- Verificar tamanho médio dos traços redundantes

Ferramentas Utilizadas

- Simulador de arquiteturas ARM
 - Sim-Panalyzer
- Conjunto de benchmarks para executar sobre o simulador
 - MiBench

Metodologia

MiBench

- Conjunto de benchmarks comercialmente representativos
- Possui código fonte disponível gratuitamente em C
- Composto por 27 aplicações de diversas áreas computacionais
 - Redes
 - Segurança

Metodologia

Sim-Panalyzer

- Ferramenta que simula uma arquitetura ARM
- Tem como objetivo principal permitir análises dos ganhos e perdas na relação entre consumo energético e desempenho
- Possui opção de gerar tracefiles das aplicações executadas

Metodologia

Metodologia

- Efetuar modificações no simulador para inserir a técnica de reuso de traços
 - Tamanho do buffer de armazenamento são ilimitados
 - Necessário para verificar o potencial de reuso dos benchmarks
- Execução dos benchmarks do MiBench no Sim-Panalyzer modificado
- Geração de resultados

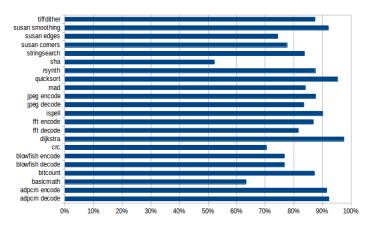


Figura: Percentual de redundância dos benchmarks simulados

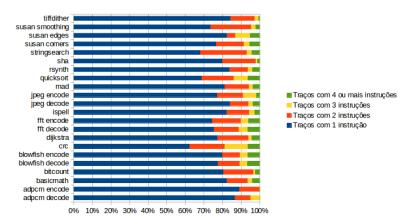


Figura: Tamanhos dos traços reusados dos benchmarks simulados

Análise preliminar parcial do reuso de traços em arquiteturas ARM

ERAD 2015 12 of 14

Conclusões e Trabalhos Futuros

Conclusões

- Benchmarks apresentaram grande potencial de reuso
 - Apresentaram média por volta dos 82%
- Em todos os benchmarks a maioria dos traços reusados possuem 1 instrução
 - O reuso perfeito considera sempre a melhor alternativa para reutilizar o máximo de instruções possíveis
 - Presença das instruções condicionais nos traços
 - Indica inviabilidade para trabalhar com traços compostos por muitas instruções

Conclusões e Trabalhos Futuros

Trabalhos Futuros

- Limitar o tamanho do buffer de reuso para efetuar uma abordagem mais realista da técnica de reuso de traços
 - Utilizar políticas para armazenamento de traços
- Avaliar questão do speedup das aplicações

Análise preliminar parcial do reuso de traços em arquiteturas ARM

ERAD 2015 14 of 14