Comparação das Características de Simuladores de Arquiteturas Heterogêneas

Felipe Leivas Teixeira

Andrei Silva
Carlos Vinícius Rasch Alves
Vinícius Krolow da Silva
Prof. Dr. Maurício Lima Pilla (Orientador)

Universidade Federal de Pelotas {flteixeira, assilva, cvralves, vkdasilva, pilla}@inf.ufpel.edu.br

Abril de 2015

- 1 Introdução
- 2 Simuladores
- **3** Comparação
- 4 Conclusão

Introdução

Problema

Um problema da computação atualmente é que as demandas computacionais estão exigindo cada vez mais recursos de computação

Introdução

Problema

Um problema da computação atualmente é que as demandas computacionais estão exigindo cada vez mais recursos de computação

Solução

Utilização de arquiteturas heterogêneas – manycore + CPU

Introdução

Objetivo

Comparar características de simuladores de GPGPU

Simuladores

Para este trabalho foram comparados quatro simuladores de arquitetura heterogênea, são eles:

- gem5+GPGPU-Sim
- Multi2Sim
- FusionSim
- Barra-sim

gem5+GPGPU-Sim

O gem5+GPGPU é um simulador que combina o modelo de computação do GPGPU-Sim e a CPU e o modelo de sistema de memória do gem5. O gem5 e GPGPU-Sim executam como dois processos separados e a comunicação ocorre por meio da memória compartilhada

Multi2Sim

O multi2sim é um framework para simulação CPU-GPU para computação heterogênea escrito em C. O multi2sim possibilita criar benchmarks em X86 CPU, AMD Evergreen e Southern Islands GPU no sistema GNU/Linux à nível de aplicação

FusionSim

O FusionSim é um simulador focado em simulações de propósito geral baseadas no CUDA. Este simulador analisa as cargas de trabalho em sistemas x86 que compõem CPU – GPU

Barra-sim

O Barra-sim é um simulador, baseado na linguagem Tesla ISA. O grande ganho de usar o barra, é a possibilidade de obter um stack de 100% do que que está sendo executado

Comparação

Comparação

	Sim. 1	Sim. 2	Sim. 3	Sim. 4
Simulação a CPU	X	X	Х	X
Simulação a GPU	X	X	Χ	Χ
Hierarquia de Memória	X	X	Χ	X
Interface Gráfica	-	X	-	-
Suporte a CUDA	X	X	Χ	X
Suporte a OpenCL	X	Х	-	-
Suporte a OpenACC	-	-	-	-
Coerência de Cache	X	X	X	X
Opensource	X	X	X	X

Sim. 1 = gem5+GPGPU

Sim. 2 = Multi2Sim

Sim. 3 = Barra-Sim

Sim. 4 = FusionSim

Conclusão

Contribuição

Neste trabalho foi feito uma comparação de características de quatro simuladores de arquiteturas heterogêneas

Conclusões

Com a comparação foi possível observar algumas coisas:

- Pode-se observar que a maioria s\u00e3o suportadas por todos os simuladores
- E que nenhum simulador, suporta OpenACC, por restrições de algumas de suas características

Conclusão

Trabalhos Futuros

Como trabalhos futuros pretende-se aprofundar a comparação, simulando a execução de *benchmarks* nos mesmos

Comparação das Características de Simuladores de Arquiteturas Heterogêneas

Felipe Leivas Teixeira

Andrei Silva
Carlos Vinícius Rasch Alves
Vinícius Krolow da Silva
Prof. Dr. Maurício Lima Pilla (Orientador)

Universidade Federal de Pelotas {flteixeira, assilva, cvralves, vkdasilva, pilla}@inf.ufpel.edu.br

Abril de 2015

