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Abstract

The increase in performance have become synonym of
increase in the number of processors. Computers with thou-
sands of processors are becoming common in many com-
puting environments. This fact imposes plenty of challenges
for the development, debugging and management of the pro-
grams executed on these computers. One of these challenges
is load balancing. Several works have been done on load-
balancing, but few of them deal with large machines and
highly dynamic applications like weather forecasts. This ar-
ticle presents a preliminary study of load imbalances in
weather forecast models, that can prevent this kind of ap-
plication from taking full advantage of large machines. The
model chosen for the tests was the BRAMS model, an open
source mesoscale model commonly used in Brazil. This
work focuses on the source of load imbalance related to the
nesting grid technique.

1. Introduction

The increasing performance of the digital computers has
made possible the scientific and technical development of
several areas of the knowledge and human activity. The
more powerful the computers are, more information they
can process and consequently finer models can be imple-
mented on them.

Teraflop computers have become commonplace in an in-
creasing number of computing environments. One exam-
ple of this class of computers is the BlueGene/L in the
Lawrence Livermore National Laboratory (LNLL), that has
131.072 processors. In the article [22] it is presented a

molecular dynamic simulation program that reached a per-
formance of 103 Teraflops over a 7 hour run on this com-
puter. Another example is the Earth Simulator [9], that con-
sists of 640 nodes with 8 vector processors each. This sys-
tem reached 26.58 Teraflops of peak performance executing
a global atmospheric circulation model [21].

These new high performance computers are employing
increasingly more processors, as it can be seen from the
TOP500 list. This imposes multiple challenges for the de-
velopment, debugging and management of the programs ex-
ecuted on these computers. The task of keeping every pro-
cessors busy with useful work is one of these challenges,
known as load-balancing. Several works have been done on
load-balancing [2] [7] [14], but few of them deal with large
machines and highly dynamic applications such as weather
forecasts.

This article presents a preliminary study of load imbal-
ances in weather forecast models that prevents this kind of
application from taking full advantage of parallel machines.
The model chosen for the tests was the BRAMS model
that is an open source mesoscale model commonly used in
Brazil. Few processors was employed to confirm the exis-
tence of one source of load imbalance in PC cluster, but it
is underway tests with more processors.

The remainder of the article is organized as follows. The
Section 2 presents the load-balancing problem. Section 3
shows related works. Some general sources of load imbal-
ance found in meteorological model are presented in the
Section 4. The Section 5 focuses on the load imbalance due
to the technique of nesting grids, that represents a trade-off
between computational speed and high-resolution. The last
section concludes this article with some remarks.



2. Load-balancing

The main objective of the increase in the number of pro-
cessors used to perform a computation is the reduction of
the execution time. Two metrics are commonly used in this
context: speedup (S) and efficiency (E). They are defined
as follows:

S =
Ts

Tp
E =

S

p

where Ts is the sequential execution time and Tp is the par-
allel execution time on p processors. Ideally, the efficiency
is equal to 1, but usually it tends to saturate as the num-
ber of processors increase [8]. There are mainly three rea-
sons for this fact [6].

The first reason is that some parts of the computation
cannot be parallelized, i.e. these parts do not take advantage
of multiple processors. Thus, the minimum time needed to
finish the computation is, at best, the time needed to exe-
cute these sequential parts. This fact is known as Amdahl
Law [1]. The second reason for the decrease in efficiency is
related to the proportion between communication and com-
putation. If the communication grows faster than the com-
putation with the increase of the number of processors, then
it is expected a limit from which the increase in the num-
ber of processors leads to a speedup reduction.

Load imbalance is the third reason for the parallel ef-
ficiency decrease. Each processor in a parallel machine
should receive an equal workload in order to achieve the
best performance. If some of the processors receive more
work to do than others, then the less loaded processors
should wait for the more loaded ones, thus the efficiency
drops. Load balancing techniques are used to avoid this un-
equal distribution of work. These techniques can be catego-
rized as static or dynamic. In the first one, the load distri-
bution occurs before starting the computation and does not
change during the execution. The static load balancing is
also known as scheduling problem [23] and it is suitable for
problems whose behavior is known a priori.

The dynamic load balancing technique makes few as-
sumptions about the application behavior. The informations
about the load are obtained at runtime in order to drive the
load balancing mechanism. This approach may incur in a
higher overhead due to the spent time to collect data and to
distribute or redistribute the load. However, this approach is
more suitable for inherently dynamic application.

The book [23] classifies dynamic load balancing as cen-
tralized or distributed. In the centralized approach, only
one processor takes the decisions about the load balanc-
ing, whereas all processors participate on this process in the
fully-distributed one. Hybrid approaches are also possible
as presented in [25]. The article [20] points that the central-
ized approach incurs a lower overhead during the load es-
timation, but this implies in slower responses on machines

with many processors. The distributed approach, in its turn,
has a better performance in machines with many proces-
sors, however it implies in a bigger overhead for load esti-
mation.

The dynamic load balancing can be implemented di-
rectly in the application code. This alternative causes a
lesser overhead in the execution, because it works directly
on the data structure of the application. However, the direct
implementation requires a deep knowledge of the applica-
tion code, therefore it is difficult to use it on legacy sys-
tems. Moreover, as it is said in [5], the resulting implemen-
tation cannot be used in other applications since it is highly
tied to the original one.

An alternative to the direct implementation are the
load balancing toolkits. Typically, these toolkits are im-
plemented as libraries that are linked to the application
and offers services to it. This approach is more conve-
nient for legacy systems, since its use does not require or
requires less change in the application. However, the toolk-
its usually cause more overhead.

3. Related work

Several proposals and implementations of load balanc-
ing strategies can be found in the literature, that shows a
great interest in the subject. The winner article of the Gor-
don Bell prize of 2005 [22] is an example of dynamic load
balancing directly implemented in the application. This arti-
cle presents molecular dynamics simulation, that is a com-
putational technique for simulations of particles as atoms
and molecules.

The general structure of the molecular dynamics (MD)
simulations is presented in [18]. Usually this structure is
simple, therefore the implementation of the load balanc-
ing on MD codes also tends to be simple. On the other
hand, other applications have too many forms and they are
too complex that load balancing becomes a complex task.
Weather and climate forecasts are examples of this kind of
application.

MM90 is an example of meteorological model that im-
plements dynamic load balancing. It is a parallel implemen-
tation of the Penn State/NCAR Mesoscale Model (MM5) in
Fortran 90. The article [14] describes this model, the dy-
namic load balancing method and the performance results.
However, the article does not describe the used criteria to
drive the load balancing, that is essential to determine the
scalability, as [20] points out.

The article [7] presents an algorithm to load balancing
the subgrid orography scheme applied to the CAM3 model,
that is a global atmospheric circulation code designed to ex-
ecute on several platforms. The subgrid orography scheme
treat the influence of the orography, i.e. the average height
of land, on the forecast accuracy. As the orography does not



change, a static load balancing strategy is used. The algo-
rithm tries to minimize the communication, while it finds
the best load distribution. However, these results are spe-
cific to the used scheme.

Other articles on load balancing are [19] [24] [15] [17]
and [3].

3.1. Load balancing toolkits

All works presented above are examples of direct imple-
mentation. This section presents some load balancing ap-
proaches based on toolkits.

Zoltan [4] is an open source library developed by San-
dia National Laboratories that provides load balancing ser-
vices. This library is not restricted to a specific application
nor imposes restrictions in the data structures of the appli-
cation. However, the use of the Zoltan must be taken in ac-
count during the development of the application. Therefore,
in legacy systems, it would be needed to change the origi-
nal code in order to use this toolkit.

Mosix is a management system for clusters of PCs, that
implements load balancing through process migration [2].
In this system, the processes migrate from slower to faster
nodes, or lightly loaded nodes, in order to distribute work-
load. Even after it migrates, the process maintains its sys-
tem context in the node of origin, to solve system calls.
However, this fact causes performance degradation in ap-
plications with heavy interprocess communications, as [12]
points out.

Developed in the University of Illinois, the Charm++
is an object-oriented language based on C++, and a par-
allel execution environment [10]. A program written in
CHARM++ consists of a collection of distributed objects,
whose methods can be called asynchronously. The execu-
tion environment controls the attribution and re-attribution
of objects to the available processors and mediates the com-
munication between the objects. This approach allows op-
timizations such as load balancing and automatic overlap-
ping of computation and communication.

4. Sources of load imbalance in weather fore-
cast models

Numerical weather forecast is an important application.
Since the beginning of the development of electronic com-
puting machines, with John von Neumann using the Eniac
to predict weather [16], until now, with the increasing inter-
est in climate change, this kind of application has demanded
improvements in the computer science. Although several
works had been done in load-balancing weather models, the
recent increase in the number of processors or cores per ma-
chine to hundreds or thousands imposes a big challenge. In

this section, it is presented some sources of load imbalanc-
ing that can prevent the models to use the full power of the
recent machines.

Typically, numerical weather forecasts represent the
state of the atmosphere as a set of floating point values, rep-
resenting physical quantities (e.g. temperature, wind com-
ponents, etc), over a discretized domain. Then, it is applied
atmospheric motion governing equations to the initial at-
mospheric state, producing the state of the atmosphere at
the next time-step. The iterative application of this proce-
dure allows forecasting for the desired time period. Usually,
the domain is discretized as a regular grid and the numer-
ical computations is uniformly applied on it. However,
localized atmospheric processes can lead to load imbal-
ances. Examples of such processes are microphysics and
dynamically localized emission sources on environmen-
tal models.

Microphysics mean physical processes active on the
scale of individual clouds. As these processes are usually
triggered by some threshold values in the grid representing
the atmosphere, the computational load due to these pro-
cesses can dynamically change through the domain. Thus,
if the domain decomposition employed is a spacial decom-
position, as typically it is, some processors would execute
the microphysics while others would not. The article [11]
presents a study about load imbalance of the Gesima model
caused by some criteria that triggers the microphysics of
this model.

Load imbalance caused by microphysics was also found
in the Rams model, as pointed out by [13]. More than 20%
of load imbalance was attributed to the presence of clouds
in sub-domains of the overloaded processors.

Dynamically localized emission sources on environmen-
tal models can also cause load imbalances. One example of
such a model is the CATT-BRAMS, that is a system to mon-
itoring atmospheric transport of biomass burning and an-
thropogenic emissions (emissions derived from human ac-
tivities).

Another source of load imbalance is related to the way
that the domain is discretized. Some techniques have been
developed in order to improve resolution in limited ar-
eas. One of these techniques is known as nesting grids,
where higher resolution grids are embedded in, and can ex-
change information with a lower resolution grid. The next
Section discuss more about this source of load imbalance
through the analysis of a specific meteorological model, the
BRAMS.

5. Experiments

This Section presents some experiments that show the
nested grids in the BRAMS meteorological model can lead
to load imbalance in cluster of PCs. BRAMS means Brazil-



ian Regional Meteorological System, it is a model de-
rived from Rams and it includes tropical parameterizations.
BRAMS receives as input a lower resolution data from an-
other model (Figure 1(a)) and produces a higher resolution
output for a specific region (Figure 1(b)).

(a) lower resolution forecast from a global model

(b) 7-km resolution forecast from BRAMS

Figure 1. Temperature forecast over the area
of Porto Alegre.

When executing with more than one grid, the BRAMS
begins advancing the coarser grid as if it did not contain
nested grids. After that time-step, the coarser grid sends the
boundary condition to the nested grid. The sent data is in-
terpolated to the boundary points in the nested grid. The in-
terior points of the nested grid are integrated under the in-
fluence of the boundary condition. Usually the time-step of
the nested grid is a fraction of the coarser one to ensure nu-

meric stability, thus it is needed to integrate the nested grid
until its time reaches the same time that the coarser grid. Af-
ter that, the whole nested grid is used to update the coarser
grid where the finer one exists.

Both coarser and nested grid are decomposed among the
processors in an equitable manner. However, the interpola-
tion and the coarser grid update are done only on the pro-
cessors with the sub-domain of the coarser grid where the
nested grid exists. This is done to guarantee binary repro-
ducibility: code results are processor count invariant, but
this cause load imbalance.

A previous performance test in a SX-6 supercomputer
had confirmed the existence of this source of load imbal-
ance. In the present work, it was performed a similar test to
find if the same behavior occurs in a PC cluster. The per-
formance test consists of a 24-hour simulation over the area
showed in the Figure 2. The output data are two grids with
32x32 points each one on the horizontal and 32 vertical lev-
els. This test was executed on one and six slave processors
and one master processor 1. The number of used processors
were the same as in the previous test on the SX-6 supercom-
puter.

Figure 2. Domain decomposition.

During the test, it was collected the execution times of
the most important sections of the simulation time-step.
They are:

• Init: Initialization, that occurs before the time-step
loop;

• outerBeforeInner: Data receiving from the master;

• TS: Calling of the main time-step routine;

1 Pentium III 1133MHz connected by a Gigabit Ethernet network.



Section Sequential Parallel
processor 1 processor 2 processor 3 processor 4 processor 5 processor 6

Init 5.0744 5.2841 5.2839 5.2840 5.2841 5.2839 5.2822
outerBeforeInner 20.7467 93.6903 22.6495 79.5858 66.6019 52.4408 38.8769
TS 1,619.0143 353.5216 328.7484 346.9930 340.8613 335.0797 326.6488
CoarseToFine 10.8653 9.2350 34.3023 15.9393 22.1928 28.1787 36.6182
FineToCoarse 33.0197 21.4158 93.0999 35.5287 48.5392 62.5785 76.3586
CLF 2.5818 0.5469 0.4221 0.5302 0.5306 0.5954 0.5315
DomainsToMaster 6.1528 7.8200 7.0224 7.6625 7.5140 7.3544 7.2041
TOTAL 1,697.5511 491.5949 491.5960 491.5963 491.5978 491.5844 491.5908

Table 1. Execution time in seconds.

• CoarseToFine: Sending of the boundary condition to
the nested grid;

• FineToCoarse: Coarser grid update;

• CLF: Computation of the CFL-criterium;

• DomainsToMaster: Sending of data to the master.

The Figure 2 shows the domain decomposition and the
Table 1 shows the performance results. The sections corre-
sponding to the nesting grid processing (CoarseToFine and
FineToCoarse) on the processor 2 exhibits the biggest time,
as it is supposed to be since it is the only processor in the
charge of the finer grid. However it can also be seen that the
outerBeforeInner section of the processor 2 is lower than
the other processors. That is because the other processors
have to wait for the master processor, that, in its turn, waits
for the overloaded processor 2. Another important fact is
that the spent time in the sections CoarseToFine and Fine-
ToCoarse of the lightly loaded processors increases through
the processor 1 to 6. The reason is that those processors
have to send their portions of the finer grid to the proces-
sor 2, which receives the data sequentially.

These results show that the processor 2 is overloaded and
this cause the other processors to become idle. If it is only
considered the TS section, that is the main time-step routine,
the efficiency in this test is 76%, however the load imbal-
ance cause the total efficiency to drop to 57%. This test was
also done with 12 and 18 slave processors. It was observed
that the total efficiency drops faster than TS efficiency as the
number of processors increase.

In order to perform this test with more processors, it is
underway a study of the Charm/BigSim environment, that
can be used to simulate large machines and predict the per-
formance on those machines.

6. Final remarks

Load balancing is not a new theme, however the large
number of recent articles shows that this theme remains of

central importance. That is mainly because load balancing
is very sensitive to the architecture and the application. A
specific solution hardly obtain a good efficiency in different
machines and different applications. Besides this, the use of
the available solutions are very limited in production envi-
ronments, that poses questions on the suitability of these so-
lutions to deal with real problems.

This work is a preliminary study on load imbalances in
meteorological models, that is undoubtedly an important
application. Here it was presented some sources of load im-
balance in meteorological models and analyzed the imbal-
ance caused by nested grids. It was found that this load im-
balance source limits the efficiency of the BRAMS model
as the number of processors increase.

Next steps are underway and include to adapt BRAMS
to execute it on Charm/BigSim environment in order to es-
timate its performance on large machines and to study the
behavior of the nesting grid technique on these systems.
On this environment it will be also possible to study the
other sources of load imbalances such as microphysics and
plumerise. The final goal of these studies is the develop-
ment of a model to deal with load imbalances on large ma-
chines applied to meteorological models.
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