
On the Dynamic Load-Rebalancing of BSP Application Using Process Migration

Rodrigo da Rosa Righi, Alexandre Carissimi, Philippe O. A. Navaux
Institute of Informatics - Federal University of Rio Grande do Sul - Porto Alegre, Brazil

{rodrigo.righi, asc, navaux}@inf.ufrgs.br

Abstract

We have developed a model for dynamic process
scheduling in heterogeneous and non-dedicated environ-
ments. This model acts over a BSP (Bulk Synchronous Par-
allelism) application, applying load-rebalancing through
migration of BSP processes to new processors. A BSP ap-
plication is divided in one or more supersteps, each one
containing both processing and communication phases fol-
lowed by a barrier synchronization. In this context, the
developed model combines three metrics, Memory, Process-
ing and Communication, in order to measure the migration
capacity of each BSP process. The final idea is to of-
fer a mathematical formalism involving these metrics, and
to decide the following questions about the process mi-
gration: When? Where? Which? This paper presents our
load-rebalancing model, the parallel machine organiza-
tion, some implementation issues and related work.

1. Introduction

BSP (Bulk Synchronous Parallelism)[3] applications are
composed by a set of independent processes that execute su-
persteps. Each superstep is subdivided into three phases: (i)
local computations in each process; (ii) global communica-
tion actions; (iii) a barrier synchronization. The BSP model
does not specify how the processes should be mapped to re-
sources and the programmer must deal with this issue of
scheduling in order to achieve better application efficiency.
This issue is important once the barrier phase waits for the
slowest process (process that spent more time in processing
and communication phases) to start the next superstep. This
topic is more relevant when it is considered an heteroge-
neous (different processor and network equipment speeds),
a dynamic (fluctuations in network bandwidth and proces-
sor load) and non-dedicated distributed environment.

The allocation scheme of BSP processes to resources can
be onerous to the programmer, once he must know the par-
allel machine architecture and utilization as well as the ap-
plication writing properly. In addition, each new BSP ap-
plication requires another effort for processes scheduling.
A possibility is to explore the scheduling using automatic

load balancing at middleware level, linking it to the BSP
programming library. For example, a processor allocation
scheme where the processes with larger computing times
are mapped to faster machines can be used. However, this
approach is not the best one for dynamic applications and
distributed environments, because a good process-resource
mapping performed when the process will be launched can
compromise application performance[5]. At this moment, it
is not possible to recognize neither the amount of process-
ing of each BSP process nor communication patterns among
them. An alternative is to perform BSP processes reschedul-
ing through their migration to new resources, offering load-
rebalancing of BSP processes in application runtime.

In this context, this paper describes a scheduling model
that offers dynamic and runtime load-rebalancing over a
BSP application, controlling the remapping of processes to
different resources. Its parallel machine aims to join the
power of clusters, LAN networks and multiprocessor ma-
chines, and presents the concept of hierarchy in two levels
using sets (considering the network level) and set managers.
The resultant machine can be heterogeneous regarding the
processors and the networks speeds and is used in a non-
dedicated manner. The final idea of the model is to adjust
the conclusion of both local processing and global commu-
nication phases of each BSP process to be as fast as possi-
ble profiting from information collected at runtime. This ad-
just happens through the migration of those processes which
have a large processing time, perform several communica-
tion actions with other processes that belong to the same set
and present a low network cost. This paper shows the devel-
oped model, the implementation issues and related works.

2. Load-Rebalancing Model of BSP Processes

BSP load-rebalancing model acts over both computa-
tion and communication phases of each process. The idea
of this model is to minimize the application execution
time and improve the environment resources utilization
through the cooperation of each BSP process. The load-
rebalancing model controls the runtime migration of BSP
processes and is launched automatically following a speci-
fied time interval and is totally transparent to the program-



mer. The final result is a mathematical formalism that an-
swers the specified questions regarding processes migra-
tion: (i) “When” to launch the mechanism for processes mi-
gration; (ii) “Which” processes must be migrated; (iii) and
“Where” to put an elected process for migration.

2.1. Model of Parallel Machine

The load-rebalancing model works over a heteroge-
neous, non-dedicated and dynamic distributed environ-
ment. The heterogeneous issue considers the proces-
sors speed (all processors have the same architecture)
and network speed and level (Fast and Gigabit Ether-
net and multi-clusters environment, for instance). The
non-dedicated feature implies that BSP application can ex-
ecute with other user applications in the same resource
concurrently. The dynamic behavior deals with environ-
ment changes occurred at runtime (such as network con-
gestion and alterations on processors load) and changes in
processes, once some BSP processes can need more pro-
cessing power or increase its network interaction with other
ones during application execution.

The model of machine can include multiprocessors ma-
chines, local networks as well as clusters. The model re-
quires that the involved nodes must have connections to al-
low all-to-all message passing. Each BSP process is mapped
to real processor that is enclosed inside a node. In or-
der to turn the scheduling more flexible and efficient, the
load-rebalancing model used hierarchical scheduling. This
model is based on a notion of hierarchy in two levels (lo-
cal and global) that is present in the Integrade scheduler[2].
The vision of hierarchy is important to optimize the passing
of monitoring information, such as processing and commu-
nication times as well as the processors load information.
The nodes are aggregated to create an abstraction of a set.
For example, a set should be a LAN network or a cluster.
Each set has a manager that exchanges data with managers
of other sets and it can be composed by one or more nodes.

2.2. Load Rebalancing Activation

The load-rebalancing through BSP processes migration
is launched at the end of a superstep, after the barrier phase
and before the next super-step. Thus, this mechanism an-
swers the “When” question. This migration point was cho-
sen because in this moment it is possible to analyze data
from all BSP processes at their processing and communi-
cation phases. In this point, we have information about the
slowest process, the amount of instructions performed by
each one and the communication scheme among the pro-
cesses. Aiming to generate as less intrusion in application
as possible, it was used a technique that allows to adapt the
interval of supersteps to call the load-rebalancing. The idea
is to delay this call if the processes are balanced,i. e., if they
have the conclusion times of each super-step closely.

To turn viable the adaptivity on load-rebalancing calling,
it was used an indexα (α ∈ N|α ≥ 1) that informs the in-
terval of supersteps adopted to apply the processes migra-
tion. This index increases if the system tends to the stabil-
ity in conclusion time of each superstep and decreases case
opposite. The last case means that the frequency of calls in-
creases in order to turn the system more stable quickly. To
permit a slidingα, it is necessary to verify if the distributed
system is balanced or not. To treat this issue, it is collected
the time (processing added to communication) of each BSP
process at the end of each superstep up to theα value to
be achieved. After that, arithmetic average is computed ac-
cording to these time values and the times of the slowest and
fastest processes are captured. Using these values, it is pos-
sible to measure the distributed system balancing.

time o f f astest process> average time. (1−D) (1)

time o f slowest process< average time. (1+D) (2)

The distributed system is considered stable if both In-
equalities 2 and 1 are true. In both inequalities,D value in-
forms the distance in percentage that the time of the slowest
and the fastest process can be moved away from the average.
TheD value is passed in load-rebalancing model initializa-
tion. Concerning this, Algorithm 1 shows how theα value
is computed. Another variable calledα ’ was employed to
save the temporary value ofα. Thus,α ’ will indicate the
next superstep interval to active the load-rebalancing. The
α ’ value suffers a variation of one unity depending on the
state of the system: stable (balanced) or not.

Algorithm 1 Interval of superstepsα for the next call to
load-rebalancing of BSP application

1: α ’ = α
2: for From superstepk up to superstepk+α −1 do
3: if Inequalities 1 and 2 are truethen
4: Increase theα ’ value by 1
5: else
6: Decrease theα ’ value by 1 up arrive to 1
7: end if
8: end for
9: Call for load-rebalancing of the BSP application

10: α = α ’

In Algorithm 1, k is the index of superstep that comes
after the last call for load-rebalancing (k is 1 if the model
is beginning). Theα ’ does not have upper bound, but its
lesser value is 1. In the best case, the system is always in
equilibrium andα ’ always increases. In architectural view,
each set manager collects the execution times of its BSP
processes at the end of each superstep. After that, each
manager spreads its informations to the other managers us-
ing diffusion messages. When the interval of superstepsα
is reached, each manager informs its processes to launch



the load-rebalancing. Thus, the load-rebalancing model is
called by each BSP process that cooperate to decide which
of them will be migrated.

2.3. Choosing Candidate Processes for Migration

We have used three metrics to choose those processes
that will be migrated to new resources. The adopted metrics
are Processing, Communication and Memory. They are em-
ployed to answer the “Which” question, that considers the
BSP elected processes for migration. Processing metric ob-
tains informations about the BSP local processing phase,
while the Communication metric works with data collected
in global communication phase. Memory metric enters in
the model as an idea of cost and is used to measure the BSP
process migration viability. These three metrics are com-
bined to compute the Potential of Migration (PM) of each
BSP process. Finally, this PM is used to select the candi-
date processes for migration.

2.3.1. Processing Metric Each BSP processi computes
the P(i) function in Processing metric. To compute this
function it is used data collected in a superstepk up to
k+ α − 1 (wherek is the index of the first superstep af-
ter the calling for load-rebalancing). For each superstepk
in this interval it is stored the number of processor instruc-
tions (Ik) and the time for completion the processing phase
(PTk). The value ofIk is used to evaluate the process sta-
bility (regularity) regarding the amount of instructions in
each superstep. This stability is represented by the process-
ing pattern calledPproc. This pattern is a real number en-
closed in [0,1] interval. APproc(i) closed to 1 means that
the processi is regular in the number of instructions that
executes at each superstep. Its initial value is 1 for all pro-
cesses, because it is made a bet that all process are stable.

Algorithm 2 Processing PatternPproc(i) of the processi

1: for From superstepk up to superstepk+α −1 do
2: if Pk(i) ≥ Ik(i).(1− δ ) and Pk(i) ≤ Ik(i).(1 + δ )

then
3: Increase thePproc(i) by 1

α up to 1
4: else
5: Decreases thePproc(i) by 1

α down to 0
6: end if
7: end for

ThePproc(i) of processi increases or decreases depend-
ing on the prediction of the amount of performed instruc-
tions in each superstep. This prediction for the superstepk
and processi is represented byPIk(i) and it is based on the
aging concept. Following this scheme, a superstep depends
on the data regarding itself and all previous supersteps un-
til the first one after the load-rebalancing calling. The ag-
ing concept uses the idea that the prediction value is more

strongly influenced by recent supersteps. The generic recur-
rence formula to compute the predictionPIk(i) is shown be-
low. The valuei denotes a BSP process,k a superstep index
andα means the interval do activate the load-rebalancing.

• PIk(i) = Ik(i)

• PIk+1(i) = 1
2PIk(i)+ 1

2Ik+1(i)

• PIk+α−1(i) = 1
2PIk+α−2(i)+ 1

2Ik+α−1(i)

The advantage of this prediction scheme is that only data
between two load-rebalancing activations (beetwen the su-
perstepsk andk+α −1) is used. This scheme saves mem-
ory and contributes to decrease the prediction calculation
time. On the other hand, the value ofPproc(i) persists during
the BSP application execution independently of the amount
of calls for load-rebalancing.Pproc(i) is updated following
the Algorithm 2. We consider the system stable if the fore-
cast is within aδ margin of fluctuation from the amount of
instructions performed. For example, ifδ is equal to 0.1 and
the number of instructions is 50, the prediction must be be-
tween 45 and 55 to increase thePproc(i) value.

The processing patternPproc(i) of processi is an element
in P(i) function. The other element inP(i) is a processing
index calledIP(i). This index is derived from the process-
ing time predictionPTPk+α−1(i) of the processi at the su-
perstepk+α −1 (the superstep where the load-rebalancing
will be activated). Analogous toPI prediction,PTP also
works with the aging concept. Supposing thatPTk(i) is the
processing time of the processi during the superstepk, then
the predictionPTPk+α−1(i) is computed as follows.

• PTPk(i) = PTk(i)

• PTPk+1(i) = 1
2PTPk(i)+ 1

2PTk+1(i)

• PTPk+α−1(i) = 1
2PTPk+α−2(i)+ 1

2PTk+α−1(i)

In order to compute the indexIP(i), each BSP processi
calculates itsPTPK+α−1 prediction and passes it to its set
manager. Each set manager transfers the prediction values
to other managers. With data from all processes, each man-
ager computes the values ofIP(i) of the processes under its
responsibility through Equation 3. Firstly, the process that
has the slowest prediction (the highest value) is captured.
This process hasIP(i) equal to 1 and itsPTPk+α−1 value
enters as denominator in Equation 3. Therefore, the value
of IP(i) of the remaining processes are less than 1.

IP(i) =
PTPk+α−1(i)

the highest PTPk+α−1 value
(3)

P(i) = Pproc(i) . IP(i) (4)

Equation 4 shows the function to compute the Processing
metric for processi. Its value is closed to 1 if the BSP pro-
cess is stable in the number of instructions that it executes
and if the considered process has a bigger processing time.



However,P(i) is closed to 0 if the process is unstable (suf-
fers large variations in the amount of instructions at each
superstep) and/or it finishes its processing phase quickly.

2.3.2. Communication Metric The Communication met-
ric is expressed through the functionC(i, j), wherei denotes
a BSP process andj the target set. This function treats the
communication (sending and receiving) involving the pro-
cessi and all processes that belong to the setj. To com-
puteC(i, j) it is used data collected in a superstepk up to
k+ α − 1 (wherek is the index of the first superstep af-
ter the calling for load-rebalancing). Besides this, each pro-
cess maintain a table withn lines, wheren is the amount
of set in the distributed environment. Each table line has
the following fields: (i) total time spent in communication
with a specified set; (ii) communication pattern for this set,
that is calledPcom(i, j). This pattern is a real number within
the [0,1] interval and its alteration depending on the predic-
tion PCk(i, j) that deals with the amount of bytes involved
during communication between the processi and the setj
at superstepk. Analogous to Processing metric,PCk(i, j) is
based on aging concept and is organized as follows.

• PCk(i, j) = Ck(i, j)

• PCk+1(i, j) = 1
2PCk(i, j)+ 1

2Ck+1(i, j)

• PCk+α−1(i, j) = 1
2PCk+α−2(i, j)+ 1

2CK+α−1(i, j)

In communication prediction context,Ck(i, j) is a nota-
tion used to assign the number of communicated bytes be-
tween the processi and the setj at superstepk. The value
of Ck(i, j) is the amount of sent bytes if this value is higher
than the received one and equal to the received bytes other-
wise. The idea in this issue is to use the worst case in pro-
cess and set communication. Using communication predic-
tion,Pcom(i, j) is computed according to Algorithm 3. This
algorithm uses a variableβ that informs the acceptable vari-
ation in communication prediction.

Algorithm 3 Communication PatternPcom(i, j)

1: for From superstepk up to superstepk+α −1 do
2: if (1− β ).Ck(i, j) ≤ PCk(i, j) e (1+ β ).Ck(i, j) ≥

PCk(i, j) then
3: Increases the value ofPcom(i, j) by 1

α up to 1
4: else
5: Decreases the value ofPcom(i, j) by 1

α down to 0
6: end if
7: end for

Pcom(i, j) is the first element in functionC(i, j). The sec-
ond one is a communication indexIC(i, j) that is reached
through the value of the predictionPTCk+α−1(i, j).
PTCk+α−1(i, j) is the communication time prediction in-
volving the processi and the set j at the superstep
k+ α −1. Adoptingk as an index of the first superstep af-
ter the load-rebalancing calling,k+ α −1 is the superstep

index where it will be called again. In order to com-
pute this prediction it is used the communication time
CTk(i, j) between the processi and the setj at super-
stepk. It is transferring time if it is higher than the receiving
one or equal to the receiving time otherwise. Concern-
ing this,PTCk+α−1(i, j) is achieved as follows.

• PTCk(i, j) = CTk(i, j)

• PTCk+1(i, j) = 1
2PTCk(i, j)+ 1

2CTk+1(i, j)

• PTCk+α−1(i, j) = 1
2PTCk+α−2(i, j)+ 1

2CTk+α−1(i, j)

Each BSP process computesn functions IC(i, j) using
Equation 5, wheren is the number of environment sets.
Each BSP processi verifies the predictionPTCk+α−1(i, j)
which has the highest value (the slowest one) and this value
enters as a denominator in Equation 5. The indexIC(i, j)
that involves the processi and the setj of the highest predic-
tion is set to 1. Therefore, the remaining values ofIC(i, j)
for the same processi are smaller than 1. In this way, the
function that represents the Communication metric between
the processi and the setj is presented in Equation 6. Re-
membering that each processi computesn (number of sets)
Equations 6 locally.

IP(i, j) =
PTCk+α−1(i, j)

the highest PTCk+α−1 value
(5)

C(i, j) = Pcom(i, j) . IC(i, j) (6)

Equation 6 is to stay closed to 1 if the processi has a reg-
ularity considering the communicated bytes to processes of
set j and performs slower communication actions to this set.
The idea of communication is to use the highest value be-
tween sendings and receptions involving processi and set
j. For example, a BSP processi can have a receptor charac-
teristic of messages deriving from the processes that belong
to set j. Thus, it is easier to migrate processi to other re-
source in setj than to migrate the involved processes in set
j to the set where processi executes currently.

2.3.3. Memory Metric The function M(i,j) represents the
Memory metric and evaluates the migration cost of the im-
age of processi to another resource in setj. This metric
just uses data collected at the superstep in which the load-
rebalancing will be activated (whereα is achieved). The
first element of functionM(i, j) is a memory index called
IM(i). The BSP process with the biggest image memory
in bytes hasIM(i) equal to 1. The indexes of the remain-
ing processes are ordered based on this value and are lower
than 1. Therefore, eachIM(i) index informs a comparative
weight regarding the space in memory of each process.

The functionIM(i) is the first element used to compute
the Memory metric. The other element is an index that treats
the transferring cost of the processi to the setj and is sym-
bolized byIT (i, j). Firstly, each BSP process computes the
time to transfer its memory image to the specified set using



a simple pingpong test. This time involves the network in-
teraction between processi and manager of the setj. Case
the destination set is the same one that the BSP process is
located, the transferring time occurs between the target pro-
cess and other resource of the same set randomly selected.
The processi verifies the longest transfer time that com-
puted and the elementIT (i, j) for this set j receives the
value equal to 1. The indexesIT (i, j) of other processes
are organized taking as upper bound the previous computa-
tion and are lower than 1. For example, if the environment is
composed by three sets and the transferring time of process
i to them are 10, 20 and 15 seconds, respectively. Apply-
ing the algorithm,IT (i,1) is equal to 0.5,IT (i,2) is equal
to 1 andIT (i,3) is 0.75. Combining both elements, we com-
pute Memory metric using Equation 7.

M(i, j) = IM(i) . IT (i, j) (7)

Analyzing Memory metric, each BSP process will com-
puten M(i, j), wheren is the number of sets in the environ-
ment. A IM(i, j) value closed to 1 means a higher migra-
tion cost and informs a BSP processi with large memory (if
compared with the remaining ones) and a longer transfer-
ring time of its image memory to the target set. Neverthe-
less,M(i, j) near to 0 specifies a process with small mem-
ory image and/or shorter transferring time to the target set.

2.3.4. Potential of Migration Analysis Aiming to gener-
ate the Potential of Migration (PM) of each process, we are
using the notion of force from the physics area. In physics,
force is an influence that may make an object to acceler-
ate and can be represented by a vector. A vector has a size
(magnitude), a direction and an angle of actuation. Analyz-
ing force idea, each studied metric can be seen as a vector
that acts over an object. In our case, this object is the mi-
gration of a BSP process. Vectors~P and ~C represent the
Processing and Communication metrics, respectively. Both
vectors have the same angle and direction and stimulate the
process migration. On the other side, the Memory metric
means the migration cost and is symbolized by vector~M.
This vector works against the migration, once it has the
same angle but a different direction if compared with~P and
~C vectors. Observing the forces that act over the process mi-
gration, the resultant informs the Potential of Migration and
is reached using Equation 8.

~PM = ~P+~C− ~M (8)

PM(i, j) = P(i)+C(i, j)−M(i, j) (9)

In the load-rebalancing model context, the Potential of
Migration of a processi to the setj is denoted byPM(i, j)
and is computed by the Equation 9. P, C and M represent
the Processing, Communication and Memory metrics, re-
spectively. Considering that each metric can vary between 0
and 1, thePM(i, j) value is within [-1,2] interval. The max-
imum value is achieved when P and C metrics have val-

ues equal to 1 and the M metric is null. The lower bound
of PM(i, j) occurs when there is a high migration cost and
a null force to stimulate the migration. Each processi will
computen equations 9, wheren is the amount of sets. Af-
ter that, processi sends its highest Potential of Migration to
its set manager. The load-rebalancing model uses a migra-
tion threshold that selects which processes will be migrated.
For instance, a threshold equals to 1.5 implies that only pro-
cesses with PM above this value will migrate.

2.4. Analyzing Destination of Elected Processes

The BSP process migration happens after the barrier syn-
chronization of superstep whichα is reached (see subsec-
tion 2.3). A elected processi has a targeted setj informed
in its Potential of MigrationPM(i, j). Thus, the pertinent
question is to choose which node of this set will be the des-
tination of the BSP process and, therefore, to answer the
question “Where” of the load-rebalancing model. Firstly,
the manager set of processi contacts the manager of the
set j asking it for a physical processor to receive a process.
This last manager verifies the resources under its responsi-
bility and elects the destination processor (and the node).

ICPU(p) = peak(p) . (1− load(p)) (10)

The manager of destination set selects a processor based
on the Equation 10 that evaluates the CPU index (ICPU) of
each processor. In this equation,p means the physical pro-
cessor and the functionpeak(p) informs the performance
peak achieved by processorp. The functionload(p) in the
same equation represents the CPUp average load in the last
15 minutes. This time interval was adopted based on stud-
ies from Vozmediano e Conde [8]. The manager sorts the in-
dexesICPU(p) decreasingly in a list. After that, it captures
the first element of the list and verifies if the node that be-
longs the observed processor has available memory to store
the new BSP process. Case this node does not have mem-
ory, the manager analyzes the next element until this mem-
ory issue is solved. If this issue was solved, the processor
p of the currentICPU(p) is chosen as a destination. On
the other hand, if the sorted list was fully observed and the
memory issue was not solved, the manager set returns an er-
ror code that means the migration is failed. In this scheme,
the communication issue was not used. The communication
cost among nodes inside the same set is considered uniform.

3. Implementation Issues
The model implementation is an on going work. We are

working to implement a prototype of a system for load-
rebalancing of BSP processes that can be integrated to mes-
sage passing library. In this context, we are studying li-
braries that implement MPI interface and offer processes
migration. There is a initiative in GPPD group that aims to
offer processes migration in MPI applications that will be



considered in load-rebalancing system. Other possibilityis
to use AMPI (Adaptive MPI)[5] library that employs the
Charm++ tool to turn viable the migration. There are some
technical issues that must be offered in order to implement
the prototype. In processing part, the prototype needs data
about the amount of performed instructions and the process-
ing time at each superstep on each process. In communica-
tion part, the prototype needs to analyze the amount of sent
or received bytes to/from each set, as well as the conclu-
sion time of these communication actions.

4. Related Work

The transferring of autonomous objects in WAN en-
vironment is presented in [7]. This WAN environment is
composed by a set of interconnected LAN networks and
their load-balancing mechanism just considers informations
from the communication actions and network equipment
features. Other work is the migration performed by the
GridWay resource broker, that treats with time and cost
optimization scheduling and migration[8]. Both migration
mechanisms consider data from CPU, like speed and load.
Kondo et al. [6] described a client-server scheduling model
for global computing applications. Their model uses the
processor speed, the network bandwidth and disk space
metrics to determine the number of work units that can be
sent to a client. However, these values are not combined and
the minimum of them gives the amount of unit works.

Bhandarkar, Brunner and Kale[1] presented a runtime
support for adaptive load-rebalancing in MPI applications
using process migration. Periodically, the MPI application
transfers control to the load balancer using a special call
MPI Migrate(), which allows the framework to invoke a
strategy to remap processes to new processors. These au-
thors present a Metis-based strategy that uses the communi-
cation graph to remap the processes. As well as Vozmediano
e Conde work[8], this work uses a fixed threshold to define
those process that will be migrated. Vadhiyar e Dongarra[9]
presented a migration framework and self adaptivity fea-
ture in GrADS system. They computed the cost of each mi-
gration (15 minutes) and the rescheduling gain based on
the remaining execution time prediction over a new speci-
fied resource. In order to turn possible this computation, this
framework must work with well know applications, where
its parts and duration are known. In order to measure the mi-
gration cost at application runtime, Du, Sun and Wu[4] de-
scribed a migration model that considers the process, the
memory, the I/O and the communication states. However,
these authors did not specify neither when to launch the pro-
cess migration, nor which processes will be migrated.

The PUBWCL[3] is a library that offers parallel algo-
rithms according to BSP model. This library aims to use the
idle processing power of Internet distributed computers. In
order to offer load-rebalancing, PUBWCL can migrate BSP

process during barrier synchronization phase. This mecha-
nism considers the processing phase and does not take into
account the communication among the processes. Besides
processing and communication features of a superstep, our
load-rebalancing model also includes the the migration cost
idea (represented by Memory metric).

5. Conclusion
The load-rebalancing is activated at the end of a super-

step and occurs according to system stability. The processes
remapping is delayed if the BSP processes are balanced.
In order to decide which processes will migrate, we de-
veloped an idea of Potential of Migration (PM). PM equa-
tion considers a BSP process and a destination set and is
found using the Processing, Communication and Memory
metrics. These three metrics are combined using an anal-
ogy of force from physics area. Processing and communi-
cation metrics act as forces that stimulate the process migra-
tion, while the Memory one (migration cost) works in con-
trary way. Only those processes that have PM higher than
a specified threshold will be migrated. Finally, the destina-
tion is selected based on elected PM that informs the tar-
geted set. The manager of this set chooses a better resource
following a evaluation function.

References

[1] M. A. Bhandarkar and L. V. Kal. Run-time support for adap-
tive load balancing. InIPDPS ’00, pages 1152–1159, 2000.

[2] C. Boeres, A. P. Nascimento, V. E. F. Rebello, and A. C. Sena.
Efficient hierarchical self-scheduling for mpi applications ex-
ecuting in computational grids. InMGC ’05: Workshop on
Middleware for grid computing, pages 1–6, New York, 2005.

[3] O. Bonorden, J. Gehweiler, and F. Meyer auf der Heide. Load
balancing strategies in a web computing environment. InIn-
ternational Conference on Parallel Processing and Applied
Mathematics, pages 839–846, 2005.

[4] C. Du, X.-H. Sun, and M. Wu. Dynamic scheduling with pro-
cess migration. InCCGRID ’07:pages 92–99, 2007.

[5] C. Huang, G. Zheng and S. Kumar. Performance evaluation
of adaptive mpi. InPPoPP ’06: Symposium on Principles and
practice of parallel programming, pages 12–21, 2006.

[6] D. Kondo, H. Casanova, E. Wing, and F. Berman. Models and
scheduling mechanisms for global computing applications. In
IPDPS ’02: International Symposium on Parallel and Dis-
tributed Processing, page 79-87, 2002.

[7] N. Krivokapic, M. Islinger, and A. Kemper. Migrating au-
tonomous objects in a wan environment.Jorunal of Intelli-
gent Information Systems, 15(3):221–251, 2000.

[8] R. Moreno-Vozmediano and A. B. Alonso-Conde. Influence
of grid economic factors on scheduling and migration. InHigh
Performance Computing for Computational Science - VEC-
PAR, pages 274–287, 2005.

[9] S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in grid com-
puting: Research articles.Concurr. Comput. : Pract. Exper.,
17(2-4):235–257, 2005.


