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Overview
How to Perform the Analysis?

I Profiling
I A statistical summary of the observed events [Shende et al. 2006]

I Visualization-based Techniques
I Behavioral [Pagano et al. 2014]
I Structural [Schnorr, Legrand, et al. 2013]

I Data Aggregation/Transformation Followed by Visual Analysis
I Transform the data and then perform the analysis over the transformed data through

a visualization-based technique [Schnorr, Huard, et al. 2012]

I Automatic Analysis
I Detection of behavioral patterns and performance issues in a completely automated

fashion [Gerndt et al. 2010][Geimer, Markus et. al. 2010]
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Overview
Issues with the Most Common Performance Analysis Techniques

I Profiling
I Poor Data

I Visualization-based Techniques
I Poor Scalability

I Data Aggregation/Transformation Followed by Visual Analysis
I Loss of Information

I Automatic Analysis
I Detection of performance issues limited by known patterns
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Proposal
How Do We Overcome Automatic Analysis’ Main Issue?

I Machine Learning
I Set of Techniques that Enable the Machine to Extract from Data the Algorithm for

the Task Being Computed [Alpaydin 2014]
I Classification & Regression (Supervised Learning)
I Clustering & Outlier Detection (Unsupervised Learning)
I Reinforcement Learning (i.e. How Software Agents Ought to Behave in an

Environment)
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Proposal
Unsupervised Learning

I The task of grouping a set of objects in such a way that objects in the same
group are more similar to each other than to those in other groups
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Proposal
What Can Be Explored?

I Algorithms
I Representative-based Clustering (e.g. K-Means [MacQueen et al. 1967])
I Density-based Clustering (e.g. DBSCAN [Ester et al. 1996])

I Similarity Measures
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Proposal
Data, Tools & Applications

I Traces

I libpaje1

I Task-based Runtimes [Augonnet et al. 2011]

1PajeNG on Github
Flavio Alles & Lucas Schnorr ERAD’15 13 / 16

https://github.com/schnorr/pajeng
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