Machine Learning Based Automatic Performance Analysis

Flavio Alles Rodrigues Lucas Mello Schnorr

{farodrigues,schnorr}@inf.ufrgs.br

XV Escola Regional de Alto Desempenho April 22nd-24th, 2015

Outline

1 Overview

How to Perform the Analysis? Issues with the Most Common Performance Analysis Techniques Which is the Best Way Forward?

Proposal

How Do We Overcome Automatic Analysis' Main Issue? Which is the Best Way Forward? Performance Analysis via Data Aggregation Unsupervised Learning What Can Be Explored? Data, Tools & Applications

Outline

1 Overview

How to Perform the Analysis? Issues with the Most Common Performance Analysis Techniques Which is the Best Way Forward?

2 Proposa

How Do We Overcome Automatic Analysis' Main Issue? Which is the Best Way Forward? Performance Analysis via Data Aggregation Unsupervised Learning What Can Be Explored? Data, Tools & Applications

- ► Profiling
 - ► A statistical summary of the observed events [Shende et al. 2006]

- Profiling
 - ► A statistical summary of the observed events [Shende et al. 2006]
- ► Visualization-based Techniques
 - ▶ Behavioral [Pagano et al. 2014]
 - ► Structural [Schnorr, Legrand, et al. 2013]

- Profiling
 - ► A statistical summary of the observed events [Shende et al. 2006]
- ► Visualization-based Techniques
 - ► Behavioral [Pagano et al. 2014]
 - ► Structural [Schnorr, Legrand, et al. 2013]
- ► Data Aggregation/Transformation Followed by Visual Analysis
 - ► Transform the data and then perform the analysis over the transformed data through a visualization-based technique [Schnorr, Huard, et al. 2012]

- Profiling
 - ► A statistical summary of the observed events [Shende et al. 2006]
- ► Visualization-based Techniques
 - ► Behavioral [Pagano et al. 2014]
 - ► Structural [Schnorr, Legrand, et al. 2013]
- ► Data Aggregation/Transformation Followed by Visual Analysis
 - ► Transform the data and then perform the analysis over the transformed data through a visualization-based technique [Schnorr, Huard, et al. 2012]
- ► Automatic Analysis
 - ▶ Detection of behavioral patterns and performance issues in a completely automated fashion [Gerndt et al. 2010][Geimer, Markus et. al. 2010]

- ► Profiling
 - ► Poor Data

- ► Profiling
 - ► Poor Data
- ► Visualization-based Techniques
 - ► Poor Scalability

- Profiling
 - ► Poor Data
- ► Visualization-based Techniques
 - ► Poor Scalability
- ► Data Aggregation/Transformation Followed by Visual Analysis
 - ► Loss of Information

- Profiling
 - ► Poor Data
- ► Visualization-based Techniques
 - Poor Scalability
- ► Data Aggregation/Transformation Followed by Visual Analysis
 - ► Loss of Information
- ► Automatic Analysis
 - Detection of performance issues limited by known patterns

- ► Profiling
 - ► Poor Data
- ► Visualization-based Techniques
 - ► Poor Scalability
- ► Data Aggregation/Transformation Followed by Visual Analysis
 - ► Loss of Information
- ► Automatic Analysis
 - ► Detection of performance issues limited by known patterns

- Profiling
 - ► Poor Data
- ► Visualization-based Techniques
 - ► Poor Scalability
- ► Data Aggregation/Transformation Followed by Visual Analysis
 - ► Loss of Information
- ► Automatic Analysis
 - ► Detection of performance issues limited by known patterns

- Profiling
 - ► Poor Data
- Visualization-based Techniques
 - ► Poor Scalability
- ► Data Aggregation/Transformation Followed by Visual Analysis
 - ► Loss of Information
- ► Automatic Analysis
 - Detection of performance issues limited by known patterns

- Profiling
 - ► Poor Data
- Visualization-based Techniques
 - ► Poor Scalability
- ► Data Aggregation/Transformation Followed by Visual Analysis
 - ► Loss of Information
- ► Automatic Analysis
 - ► Detection of performance issues limited by known patterns

Outline

1 Overview

How to Perform the Analysis? Issues with the Most Common Performance Analysis Techniques Which is the Best Way Forward?

2 Proposal

How Do We Overcome Automatic Analysis' Main Issue? Which is the Best Way Forward? Performance Analysis via Data Aggregation Unsupervised Learning What Can Be Explored? Data, Tools & Applications

How Do We Overcome Automatic Analysis' Main Issue?

► Machine Learning

- ► Machine Learning
 - ► Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]

- ► Machine Learning
 - ► Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]
 - ► Classification & Regression (Supervised Learning)

- ► Machine Learning
 - ► Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]
 - ► Classification & Regression (Supervised Learning)
 - Clustering & Outlier Detection (Unsupervised Learning)

- ► Machine Learning
 - ► Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]
 - ► Classification & Regression (Supervised Learning)
 - Clustering & Outlier Detection (Unsupervised Learning)
 - Reinforcement Learning (i.e. How Software Agents Ought to Behave in an Environment)

- ► Machine Learning
 - ► Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]
 - Classification & Regression (Supervised Learning)
 - Clustering & Outlier Detection (Unsupervised Learning)
 - Reinforcement Learning (i.e. How Software Agents Ought to Behave in an Environment)

- ► Machine Learning
 - ► Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]
 - ► Classification & Regression (Supervised Learning)
 - Clustering & Outlier Detection (Unsupervised Learning)
 - ► Reinforcement Learning (i.e. How Software Agents Ought to Behave in an Environment)

- ► Machine Learning
 - ► Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]
 - ► Classification & Regression (Supervised Learning)
 - Clustering & Outlier Detection (Unsupervised Learning)
 - Reinforcement Learning (i.e. How Software Agents Ought to Behave in an Environment)

- ► Machine Learning
 - ► Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]
 - ► Classification & Regression (Supervised Learning)
 - Clustering & Outlier Detection (Unsupervised Learning)
 - Reinforcement Learning (i.e. How Software Agents Ought to Behave in an Environment)

- ► Machine Learning
 - Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]
 - ► Classification & Regression (Supervised Learning)
 - Clustering & Outlier Detection (Unsupervised Learning)
 - Reinforcement Learning (i.e. How Software Agents Ought to Behave in an Environment)

- ► Machine Learning
 - Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]
 - Classification & Regression (Supervised Learning)
 - Clustering & Outlier Detection (Unsupervised Learning)
 - Reinforcement Learning (i.e. How Software Agents Ought to Behave in an Environment)

- Profiling
 - ► Poor Data
- Visualization-based Techniques
 - ► Poor Scalability
- ► Data Aggregation/Transformation Followed by Visual Analysis
 - ► Loss of Information
- ► Automatic Analysis
 - ► Detection of performance issues limited by known patterns

- Profiling
 - ► Poor Data
- Visualization-based Techniques
 - ► Poor Scalability
- ► Data Aggregation/Transformation Followed by Visual Analysis
 - ► Loss of Information
- ► Automatic Analysis
 - ► Detection of performance issues limited by known patterns

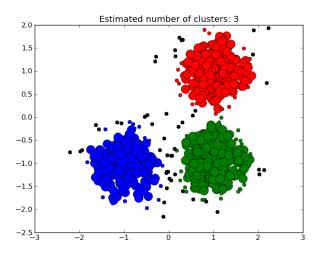
- Profiling
 - ▶ Poor Data
- Visualization-based Techniques
 - ► Poor Scalability
- ► Data Aggregation/Transformation Followed by Visual Analysis
 - ► Loss of Information
- Automatic Analysis
 - Detection of performance issues limited by known patterns

Performance Analysis via Data Aggregation

- ▶ Machine Learning
 - Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]
 - ► Classification & Regression (Supervised Learning)
 - Clustering & Outlier Detection (Unsupervised Learning)
 - Reinforcement Learning (i.e. How Software Agents Ought to Behave in an Environment)

Performance Analysis via Data Aggregation

- ► Machine Learning
 - ► Set of Techniques that Enable the Machine to Extract from Data the Algorithm for the Task Being Computed [Alpaydin 2014]
 - ► Classification & Regression (Supervised Learning)
 - Clustering & Outlier Detection (Unsupervised Learning)
 - Reinforcement Learning (i.e. How Software Agents Ought to Behave in an Environment)


Unsupervised Learning

Unsupervised Learning

► The task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups

Unsupervised Learning

► The task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups

What Can Be Explored?

What Can Be Explored?

- ► Algorithms
 - ► Representative-based Clustering (e.g. K-Means [MacQueen et al. 1967])
 - ► Density-based Clustering (e.g. DBSCAN [Ester et al. 1996])

What Can Be Explored?

- ► Algorithms
 - ► Representative-based Clustering (e.g. K-Means [MacQueen et al. 1967])
 - ► Density-based Clustering (e.g. DBSCAN [Ester et al. 1996])
- ► Similarity Measures

Data, Tools & Applications

- ► Traces
- ► libpaje¹
- ► Task-based Runtimes [Augonnet et al. 2011]

 $^{^1\}mathrm{PajeNG}$ on Github

References

- Alpaydin, Ethem (2014). Introduction to machine learning. MIT press.
- Augonnet, Cédric et al. (2011). "StarPU: a unified platform for task scheduling on heterogeneous multicore architectures". In: *Concurrency and Computation: Practice and Experience* 23.2, pp. 187–198.
- Ester, Martin et al. (1996). "A density-based algorithm for discovering clusters in large spatial databases with noise." In: Kdd. Vol. 96. 34, pp. 226–231.
 - Geimer, Markus et. al. (2010). "The Scalasca performance toolset architecture". In: Conc. & Comp.: Prac. Exp. 22.6, pp. 702–719.
- Gerndt, Michael and Michael Ott (2010). "Automatic performance analysis with periscope". In: Concurrency and Computation: Practice and Experience 22.6, pp. 736–748.
- MacQueen, James et al. (1967). "Some methods for classification and analysis of multivariate observations". In: *Proceedings of the fifth Berkeley symposium on mathematical statistics and probability*. Vol. 1. 14. Oakland, CA, USA., pp. 281–297.

References

- Pagano, Generoso and Vania Marangozova-Martin (2014). "The frameSoC software architecture for multiple-view trace data analysis". In: *Proceedings of the 2014 ACM SIGCHI symposium on Engineering interactive computing systems*. ACM, pp. 217–222.
- Schnorr, Lucas, Guillaume Huard, and Philippe Navaux (2012). "A hierarchical aggregation model to achieve visualization scalability in the analysis of parallel applications". In: *Parallel Computing* 38.3, pp. 91–110.
- Schnorr, Lucas, Arnaud Legrand, and Jean-Marc Vincent (2013). "Interactive analysis of large distributed systems with scalable topology-based visualization". In: Performance Analysis of Systems and Software (ISPASS), 2013 IEEE International Symposium on, pp. 64–73.
- Shende, Sameer and Allen Malony (2006). "The TAU parallel performance system".

 In: International Journal of High Performance Computing Applications 20.2, pp. 287–311.

Machine Learning Based Automatic Performance Analysis

Flavio Alles Rodrigues Lucas Mello Schnorr

{farodrigues,schnorr}@inf.ufrgs.br

XV Escola Regional de Alto Desempenho April 22nd-24th, 2015