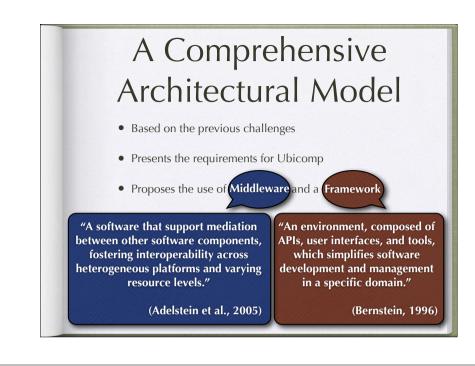
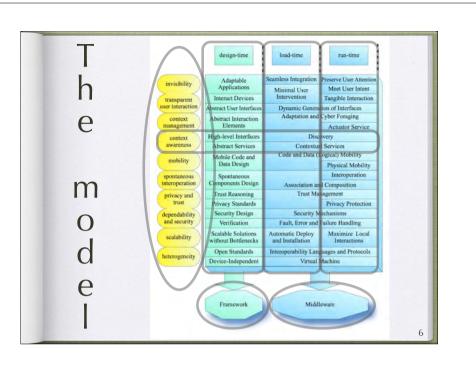

A Preliminary Outline for a Ubiquitous Computing Software Infrastructure

Cristiano André da Costa Luciano Cavalheiro da Silva Adenauer Corrêa Yamin Cláudio Fernando Resin Geyer


August 2007


Outline

- An appraisal of Ubiquitous Computing
- Ubiquitous Computing Challenges
- A Comprehensive Architectural Model
- Project ISAM
- Current Research
- Overview of Continuum Software Infrastructure
- Conclusion and Future Work

	Issue	Alias	Focus Area	Motive
hh	Heterogeneity		Distributed systems	 Variety and difference Different types of devices, networks, systems, and environments
0	Scalability	Localized Scalability	Distributed systems	 Large scale Increase in the number of resources and users
. a	Dependability and Security	Fault Tolerance	Mission- critical and Distributed Systems	 Avoiding failures that are more frequent and more severe than acceptable Providing availability, confidentiality, reliability safety, integrity, and maintainability
1	Privacy and Trust		Internet and Mobile computing	 Protecting against bad use of personal data Defining the trustworthiness of interacting components
2	Spontaneous Interoperation	Volatility	Mobile computing	 Allowing interaction with a set of components that can change both identity and functionality Permitting association and interaction
e	Mobility	Follow-me applications	Mobile computing	 Application and data access anywhere and anytime The user environment goes along
) n	Context awareness	Perception	Mobile computing	 Perceiving user's state and surroundings Inferring context information
n g	Context management	Smartness, Masking uneven condition, Adaptability	Mobile and Ubiquitous computing	 Modifying the behavior of the system based on the perceived context information Adapting
e	Transparent User Interaction	Human- computer interaction	Ubiquitous computing	 Merging user interface with the real world Allowing user focus on tasks with minimal distraction
JS	Invisibility	Ubiquity, Pervasively	Ubiquitous	 Allowing users focus on task, not tools Making computers disappear in the background

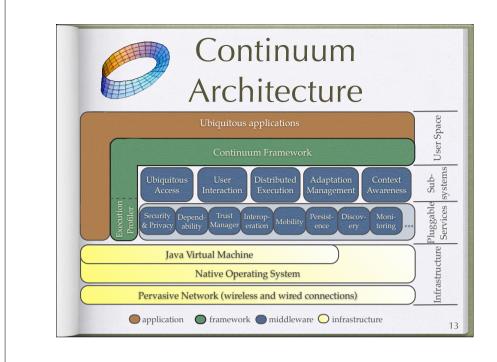
Project ISAM

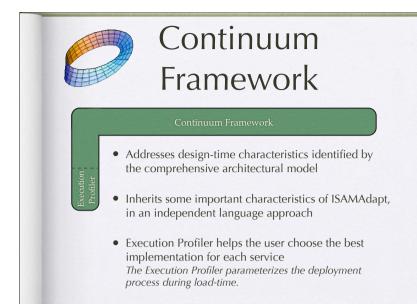
- Mobile Applications Support Infrastructure (Infra-estrutura de Suporte às Aplicações Móveis)
- integrates concepts of context awareness, grid, and mobile computing
- consists of a pervasive computing infrastructure, integrating a **programming language** and **middleware**
- includes **ISAMadapt**, a programming language that provides some means for expressing dynamic adaptation and context-awareness. Based on **Holoparadigm**

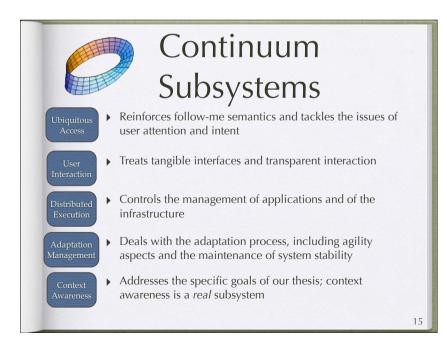
(Augustin et al., 2005)

Current Research

Defended Thesis


• Follow-me semantics can reduce the distance between Weiser's vision of ubiquitous computing and the current distributed computing scenario


What is follow-me semantics?


- Applications and data go along with the user
- The user executes her applications and data regardless of location, even on the go

8

14

16

- Loads services on-demand, according to necessary functionalities (adaptive behavior)
- Uses concepts of Service-oriented architecture (SOA) and web services
- Makes interaction easier, enabling services to be effortlessly used in many applications, in a more *ad hoc* approach

Depend-Trust Interop-Mobility Persist- Discov- Moni

Future Work

- Model Continuum subsystems and create UML class diagrams for each one of them
- Detail Continuum framework and pluggable services
- Investigate and propose innovative solutions to deal with context (deal with specific goals)
- Defend the Thesis Proposal (until the end of 2007)
- Implement some Continuum subsystems
- Create case-studies (context-aware applications) to show the functioning of Continuum, especially of context awareness

19

Conclusion

- It is still difficult to find a software infrastructure that has all the characteristics proposed by the comprehensive model
- The architectural model could be used as a standard for assessing proposals and suggesting needed features
- The software infrastructure of Continuum is based on Project ISAM and also on the comprehensive architectural model
- Continuum applies follow-me semantics in ubicomp
- The current work is detailing the infrastructure of Continuum and factoring ISAM in this process

References

18

(used in this presentation)

- Adelstein, F. et al. (2005) Fundamentals of Mobile and Pervasive Comptuing. McGraw-Hill.
- Augustin, I. et al. (2004) "ISAM, Joining Context-Awareness and Mobility to Building Pervasive Applications," Mobile Computing Handbook, M. Ilyas and I. Mahgoub, eds., CRC, pp. 73-94.
- Bernstein, P. (1996) "Middleware: a model for distributed system services," Communications of the ACM, vol. 39, no. 2, pp. 86-98.
- Robinson P. et al. (2005) "Some Research Challenges in Pervasive Computing," Privacy, Security and Trust within the Context of Pervasive Computing, P. Robinson et. al., eds., Springer Science + Business Media, pp. 1-16.
- Weiser, M. (1991) "The Computer for the Twenty-First Century," Scientific Am., 1991, pp. 94–101

A Preliminary Outline for a Ubiquitous Computing Software Infrastructure

Cristiano André da Costa Luciano Cavalheiro da Silva Adenauer Corrêa Yamin Caudio Fernando Reson Gever August 2007