ACTUS: a Framework for Adaptation Control in Ubiquitous Computing

Luciano Cavalheiro da Silva*, Cristiano Costa, Cldudio F. R. Geyer
Instituto de Informatica — UFRGS — Porto Alegre — RS — Brasil
{lucc, cacosta, geyer} @inf.ufrgs.br

Abstract

The moving of Human-Computer Interaction to-
wards “one user, many devices”, combined to the raising of
mobility-related technologies, inspired a vision of the com-
puting becoming invisible to its users by its seamless
integration into the users day-life tasks — the birth of Ubig-
uitous Computing (UbiComp) research. A core subclass
of UbiComp applications is that of context-aware appli-
cations. Such applications adapt their behavior to the
prevailing (dynamic) resource availability levels in the en-
vironment, aiming to optimize user-environment inter-
actions and to reduce the demand for user intervention.
The problem of adaptation controlling is related to or-
chestrating adaptations carried out by concurrent ap-
plications, in order the promote system stability, while
considering other desirable properties as agility and rela-
tive priorities. In this paper we present ACTUS, a proposal
of framework for building adaptation controllers tar-
geted at UbiComp.

1. Motivation

Nowadays, we observe the smooth merging of mobile
computing technologies into our day-life activities. Related
to this raising of mobility technologies, a research area of
increasing interest is ubiquitous computing, often referred
also as pervasive computing [13]. Term coined originally
by Mark Weiser in the late 1980’s [16], ubiquitous comput-
ing (UbiComp) describes a proposition grounded on the vi-
sion of turning the computing invisible by its seamless inte-
gration into the user’s day-life tasks.

Despite its rather idealized meaning, the property of
invisibility has many manifestations in real-world ubiqui-
tous computing research. It is, perhaps, best understood as
a distraction-free pervasive environment, emphasizing that
the user attention becames the most valuable resource in the
system. [7]. Another interpretation, highlighting the mobil-
ity aspect, would be a follow-me semantics for applications

+ This author is supported by CNPq, Brazil, through the PhD student
grant number 142391/2005-0.

and data [2], enabling a continuated execution of the user’s
tasks with access from any-where, at any-time and using
whatever device is currently available, despite of the user
(physical) mobility. Either way, common assumptions are
(i) that adaptation is a mandatory feature and (ii) that the
user must be shielded from environment management and
adaptation control concerns, as much as possible, in order
to preserve the so desired invisibility.

This paper presents ACTUS, a proposal of framework
for building adaptation controllers targeted at Ubiquitous
Computing. The remaining of this paper is organized as fol-
lows. Section 2 discusses the design of adaptive ubiquitous
applications, highlighting the issues related to the adapta-
tion control problem, and briefly revisits the state of art. Fol-
lowing, section 3 introduces the ACTUS framework, outlin-
ing its architecture, as well as discusses aspects of its data
models for context and adaptation and their handling of ap-
plication evolution. Finally, section 4 presents some con-
cluding remarks.

2. Context-aware Ubiquitous Applications

The availability of ubiquitous network access, yet not
continuous in time, shall modify the profile of running (end-
user) applications, which shall evolve from transient activa-
tions into virtually continuous executions where the appli-
cation is aware of its current context and modifies aspects
of its execution with the aim of optimizing the user inter-
actions with the environment. Such changes in the applica-
tion’s context may be caused by physical displacements of
the user, by modification of the user’s currently active ac-
tivities, as well as in function of the resource availability
changes in system, which is also dynamic[14].

Hence, an important subclass of ubiquitous computing
applications, and the object of our research, is that of smart,
adaptive (context-aware) ubiquitous applications. In fact,
we believe that, concerning to goal of invisibility, context-
aware adaptation is a mandatory feature. However, what
does context exactly means? A widen-accepted definition
for “context” is given by [6], who defines it as “any in-
formation that can be used to characterize the situation of
an entity”’, whereas entity may be “a person, place, or ob-
ject that is considered relevant to the interaction between a

user and an application, including the user and the applica-
tion themselves”. Notice that, the notion of context includes
information about the state of the hardware and software in-
frastructures, as well as about the user activities and inten-
tions that might be relevant to the execution of a given ap-
plication being studied.

2.1. Design Challenges for Context-awareness

The task of building context-aware applications may de-
composed into three perspectives:

1. programming of adaptive behaviors — concerned about
which models and abstractions one must use to embed
adaptive behaviors into context-aware applications;

2. context engineering — concerned about how to model
context (at design time) and how to acquire, process
and deliver the relevant information (at run time); and

3. adaptation control — given that we are able to realize
changes in the context and that we are aware of the
existence of alternative adaptation behaviors, this per-
spective is concerned on deciding which adaptation to
activate next.

The first two perspectives are easier to be identified as prob-
lems because they have direct impact on every context-
aware application, not only those related to ubiquitous com-
puting. However, the third one, which corresponds to the
problem of adaptation control in ubiquitous computing, in-
creases in importance as we start looking to the system
as a whole and considering the intrinsic characteristics of
the ubiquitous computing environment where those appli-
cations execute, as scale and resource sharing.

Increasing in scale is a legacy of Weiser’s prospect on
“computing invisibility” [16]: to be invisible the (ubiqui-
tous) computing environment should not limit users mobil-
ity, so it grows spreading over the physical ambient by in-
corporating new devices and services, such that the comput-
ing environment is always available, up to some degree, to
the user. In turn, large scale computing environments tend
to be shared infrastructures to be economically viable. As a
side effect, one would expect the number of applications ex-
ecuting in this environment to be large and the system to be
very dynamic.

Moreover, another implication of being a shared comput-
ing environment is that adaptations taken in one application
affect the other applications executing in the system. Thus,
the improper mediation of such adaptations, which is raised
by the scale of the system, may lead, at least, to the wast-
ing system resources and, in the worst case, to such a level
of system instability that compromises invisibility.

2.2. State of Art Revisited

The first two design views outlined in section 2.1 have
already been approached by quite some works so far. Re-

lated to programming, we may cite the works of [1, 8, 9],
whereas related to context engineering, task which is typ-
ically accomplished through middleware, we may cite [3,
4, 15, 5]. On the other hand, despite the seminal work of
Noble[10, 11], the problem of adaptation control in shared
environments remains an open question for research. The
solution proposed by Noble, thought addressing the multi-
application shared environment scenario, was specific to
data adaptation.

It is worth to note that, yet not explicitly addressed, the
problem of adaptation control still exists in the other works,
but the approach falls short with respect to scalability and
flexibility. There the control is typically hard-coded into the
application or implicitly defined in context recognition pro-
cess. Moreover, the adaptation policy is “always execute the
adaptation”, which is not satisfactory in large scale shared
environments since is clearly neglects the side-effects be-
tween applications and the different demands of priority of
adaptations, as well as do not account for the case of multi-
ple alternative adaptations being available for a given con-
text change.

3. The ACTUS Framework

Aiming to address the problem of adaptation control in
ubiquitous computing outlined in section 2.1 we propose
ACTUS which is a framework for building adaptation con-
trollers.

By designing ACTUS as a framework, we aim to provide
a generic skeleton solution which may be customized for
specific adaptation control demands (e.g., different heuris-
tics for adaptation scheduling). Further, ACTUS is meant to
be language-neutral and application-neutral, therefore sup-
porting a wide-range of application types and adaptation
patterns. Besides, ACTUS is not concerned about context
recognition. Instead, it is meant to work in a complemen-
tary fashion to third-part solutions for acquiring context in-
formation, cooperating with them to support adaptation be-
haviors at the applications. Another important concern in
the design of ACTUS was to account for application evolu-
tion in long term ubiquitous applications.

Reaching the desired level o generality for the frame-
work goes through defining suitable models for representing
context sensibility and adaptation features of the applica-
tions. Specifically, those models should expose to the adap-
tation controller information that is pertinent to the adapta-
tion control decision process while hiding other implemen-
tation specific details (e.g. programming language, context-
recognition middleware). Those requirements are addressed
by the ACTUS context and adaptation models.

3.1. Architecture of ACTUS

As the figure 1 shows, from a macro perspective, ACTUS
is composed by two main components: the adaptation con-

Application Containers E
Adaptive
Standard Component
Component
Contract
External
Management Management Entities
) Repository
Ad:
Componant Shaper
API
X Adaptati
®) Management ap a_ ton
Shaper Repository
API
A Context
ACTUS Application Shaper on e_x
Repositoy
| |
|
ACTUS Adaptation Controller c°"tht
Provider

Figure 1. Macro-architecture of ACTUS

troller itself and many instances of the application shaper.
Besides, ACTUS assumes the existence of some external
entities, which complement its functionality in order to fully
support for adaptive executions. Among those external enti-
ties, we highlight the repositories for adaptation actions and
context information, as well as the context providers. The
code repository, though not strictly necessary for the frame-
work, evoques the assumption of evolution of the applica-
tions, i.e. their hability to incorporate new features over time
during their execution.

The adaptation controller, which is shared between ap-
plications in order to enable orchestration of adaptations, is
responsible by the decision making process which results
in the scheduling of adaptation actions. In this process, it
uses information exposed by the application shapers, as well
as, events describing changes in the observed context state,
which are issued by registered context providers.

The application shaper, on the other hand, exists in a
per-application basis and has a dual nature. From the ap-
plication point of view, the application shaper represents a
language-specific binding of the ACTUS API. The applica-
tion uses such API in order to expose its adaptation features
to the adaptation controller without being concerned on how
to reach the adaptation controller nor on data representation
issues. The shaper utilizes the context and adaptation mod-
els defined in ACTUS in order to represent the sensitiveness
and the adaptation capabilities of the application in a stan-
dard way, suitable to be used by the adaptation controller. In
turn, from the controller point of view, the shaper is respon-
sible by forwarding the adaptation hints issued by the adap-
tation controller to the corresponding internal elements of
the application, shielding the controller from the complex-

ity of dealing with implementation specific issues of the ap-
plication.

3.2. Context Model

The context model represents the application’s percep-
tions about its execution environment. It includes all the rel-
evant information that the application is able to use in order
to adapt its execution to the prevailing environmental condi-
tions. In our formal definition, the context model of an ap-
plication is represented by a set of dynamically evaluated
variables, which we call context elements.

Once the environment state described by the context
model changes significantly, the application modifies as-
pects of its execution accordingly, i.e. it adapts in order to
optimize future interactions. Yet, it is worth to notice that
such changes may be either reflex of real observations or
forecasted conditions, meaning that adaptation may occur
both reactively and proactively. The specific way the appli-
cation reacts to changes in the state of its context model is
defined in its adaptation model.

Definition. We define Kpqsic, our basic context model for
an Ubiquitous Computing application (or application com-
ponent), as a dual representation of low-level and high-level
contextual information,

Rbasic = (Ea C)

, with E = {eg,e1,...,emn}, and C = {co,c1,...,Cn}
The former tuple element, F, characterizes the (generic)
low-level state information available to the applica-
tion through a set of uniquely identified raw sensors, e;,
provided in the environment. Those environment sen-
sors may be both hardware and software sensors, and are
typically shared across several applications. The later tu-
ple element, C, corresponds to the high-level (specialized)
contextual information, given as a set of context ele-
ment cg, that the application effectively uses to decide
about adaptation processes. In turn, we define the con-
text element c;, as a tuple

Cp = (kv Ska Uk(¢))
, where:

e [k is the unique identifier of context element ¢ in the
system;

e S ={s0,51,...,8,} is the finite set of context states

of cg;

e 05, : ¢ — S} is a function which actually employs
the context recognition process for context element cy,
reading relevant input sensors, ¢ C F, and translating
the obtained data into abstract context element states.

The kpqsic definition represents a superset of the studied ap-
proaches for context modeling in ubiquitous computing sys-
tems that we have found in the literature. Specifically, to
be flexible and general with respect to the context recogni-
tion process, and also as a preliminary accounting for uncer-
tainty, we assume the output of o (¢) to be a tuple of en-
abled context states instead of a single context state It is left
up to the adaptation controller to later decide which context
state to use, considering the adaptation model of the appli-
cation.

We should highlight that both E and oy (¢) are, in fact,
opaque handles for external entities which are provided
by tools that are outside the framework. Hence, from the
framework point of view, it matters neither how the sensors
actually gather their corresponding information nor how the
context recognition process actually is carried out, given
that they provide the expected semantics. Those entities are,
however, represented in the framework because they impact
on the context model evolution process, as we describe later.

3.3. Evolution in the Basic Context Model

Informally, the evolution of the context model may be
caused either by a modification in the sensors available in
the environment or by a change in the context elements that
affect the application execution. In the later case, such a
change would either modify the possible states of a given
context element or modify the strategy used to infer such
states from the raw level information gathered from the en-
vironment sensors.

To reduce the complexity of the decision process accom-
plished by the adaptation controller, we put a constraint of
monotonicity [12, p. 212] in the model evolution process,
i.e., the context model can only increase in information.
This way, we avoid the complexity of invalidation proce-
dures at the adaptation controller required to keep the con-
sistency of the internal data structures in case that some def-
inition in the model would have disappeared or changed
its meaning. Thought it would appear restrictive at a first
glance, since in the real world application context things
may cease to exist, we argue it is not the case, because the
unknown value may be used in place of information that is
no longer available in the system. This assumption leads to
a cleaner model, since the unknown value should already be
handled at the context recognition procedure in order to ac-
count for uncertainty.

Definition. Be K the set of all context models . We then
define the context model evolution function

Evolveg(k,05) : K x K — K

,which evolves the definition of the context model x into a
new one, by applying a differential context model update
0. Notice that, given the monotonical evolution constraint,

Algorithm 1 Abstract defintion of Evolve,(k, dx)

1 function Evolve,(k,d):k

2 E.C—k

3 E'C 6,

4 FE« EUE' // import new sensors

5 for c¢;» € C' do // merge context elements

6 if 3, € C'| k = k' then // update existing
7 kS o' «— cp

8

9

k,S, 0 «— cg

S« SUS" // merge state sets
10 if o/ #(then
11 o « o’ I/ replace context source
12 end if
13 else /I new context element
14 C—Cu {Ck/}
15 end if
16 end for
17 return ~

18 end function

0, 1s itself a valid context model, as it includes both con-
text element and environment sensor definitions. Thus, the
evolution process is, in essence, a recursive merging of both
context models definitions, as algorithm 1 shows.

3.4. Adaptation Model

In general lines, the purpose of the adaptation model is to
provide directions and tools that enable the adaptation con-
troller to keep the application in an adapted operation mode
as much time as possible.

It comprises an adaptation policy and some adapta-
tion actions. The former establishes criteria for evaluat-
ing whether the application is well adapted to a given ob-
served execution context. In turn, the later defines the ca-
pabilities of further adaptation that exist in the application
and it is specified in the form of adaptation behaviors (ac-
tions) bound to some subset of the defined states of relevant
context elements. In fact, adaptation behaviors may also be
bound to specific transitions between context states for a
finer tuning of adaptation (e.g., avoid some unnecessary re-
configurations when the original and the target states share
some operation aspects). Figure 2 shows an example con-
text model anotated with adaptation triggers.

Before we proceed with detailing of the adapta-
tion model, it is worth to get a better understanding on the
meaning of an application operation mode.

Definition. Be k = (E, C'), the context model for an ubig-
uitous application (as defined previously in section 3.2).
‘We, then, define

O ={(co,8a); (€1, 8p)s -vs (Cns Sm) }, Ve; € C

processor: slow

Ul: graphical, AWT
memory: small

" Ul: text only
Y processor: unknown
memory: unknown
*
UL:PDA-like v /a5
Ul::Headless '
*la2

Ul::PoorDesktop /a2.1
*la4
Ul: graphical, 3D la4 1)
i \ Ul::RichDesktop
memory: huge *la3 »
Ul: graphical, Swing +sound
Ul::Workstation processor: fast / idle

Figure 2. Annotated Context Model

processor: slow / busy

UI: graphical, Swing
memory: average

as the operation mode for such ubiquitous application, from
the adaptation control point of view. It is described by bind-
ings of specific states for every context element defined
in the context model of the application. Therefore, to be
strictly consistent, we should add constraints in the form
Sq € States(c,), sp € States(c1), ..., Sn € States(cp,).

Formerly, a state bound to a given context element repre-
sents the last kind of adaptation implemented with respect
to changes in that context element state. Based on this no-
tion, following we introduce the property of consistency for
operation modes.

Definition. We say the operation mode is consistent with
respect to some observed environment if, for every context-
element state binding in the that operation mode, the bound
state is also observed in that environment.

A consistent operation mode means that, with that con-
figuration (result of executing some adaptation actions), the
application is able to properly execute under that observed
environmental conditions. It is also worth to notice that, for
a given application, there would be many consistent opera-
tion modes for a given observed environment state and that
not all consistent operation mode will be optimal with re-
spect to resource utilization and user productivity.

Definition. We define fipqsic Our basic adaptation model
for an ubiquitous computing application as a triplet

Hbasic = (H7 Aa Qobasic(Ev c, 0))
, where
o k= (E,C) is the related context model;

e A = {ag,a1,...,anm}, is a set of uniquely identified
adaptation actions a; = (b;, T'), each of them describ-
ing a distinct adaptation behavior (b;) supported at the
application; T = {tg,t1,....,tn}, is a set of triggers
t; = (Ck, Sa, Sp)| ek € C'A sq,sp € S(cx), which de-
scribes the circumstances (context state transitions) in
which action a; would be executed to improve some
aspect of the application execution;

® Vpasic(E,c,0) 1 Ex C xS(c) — S(c)*, is a stateless
function which implements the adaptation policy of
the application, suggesting alternative operation modes
for the adaptation controller, considering the currently
observed environmental conditions.

Adaptation actions encapsulate features implemented out-
side the adaptation controller, and for which complete and
correct information is not available in the system. We as-
sume, however, that it is possible to differentiate between
actions because they have a characterizing property, their
behavior, which is unique among all other actions defined in
the system. Thought two behaviors may produce the same
effects under determined conditions, we are not concerned
about determining action equivalence. That is, if two actions
share exactly the same behavior (implementation), they are
the same action from the controller point of view, otherwise
they are taken as distinct actions, no matter their final ef-
fects are, apparently, always the same.

The basic adaptation policy ppqsic, While provider of di-
rections for the operation of the adaptation controller, is
a policy that would ensure that the application keeps ex-
ecuting despite changes in the environment, but which is
not concerned about fine-tuning the application behavior in
order to optimize the user productivity. This idea may be
formulated in terms of the concept of consistent operation
mode as “keep the application at any consistent operation
mode”.

3.5. Evolution in the Basic Adaptation Model

Regarding to the formulation for the basic adaptation
model provided in section 3.4, we may see evolution of
the adaptation model happening in three ways: (i) evolu-
tion of the related context model; (ii) evolution of the set of
adaptation actions A ; or (iii) evolution of adaptation pol-
icy . Similarly to the case of context model evolution,
we would like to put a constraint of monotonicity in the
adaptation model evolution process, aiming to reduce the
complexity of the logic implemented at the adaptation con-
troller. Therefore, the adaptation model, likewise the con-
text model, should only increase in information.

The first case, the evolution of the context model, is
then straightforward to handle: we just apply the function
Fvolve,; previously defined. Concerning to the set of adap-
tation actions A and the constraint of monotonicity, it is
also straightforward to realize that we may allow the defini-
tion of new adaptation actions, which are included in the set
A, since it only increases the amount of information in the
model. Conversely, we must deny any deletion of actions,
since it would cause the amount of information to shrink.
Nevertheless, issues arise when we decide about which kind
of modifications we should allow for already defined adap-
tation actions.

Algorithm 2 Abstract definition of Evolve,,(u,d,,)

1 procedure Evolve,(u,0d,,)

2 Ky A, — 1

3 0, ALY =0,

4 Evolve,(k,0,) I/ evolve the context model
5 for Vo € A’ do

6 if Ja; € A|i=jthen

7 T(a;) < T(a}) [/ replace triggers

8

9

else
A— AU {aj}
10 end if
11 end for
12 if ' # () then // update the adaptation policy
13 P — ¢
14 end if

15 end

Since the behavior is the characterizing property (the
identity) of an adaptation action, we take it as an invari-
ant property of that action. However, we understand there
will be situations (e.g., fixing bugs), the application devel-
oper will like to completely replace an existing action with
another one and ensure the older action to never be exe-
cuted again. Thought one can’t directly modify the behav-
ior of an action, it is possible to define a new action cor-
responding to the modified behavior. It solves half of the
problem. Nevertheless, the issue of avoiding further execu-
tions of the action remains. It may be tackled through three
schemes:

e pre-processing — it consists in suppressing those in-
puts, formerly context-state transition events, that
would cause the activation of undesired actions;

e in-processing — it consists in modifying the controller
logic to avoid it outputting undesired adaptation ac-
tions; or

e post-processing — it consists in filtering-out undesired
adaptation actions output by the controlled before they
are effectively put into execution.

After evaluating the benefits and drawbacks of each ap-
proach, which we omit in this paper due to space limita-
tions, we have selected pre-processing of of inputs, since
it leads to a the least resource comsuption at the controller
(mainly, by avoiding it to reason about actions the will never
be executed), what is an important property concerning to
the scalability of the solution. Specifically, our approach is
to enable the deletion of triggers from action definitions.

4. Concluding Remarks

In this paper we have presented ACTUS, our proposition
of generic framework for build adaptation controllers tar-
get to ubiquitous computing systems. We have outlined its

macro architecture and have focused on aspects of its data
models for context and adaptation, and their mechanisms
to accommodate application evolution. Due to space limi-
tations, however, other aspects of the framework would not
be covered. Among them we cite the control model and the
extensions for the data models which would enable quality
gain at the decision making carried by the adaptation con-
troller. Those topics, as well as experimental results gath-
ered from a prototype which is under development, will be
approached in another paper.

References

[1] 1. Augustin. Abstracoes para um Linguagem de Progra-
magdo Visando Aplicagcdes Moveis em um Ambiente de Per-
vasive Computing. Doutorado em ciéncia da computagdo, In-
stituto de Informética, CPGC/UFRGS, Porto Alegre, Janeiro
2004.

[2] L. Augustin, A. C. Yamin, J. L. V. Barbosa, L. C. da Silva,
R. A. Real, G. Frainer, G. G. H. Cavalheiro, and C. F. R.
Geyer. Mobile Computing Handbook, chapter ISAM, Join-
ing Context-awareness and Mobility to Building Pervasive
Applications, pages 73-94. CRC Press, New York, 2004.

[3] G. Chen. Solar: Building a context fusion network for per-
vasive computing, 2004.

[4] R. C. A. da Rocha and M. Endler. Middleware: Context
management in heterogeneous, evolving, ubiquitous envi-
ronments, 2006.

[5] P.-C. David and T. Ledoux. Wildcat: a generic framework
for context-aware applications. In MPAC. ACM, 2005.

[6] A. K. Dey. Understanding and using context. Personal and
Ubiquitous Computing, 5(1):4-7, 2001.

[7]1 D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project aura: Toward distraction-free pervasive computing.
IEEE Pervasive Computing, 01(2):22-31, 2002.

[8] K. Henricksen and J. Indulska. Developing context-aware
pervasive computing applications: Models and approach,
2005.

[9] J. Munnelly and et al. An aspect-oriented approach to the
modularization of context, 2007.

[10] B. Noble. System support for mobile adaptive applications.
IEEE Personal Communications, 7(1):44-49, fev 2000.

[11] B. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware adap-
tation for mobility. In 16th ACM Symposium on Operating
System Principles (SOSP 97), pages 276-287, 1997.

[12] S. Russel and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2003.

[13] D. Sahaand A. Mukherjee. Pervasive computing: a paradigm
for the 21st. century. [EEE Computer, 36(3):25-31, mar
2003.

[14] M. Satyanarayanan. From the editor in chief: The many faces
of adaptation. IEEE Pervasive Computing, 03(3):4-5, 2004.

[15] K. Sheikh and et al. Middleware support for quality of con-
text in pervasive computing, 2007.

[16] M. Weiser. The computer of the 21st century. Scientific
American, 265(9), Sept. 1991.

