
A Preliminary Outline for a Ubiquitous Computing Software Infrastructure

Cristiano André da Costa
Universidade Federal do Rio Grande do Sul - UFRGS
Universidade do Vale do Rio dos Sinos - UNISINOS

cacosta@inf.ufrgs.br, cac@unisinos.br

Luciano Cavalheiro da Silva
Universidade Federal do Rio Grande do Sul - UFRGS

lucc@inf.ufrgs.br

Adenauer Corrêa Yamin
Universidade Católica de Pelotas - UCPel

adenauer@ucpel.tche.br

Cláudio Fernando Resin Geyer
Universidade Federal do Rio Grande do Sul - UFRGS

geyer@inf.ufrgs.br

Abstract

The proliferation of various types of computational de-
vices (many of which include the possibility of wireless in-
terconnection) allows a glimpse into a new area, which
transcends the characteristics of the majority of distributed
systems in use today. This area, called ubiquitous (or per-
vasive) computing, presupposes a strong integration with
the real world, keeping high transparency and focus on the
user. For the development of applications in this scenario,
we need an appropriate software infrastructure. In this way,
this article presents an outline of Continuum, a software ar-
chitecture designed to support ubiquitous computing. The
proposal applies follow-me semantics to let the user access
applications and data at any time and place. The focus of
our work is also on addressing context awareness and con-
text management issues.

1. Introduction

In the classic and visionary article about computation for
the 21st Century, Mark Weiser [11] summarizes what is ex-
pected from pervasive or ubiquitous computing (ubicomp):
user access to the computational environment, everywhere
and at all times, by means of any device. The difficulty lies
in how to develop applications that will continually adapt
to the environment and remain working, as people move or
change devices [10]. The development of this area, how-
ever, is still hindered by the limited number of available lan-
guages and tools [9]. Besides, context-aware applications
are still being executed in laboratories rather than present

in everyday real-world environments [6]. Ubiquitous appli-
cations need middleware to interface between many differ-
ent devices and end-user applications [7]. The aim is to hide
environment complexity, by isolating applications from the
explicit management of protocols, distributed memory ac-
cess, data replication, communication faults, etc. Middle-
ware can also solve heterogeneity problems related to ar-
chitectures, operating systems, network technologies, and
even programming languages, promoting their interopera-
tion. On the other hand, a framework is an environment,
composed of APIs, user interfaces, and tools, which sim-
plifies software development and management in a specific
domain [3]. We can use a framework to build software that
runs on middleware, which can be developed by using ex-
isting frameworks. This middleware must allow the user
to access her computational environment (applications and
data) at any time and place. One possible solution is to ap-
ply follow-me semantics [1] [13]. The idea behind this con-
cept is that applications and data go along with users, pro-
viding a virtual environment and adapting to the current
context. This adaptation is fundamental to the ubiquitous
computing vision, and involves the perception of context
(context awareness) and the proper adjustment of the sys-
tem based on this perceived information (context manage-
ment). We defend that follow-me semantics can reduce the
distance between the ubiquitous computing vision, as pro-
posed by Weiser, and the current distributed computing sce-
nario. To achieve this goal, our work focuses on the devel-
opment of a software infrastructure for ubiquitous comput-
ing that addresses context awareness and context manage-
ment issues. This proposal differs from other works, such
as Aura [4], Gaia [9], and One.World [5], because the fo-



cus here is on keeping the computational environment near
the user. In this article, we propose a software infrastruc-
ture, targeting ubicomp, named Continuum. It makes use
of ISAM (Infra-estrutura de Suporte às Aplicações Móveis
– Mobile Applications Support Infrastructure) [1] espe-
cially of EXEHDA middleware (Execution Environment
for Highly Distributed Applications) [12]. Continuum in-
frastructure uses framework and middleware, and redesigns
the current ISAM project, modifying the middleware EX-
EHDA to better support follow-me semantics, and the con-
text awareness and management issues involved. The text is
organized as follows. In the next section, we review essen-
tial concepts of the area and suggest challenges that must
be addressed. In section 3, we describe follow-me seman-
tics and the integration of grid in the ubiquitous computing
field. Section 4 briefly presents the ISAM project. In sec-
tion 5, we show an outline of the Continuum infrastructure
based on ISAM redesign and context awareness issues. Sec-
tion 6 briefly presents the Continuum pluggable services de-
sign. Finally, in section 7, we show some conclusions and
suggestions for future work.

2. An Appraisal of Ubiquitous Computing

We should begin by defining ubiquitous computing (also
called ubicomp). Mark Weiser created this term, so he is
considered one of the area’s fathers. He presents computer
ubiquity as the idea of integrating computers seamlessly, in-
visibly enhancing the real world. Weiser [11] formulates a
“new way of thinking about computers in the world, one
that takes into account the natural human environment and
allows the computers themselves to vanish into the back-
ground”. Computers will vanish as a consequence of human
psychology: when people use things without consciously
thinking about it, they focus beyond them. This is a phe-
nomenon defined by some philosophers and psychologists
[11]: people cease to be aware of something when they use
it sufficiently well and frequently. To achieve the physical
integration of computers into the world, as a background,
we must apply some conceptual changes. In this perspec-
tive, Weiser also defines embodied virtuality in opposition
of virtual reality because computers cannot be limited to
their devices and software installed. Moreover, it is inade-
quate to consider the Internet or distributed file systems ac-
cess as an example of seamless integration. Weiser points
out that the power of ubiquitous computing does not steam
from the capacity of a particular device, but rather from
the interaction of all devices. Besides computer interaction,
Scale and Location are two important topic highlighted by
Weiser. There will be many computers per room, in differ-
ent sizes, with different user’s interfaces, and suitable for
specific jobs. Computers must also know where they are
and with this they can adapt to the environment. Adapta-

tion is then currently one of the crucial concerns in perva-
sive computing. We must understand and support everyday
practices of people to reach Weiser’s vision, offering differ-
ent forms of interactive experiences through heterogeneous
devices connected via integrated network components.

3. Follow-me Semantics

We propose a personal virtual environment that goes
along with the user, in her movement, to achieve a wide
ubiquitous scenario. This movement can involve both log-
ical mobility (of data, code, and computation) and physi-
cal mobility (of resources and devices in use). This envi-
ronment feature is known as follow-me semantics [1]. To
support this concept, we propose the use of grid infrastruc-
ture, which allows us to easily provide global mobility of
user, terminal, data, code, and session. Grid strategies are
employed to manage the user’s displacement and to accom-
plish the migration of her virtual environment. The integra-
tion of grid and ubiquitous computing is complex, due to
the contrast between the dynamism of pervasive environ-
ment and the static resource management of traditional grid
systems. We believe that we can improve both ubiquitous
and grid computing with this convergence. In our infras-
tructure model, grid applications should adjust themselves
to currently available resources, instead of looking for more,
in order to satisfy their needs. We should bear in mind that
such adaptation goes beyond the traditional grid solutions,
which consist in adjusting the system to the number of avail-
able resources of a given kind. As an alternative, we pro-
pose that applications adapt to the kind of resource avail-
able at each moment. In terms of ubiquitous computing,
the changes proposed are such that infrastructure manages
a wider environment and makes decisions based on many
context dimensions: temporal, spatial, personal, or even so-
cial. In addition to the grid, we propose the use of mo-
bile and context-aware computing. The joint use of these
three concepts allows us to manage a large-scale environ-
ment through the use of follow-me semantics. Moreover,
this kind of environment makes it easier to develop ubiqui-
tous applications.

4. The ISAM Project

ISAM is a Brazilian acronym for Infra-estrutura de Su-
porte às Aplicações Móveis (Mobile Applications Support
Infrastructure), developed by researchers from Federal Uni-
versity of Rio Grande do Sul (UFRGS). The project aims
at integrating the concepts of context-awareness, grid, and
mobile computing [13]. The idea behind ISAM is to build a
pervasive computing infrastructure, integrating a program-
ming language and middleware to support its execution.
Differently from other proposals, ISAM focuses on appli-

2



Figure 1. Continuum architecture

cation development rather than on the environment and ser-
vices. Because of that, the project encompasses a model, a
language, and a runtime support to build and execute per-
vasive applications. There is a prototype available , built
mainly in Java, with some modules in C. The prototype
is fully functional and bundled to a Linux live CD, in or-
der to facilitate its use. Programmers can develop applica-
tions utilizing Java or ISAMadapt. ISAMadapt [1] is a pro-
gramming language that facilitates the development of per-
vasive applications. It provides some means for express-
ing dynamic adaptation and context-awareness in design-
time. ISAMadapt is based on a mulitparadigm model named
Holoparadigm (hereafter simply referred as Holo) [2]. In
Holo, a logic blackboard, called history, implements the
coordination mechanism, and a new programming entity,
called being, organizes several encapsulated levels of be-
ings and histories (multi-domains). These “beings” are the
main Holo abstractions. They represent the logical or phys-
ical components of the system that is modeled. The archi-
tecture of ISAM 1 is organized in three components: the in-
frastructure layer, the intermediate layer, and the superior
layer. The infrastructure consists of the network, the op-
erating system, and the Java Virtual Machine (JVM). Cur-
rently, ISAMadapt programs are converted to Java source
code, then compiled, and executed in the JVM.

The intermediate layer is the Execution Environment for
Highly Distributed Applications (EXEHDA). Designed as
middleware, it consists of a collection of services, such as

naming, communication, migration, replication, interoper-
ability, location, and monitoring. On top of these basic ser-
vices, EXEHDA executes the User Virtual Environment,
a container for user applications and sessions; the Sched-
uler, for migration and remote execution of objects; and the
Context Server, for context-aware adaptive behavior. The
superior layer has the ISAMadapt and the distributed mo-
bile applications. Context awareness is represented as a vir-
tual module, since it is present in the conception of all other
ISAM components [12]. Applications run on the ISAM per-
vasive environment (ISAMpe), which uses cellular hierar-
chy. Each cell has a specific host, called base, responsible
for communications among cells. Devices belonging to the
same cell can directly communicate with each other and are
identified as nodes. The hierarchy allows a cell to recur-
sively contain other cells.

5. Overview of Continuum Software Infras-
tructure

Continuum software infrastructure integrates the con-
cepts of context-awareness, grid, and mobile computing.
The idea behind Continuum is to build a ubiquitous com-
puting infrastructure, integrating a framework and middle-
ware to support its execution. Figure 2 illustrates the devel-
opment process using Continuum. We decide on this name
for the software infrastructure, in order to represent the idea
of continuous execution obtained by the use of follow-me

3



Development

Framework

Ubiquitous 
Applications

Ubiquitous Applications

Middleware

Infrastructure

Figure 2. Development Process using Contin-
uum

semantics. We choose the Möbius strip as the logo of our
project because it represents a continuous curve.

The project is based on ISAM, acronym for Infra-
estrutura de Suporte às Aplicações Móveis (Mobile Ap-
plications Support Infrastructure). Differently from
other proposals, ISAM focuses on application develop-
ment rather than on the environment and services [1].
Because of that, the project encompasses a model, a lan-
guage (named ISAMAdapt), and a runtime support to
build and execute pervasive applications. Although Con-
tinuum is an ISAM evolution, there are conceptual differ-
ences between both. ISAMAdapt was discontinued, and
Java is the only language currently supported. Program-
mers usually prefer to use languages they are already fa-
miliar with, allowing the use of legacy codes. Additionally,
we want to support the context awareness without exces-
sively burdening the programmer and of the software de-
velopment process. We propose the use of a framework,
instead of a language, to achieve these goals. The Con-
tinuum framework maintains all the characteristics we
consider important to support the design-time develop-
ment. Furthermore, the framework inherits some important
characteristics of ISAMAdapt, in an independent lan-
guage approach. Neither do we intend to be bound to Java.
We aim to be as independent as possible, making it eas-
ier to port Continuum to other languages, such as C# or
C++, in the future. The focus of Continuum is on con-
text awareness, and also on sustaining follow-me se-
mantics. As a result, we rebuilt EXHEDA middleware
considering these aspects. The original proposal [12] fo-
cuses only on partial context awareness, i.e. the acquisition
of raw information, its distribution, and the conver-
sion of raw information into abstract context elements,
guided by an XML description. Another important ele-
ment in ISAM is informality in the treatment of context.
Instead of treating context awareness as a virtual mod-
ule, as in ISAM, we consider it as a real subsystem, which
must additionally encompass the following characteris-
tics: formal representation of context information; storage

of context data; distribution and placement of context in-
formation; and the mix of user preferences with context in-
formation. In ISAM, context awareness was a virtual mod-
ule mainly because it was used to define which services
should be available in each node, and what the implemen-
tation used by those would be. Continuum architecture is
presented in Figure 3. The architecture is divided in lay-
ers: infrastructure, pluggable services, subsystems, and
user space. The infrastructure comprises the execution en-
vironment and support, including the network, operat-
ing system, and, currently, the Java Virtual Machine
(JVM). The pluggable services provide basic functionali-
ties to Continuum subsystems. As the name implies, this
services can be loaded on demand, as needed. The subsys-
tems layer constitutes the core of Continuum middleware
and supplies the main functionalities during execution. Fi-
nally, the user space layer has user applications and the
Continuum Framework. Applications can use the JVM di-
rectly and interact also with the middleware towards the
framework.

The framework incorporates Execution Profiler support,
which helps the user choose the best implementation for
each service. It also helps the user choose what services
will be available in each node. The execution profiler pa-
rameterizes the deployment process during load-time. This
reconfiguration process is needed each time a node is boot-
strapped. During execution, applications could also need to
load services on-demand. This is done by the Adaptation
Management subsystem, which is also an improvement over
ISAM context services. Not only is it targeting at the adap-
tation process itself, but also at the management of the adap-
tation process, which includes agility aspects and the main-
tenance of system stability. On one side, we have to address
the delay between the perception of a new context state and
the execution of actions to adapt the system to this new en-
vironment condition, demanding for agility. On the other
hand, the execution of adaptation actions has a computa-
tional cost and competes with the application itself. In an
extreme case, adaptation actions can be very frequent lead-
ing the system to an instability state, in which the major-
ity of resources are being consumed by the execution of
these adaptation actions. This demands for stability main-
tenance in the environment. Another redesigned subsystem
is Ubiquitous Access. This subsystem reinforces follow-me
semantics and invisibility issues, giving special considera-
tion to user attention and intent. The main features of ubiq-
uitous access subsystem are keeping a application database
that manages applications in the environment, maintaining
the user application environment, supporting persistent stor-
age, managing user sessions, and interfacing to components
external Continuum. We should design device-neutral ap-
plications, i.e., we should not start with the presentation
and then build up the programming logic from that. Conse-

4



Figure 3. Continuum architecture

quently, Continuum has a subsystem specifically aimed at
transparent User Interaction, which deals with people inter-
action and interfaces suitable to each type of device or envi-
ronment. To accomplish this, during design-time we can de-
fine abstract user interfaces and predict different types of in-
teraction, with aid of the framework, so that the decision of
which interface to use can be postponed to execution-time.
Another option is to dynamically generate the interfaces
during execution, based on the abstract definitions, specific
devices features, and contextual information. This option
requires less effort during design, and tends to consume
more processor power and communication latency during
execution. However, it facilitates the use of contextual data.
Currently, dynamic generation of interfaces is not supported
by Continuum, but it is planned to be available in the future.
The Distributed Execution subsystem is responsible for the
distributed processing support in Continuum. In this, appli-
cations are spawned, codes are deployed on-demand, and
their objects created and migrated among nodes. Further-
more, this subsystem keeps the environment physical orga-
nization, by storing attributes related to the management of
the grid, i.e. resources, users, and applications. Finally, the
Context Awareness subsystem deals with a variety of con-
textual information. It provides a formal representation for
context, in an independent application manner. The subsys-
tem also considers user preferences, i.e. requirements that
vary from user to user and over time, which until recently,

very little research has addressed this problem [6]. Context
awareness subsystem is also in charge of storing context,
along with points in time these data were created at, and
distributing and localizing those.

6. Pluggable on-demand Services

We use in Continuum, as in ISAM, a service-based or-
ganization, which loads services on demand depending on
what functionalities the applications need. These pluggable
services add an adaptive behavior, which is important due
to the high heterogeneity of the many different resources.
In addition, Continuum proposes the use of SOC (Service-
Oriented Computing) [8]. In SOC, we have a service layer
according to the service-oriented architecture (SOA). The
purpose of SOA is to support critical applications, which re-
quire the management and deployment of services and ap-
plications; it is also targeted at providing support for open
services [8]. The application of SOC on the web is ob-
tained by the use of web services. SOC, SOA, and web ser-
vices create a general interface, which makes interaction
easier in Continuum, and in a more ad-hoc approach, en-
ables many applications to make effortless use of its ser-
vices. Besides being loaded on demand, the services are
context adaptive, i.e., the infrastructure is able to use the
implementation that is better tuned to each device. Further-
more, we reduce resource consumption by loading only ser-

5



vices that are in fact needed. Such scheme is possible be-
cause services are defined by their semantics and interface,
instead of a specific implementation. We propose the fol-
lowing services in Continuum: security & privacy, responsi-
ble for security mechanisms, such as authorization and pri-
vacy protection; dependability, aimed at handling fault, er-
ror, and failure; trust manager, accountable for the estab-
lishment of trust; interoperation, targeting at communica-
tion; mobility, to support logical and physical mobility; per-
sistence, intended to store data; discovery, used to dynam-
ically locate resources; and monitoring, for the purpose of
interacting with sensors. Moreover, it is easy to add other
services to Continuum, since we make use of SOA archi-
tecture.

7. Conclusion and Future Work

We believe that it is still difficult to find a software in-
frastructure that has all the necessary challenges presented
by ubiquitous computing. Projects such as Aura, Gaia,
One.World, and ISAM tried to accomplish many of these
aspects. However, it is very hard to address several different
open research topics in one project. The tendency today is
providing middleware or frameworks for specific issues. In
spite of this tendency, we think that a comprehensive soft-
ware infrastructure can help the development of pervasive
software. In this article, we presented Continuum software
infrastructure, an evolution in the original ISAM project.
The proposal, which is currently under development, ap-
plies follow-me semantics and deals with context awareness
and context management in the ubiquitous computing field.
As a future work, we intend to investigate and propose inno-
vative solutions to deal with context. Particularly, we are in-
terested in reduce the programmer burdening and the soft-
ware development process, to support context awareness.
Another concert is to contemplate the quality of context in-
formation and deal with the boundary problem, considering
the physical limits (or other criteria) when defining the en-
vironment scope.

References

[1] I. Augustin, A. Yamin, J. Barbosa, L. Silva, R. Real,
G. Frainer, G. Cavalheiro, and C. Geyer. Mobile Computing
Handbook, chapter ISAM, Joining Context-Awareness and
Mobility to Building Pervasive Applications, pages 73–94.
CRC Press, 2004.

[2] J. Barbosa, C. Costa, A. Yamin, and C. Geyer. Gholo: A mul-
tiparadigm model oriented to development of grid systems.
Future Generation Computer Systems, 39(2):86–98, 2005.

[3] P. A. Bernstein. Middleware: a model for distributed system
services. Commun. ACM, 39(2):86–98, 1996.

[4] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project aura: Toward distraction-free pervasive computing.
IEEE Pervasive Computing, 01(2):22–31, 2002.

[5] R. Grimm, J. Davis, E. Lemar, A. Macbeth, S. Swanson,
T. Anderson, B. Bershad, G. Borriello, S. Gribble, and
D. Wetherall. System support for pervasive applications.
ACM Trans. Comput. Syst., 22(4):421–486, 2004.

[6] K. Henricksen and J. Indulska. Developing context-aware
pervasive computing applications: models and approach.
Pervasive and Mobile Computing, 2(2):37–64, 2006.

[7] A. Mukherjee, D. Saha, and C. Biswas. Present scenarios
and future challenges in pervasive middleware. In Commu-
nication System Software and Middleware, 2006. Comsware
2006. First International Conference on, pages 1–5, 08-12
Jan. 2006.

[8] M. P. Papazoglou and D. Georgakopoulos. Introduction:
Service-oriented computing. Commun. ACM, 46(10):24–28,
2003.

[9] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. A middleware infrastructure
for active spaces. IEEE Pervasive Computing, 01(4):74–83,
2002.

[10] T. Weis, M. Knoll, A. Ulbrich, G. Muhl, and A. Brandle.
Rapid prototyping for pervasive applications. Pervasive
Computing, IEEE, 6(2):76–84, April-June 2007.

[11] M. Weiser. The computer for the 21st century. Scientific
American, 265(3):94–104, 1991.

[12] A. Yamin. Arquitetura para um ambiente de grade computa-
cional direcionado às aplicações distribuídas, móveis e con-
scientes de contexto da computação pervasiva. PhD thesis,
Univerisidade Federal do Rio Grande do Sul, 2004.

[13] A. Yamin, J. Barbosa, I. Augustin, L. Silva, R. Real,
C. Geyer, and G. Cavalheiro. Towards merging context-
aware, mobile and grid computing. International Journal of
High Performance Computing Applications, 17(2):191–203,
2003.

6


