A Centralized and On-line Scheduling Solution to Dynamic M PI Programs

Marcia C. Cera, Nicolas Maillard and Philippe O. A. Navaux
Universidade Federal do Rio Grande do Sul
Instituto de Infornatica
{marcia.cera, nicolas, navay®@inf.ufrgs.br

Abstract tures are been included in the lastest MPI distributieigs
LAM/MPI (16), MPICH-2 (9), OpenMPI (8).
MPI (Message Passing Interface) is a communication li- Using MPI-2 dynamic processes creation is possible to

brary that is a standard to parallel programming in dis- program dynamic parallel application. In these applicatio
tributed memory architectures. After the specification of tasks are created and processed during the application ex-
MPI-2 norm extending the MPI-1 norm, MPI was nearer to ecution without any previous knowledge about them. To
PVM, making possible to implement MPMD applications. schedule these applications, the decisions need to be taken
Amongst the new features of MPI-2 there is the possibility to on-line,i.e., as tasks become available. A possibility to pro-
dynamically create processes during the application execu gramming dynamic application with MPI is, as tasks are
tion. This feature allows to implement dynamic applicasion created, spawn dynamic processes to execute them. How-
(which tasks are available on-the-fly) and use dynamic re- ever, using the dynamic processes creation, the MPI-2 norm
sources (which become available during the application ex- imposes some restrictions for communication among pro-
ecution). In a dynamic context, an efficient schedulingistra cesses. In a straight way, the communication is able just be-
egy is crucial to get a good applications performance. This tween a process that spawn another ones (the father process)
paper presents a simple centralized and on-line solution to and their spawned processes (children processes). This re-
schedule dynamic MPI applications, and further, the use of striction will affect the policy employed to schedule tasks
dynamic resources through MPI-2 features. among processes as will be shown in this paper.

Beyond the implementation of dynamic MPI applica-
tions, the dynamic processes creation allow use resources
that become available during the application execution. In
dynamic environments a MPI application can identify new

MPI (Message Passing Interface) (10) specification was resources ayailable and spawn processes to use them. In this
developed to be a standard used to programming paralJpaperwe will show how to t_he application can adapt to use
lel distributed architectures. MPI is a communication [i- "€SCUTCES that become available on-the-fly.
brary that specify an interface to implement communica- The aim of this paper is shown a proposal to schedule
tion among distributed parallel processes. The library be- Parallel dynamic application with MPI. It is a simple cen-
come a standard to High Performance Computing (HPC)tralized and on-line strategy which has been shown efficient
used to solve important scientific problems — Grand Chal- to schedule the applications target (5). It is well-knowatth
|enge Problem (12) Origina”y, the MPI norm follows on|y a centralized solution bringS bottleneck prOblemS. But thi
the SPMD Bingle Program Multiple Dataprogramming solution is efficient in environments with few resources and
model. MPI-2 norm (11) extends the original MPI norm Make possible identify problems in the use of dynamic pro-
and define an interface to dynamic processes creation, oneCesses creation, attending the paper objectives.
sided communication, parallel I/O, and other extensions. The paper is structured as follow: Section 2 presents
These new features allow to program into MPMBIU(- some related works and some perspectives to use dynamic
tiple Programs Multiple Data model with dynamic pro- processes creation in scheduling strategies. Sectiorv@sho
cesses creation adding flexibility to MPI applications.Wit the proposed scheduling solution to MPI dynamic applica-
these new features, MPI was nearer to PVM (Parallel Vir- tions. After known how applications will be schedule, Sec. 4
tual Machine) (6), which is one of the precursors program- presents some tests made to prove the scheduling efficiency.
ming environment to attend dynamicity and heterogene- Finally, Sec. 5 shows the conclusions of this paper and some
ity issues to distributed memory machines. The new fea- future works.

1. Introduction

2. Related Works Considering the MPI-2 features, there is a system that
dynamically reschedule running processes via automatic
An important question about MPI-2 is why use dynamic decision-making and processes migration (7). The system
processes creation in MPI applications. The answer can bds implemented on top of MPI-2 (LAM/MPI distribution)
thought in two aspects: resource platform and programmingand HPCM (High Performance Computing Mobility) mid-
model. In the first, the dynamic processes creation can helpdleware to offer heterogeneous processes migration. To mi-
giving some workload to resources that become availablegrate, a process spawn another one in destination machine
during the application execution. For programming model, and after transfers the execution, memory, and communi-
dynamic processes creation allow to implement dynamic cation states to the new one. In system evaluation, was de-
applications, in which the parallel algorithm get a beterp tected an overhead of the reschedule operation usually less
formance creating more processes during execution time. that 4%, and a reduction in the application (BoT) execution
A dynamic programming model was proposed by time of almost 34%, that are considered a satisfactory re-

Cilk (1), in which programs can be viewed as a di- Sult(?).

rected acyclic graph (DAG) and consist of a collection of | this paper, the use of dynamic resources is done by dy-

Cilk procedures broken into a sequence of threads (ver-namic applications taskse., as the resources become avail-
tices of the DAG). The Cilk model was a precursor and got aple, dynamic tasks are allocated to them.

relevant results using a Work Stealing scheduling (2) to ef-

ficiently distribute work into shared-memory architecture Load Bal - d . i b dt
In the Java context, Satin (17) was inspired by Cilk and of- . oa ance. dynamic processes creation can be used o

fer a programming model based in Java threads withImplement s_cheduling de_cision aiming tq get load palanpe.
Cilk-like primitives for Divide and Conquer&C) pro- An example IS presented n (3) that dgscrlbesalowmtr.usmn
grams on distributed-memory systems. Satin map ef_|mplement_at|on of hyk_md sche_dulmg strategy designed
ficiently the dynamic processes using a Work Stealing toh_copehwghl_the dynamlc_ behawc:cr gf grid env!(rjonmenfcj.
scheduling design especially to hierarchical wide-araa-cl This schedu ng str_ategy IS par_t O.t € EasyC?n .(4) mid-
ters (local steals happen synchronously while a remotedleware that is a hlerarch|ca! distributed qppl!catlon man
steal was processing asynchronously). Due the MPI-2 fea_agement system embedded into MPI applications to facili-

tures, a Cilk-like programming model can be employed to tate thl_egl\j/x'\iglmondm theﬂ?”dM-Prr; Zystem_ls implemented
MPI programs, as will be show in this paper. upon and use the ~< gynamic process cre-

Below th K ints related to th fd ation feature to implement the scheduling events. The hy-
elow, there are Some key points related to the use ot dy-, ;4 scheduling adopted by EasyGrid combine static (to
namic processes creation and some related works.

initial processes distribution) and dynamic (to reschedul
Program model: To get an efficient scheduling strategy to ing) scheduling heuristics. The dynamic scheduling occur
MPI programs becomes necessary establish the target proln three levels: global, site, and host. In thestlevel is de-
gram model. In general, the model adopted is Bag-of-Taskstermined the order and instant that a process should be cre-
(BoT) because it is Simp|e and need few communications ated based in statisticians calculated On'thesm level

due the task independence (15, 7: 3) This paper is focused/eriﬁes how much the site is imbalance and if it is h|gh, ac-
in a model more complicated in which tasks are known in tivate the re-distribution policy (scheduling event). &y,
execution time, like Cilk model. In this context, the dynami global level verifies if the global application is imbalance,

processes creation will be used to attend the program modeland also, when this imbalance statistic is high, it triggers
scheduling event.
Dynamic resources. Here we will show two related works

aiming at adapting the application to changes in the CPU _ 1hiS work presents some important aspects like: the use
availability. The first one is Adaptive-MPI (15) that is im- of an hierarchical scheduling when is intended to use large

plemented over FT-MPI (18) (MPI-1 norm) and allows to scale systems and thg use of dynamic processes preation to
add (to use resources that become available) and remove (tget load balance on—Ilne. In the same context of this related
fault tolerance) resources dynamically. Adaptive-MPbaut work, can see the on-line scheduling below.

matically spawn new processes &dd_r esour ce event)

and dynamically adjust the communicator to account arriv- On-line scheduling: the on-line scheduling make possible
ing or departing nodes. The adjustment of communicator in- repair load imbalances during the application execution. |
volves a global processes stop, a synchronization of them tds a powerful option to bypass the effects of dynamicity and
establish a new configuration and a restart of all processesheterogeneity of actual parallel architectures, as wasisho
However, this solution was implemented in the MPI-1 norm above. In the context of this paper, the on-line strategy is
context with hard implementations issue, like communica- used to obtain load balance, and also to schedule dynamic
tor adjust and synchronizations. applications once tasks became available on-the-fly.

applications. In a second moment, Sec. 4.2 presents how

< §MPI comm <o is possible to use the dynamic processes creation together
=P with dynamic resources and improve the application per-
‘é formance. At end, Sec. 4.3 shows the impact of workload-
“=MPL_ Comm_spawn based policy in performance of irregular applications.
'
% 4.1. Dynamic Processes Creation Over head
To identify the overhead caused by the dynamic pro-
Figure 1. The proposed scheduler and the cesses creation, this section present a comparison between
MPI-2 processes an application using MPI-1 and MPI-2. To make it possi-

ble, an BoT application was developed in a MPI-1 context
(all processes created in the beginning of application) and
3. A Simple Scheduling Solution in MPI-2 one (using dynamic processes creation).
The problem target is the generation of a fractal, the
This section presents a quick introduction to a Simp|e Mandelbrot Set, that is one of the thirteen Cowichan Prob-

scheduler proposed to schedule MPI-2 parallel dynamic ap-1ems (19) designed to test parallel programming systems.
plication (more informations look at (5)). The scheduler is Mandelbrot Set is a classical embarrassingly parallel prob
centralized and simply determines, on-line, the physizal | lem, in which the calculation of a particular data element is
cation of new processes. Physical location is determinatedcompletely independent of the calculation of the other ele-
following one of two policy: Round-Robin (standard) or ments. The calculation is the iteration of the equations
based on resources workload. To make easy the use of the r =% —y? + yo

proposed scheduler, it was integrated inside a MPI distri- y = 2zy + z0

bution (in this case, LAM/MPI distribution). In this way, to a given initial coordinate&eo, yo) until an iteration limit

an application implemented with dynamic processes Cre_is reached or the value diverge. In the paper test, the ini-

ation can bg schedule_ by the proposed scheduler Withourtial coordinates ar¢0.5,0.5) and the limit is 30500 itera-

anyrﬁza:(?ﬁe: Tgru;(:rir?'ltzzt re is simple and consists in ations. To calculate the fractal, it was divided in blockstwit
u lecture 1s simp SIS N & 4imension of40 x 40 pixels. Each task represent a fractal

daemon (scheduler) running in one of the resources avall—bIOCk composed téz,) coordinates and the dimension of

able to an app_llc_:atlon a_md It W'l.l be responsable tc.) take the block, which is always the same to all applications ver-
scheduling decision on-line. In this case, the schedulerg d sions

cision consists in determine physical location to new pro- To identify the overhead of MPI-2 dynamic pro-
CESSES following the pqllcy chose by the user. For each dy'cesses creation, it was developed three versions of Man-
namic processes creation, the scheduler is requested and Selbrot application. In the first version, master man-

will answer where is the best physical location to a new pro- ager the creation oforkersin resources available (using
cesg. . . MPI _Commss pawn) while there are tasks to execute. Each
Figure 1 shows the interaction between scheduler and,,, . o receive one task, calculate it, send backmas-
.MPI'Z processes when they create NEW processes dynamt-er a matrix with fractal points, and finalize its execution.
ically. Dotted arrows represent the interactions betweenSecond Mandelbrot application use MPI-1 which all pro-

scheduler and MPI-2 processes and the solid arrow MeaNtesses are created at the beginning of the execution, and a

the process creation. The scheduling strategy chose in f'g_'mastersend tasks tavorkersand receive the fractal points.
ure is the based on resources workload. The scheduler archl-T

tecture is simol d all that i dded and o leave the MPI-1 and MPI-2 versions nearer, it was de-
ecture Is simple and allows that new policy are added an velop another application version. In the third onenas-
support the dynamic resources. The next section shows th

a . N%er create, dynamically, on&orker by processor available
efhmengy obtained bY the proposed scheduler and some im-, 4 they will receive tasks and return the fractal points un-
portant issues about it.

til exist tasks to execute. To MPI-2 implementations, it was

only used the Round-Robin scheduling policy. To Mandel-

4. Experimental Results brot Set application a workload-based policy did not take
advantages to performance.

This section shows some experimental results of the pro- Figure 2 shows a graph with the time of execution by
posed schedule with dynamic MPI applications. Section number of workers used to the three applications versions.
4.1 starts the experimental results and shows the overheadach value shown is the average of 15 executions of appli-
caused by the use of dynamic processes creation to MPlation to each number @forkerand the standard deviation

45

40

500

35

400 30

25

20
15
10 m
5 |
0
1 2 3

Time (min)

Time (s)

Number of processes

200

100

0 ! ! ! ! ! ! ! ! ! ! ! ! !

10 16 18 20 22 24
Number of Workers

Figure 3. Number of processes by time dur-
Figure 2. Timing for Mandelbrot Set computa- ing an execution of N-Queens with MPI
tion using MPI-1 (solid line) and two version
with MPI-2 (dotted lines)

Figure 3 is a graph of number of processes by execution
) . L time of N-Queens using MPI-2. To get dynamic resources,
is 1.77.|n the wprst case. The solid line represent the MPI- at each minute a new processor is added to the comput-
1 version and it get the best performance. The worst per—ing environment. To add a new processing node (made of

formance was bring by the MPI-2 version that create one 2 CPU), LAM's | angr owfeature has been used. After the
worker by task executed, and it was in average approXi- j,qjsion of a resource in the environment, the application

mately 14% worse than MPI-1 one. Atlast, the second MPI- yatet this inclusion and adapts itself by spawning new pro-
2 version that is nearer to MPI-1 pattern get a performance,Cesses on the new processors.

in average, approximately 5% worse than MPI-1. This last The bar diagram shows how many processes are run on
result shows that the dynamic processes creation imposes 8ach CPU. as a function of the time- at the beginning, all

low overhead to MPI applications, which can be neglected processes’are running on the only node available. DL;ring

in dynamic applications context. the first minute, only one bar appears, which shows that
all the 11 processes are running on one node. Each time
that a 2-CPUs node turns available, fieQueens programs

This section presents how dynamic processes creationadapts ltself by spawning new processes on the newly avail-
P . y Processe . able CPUs. At the end of the computation, all the CPUs of
can help to use dynamic resources. The application used i

.)) The 5 nodes are running processes ofsh€®ueens compu-
tests is a solution t&V-Queens problem. This problem con- gp P

sists in placingV queens on & x N chessboard, in such tatipn. Since no migration if allowed, the initial nodes run
T until the end, more processes than those that were added

a way that no queen may capture any other. That is to Sa&Yyater on

one has to find all the board configurations in which there '

exists at most one queen in a given row, column or diago-

nal. Although direct applications of thg-Queens problem 4.3. Impact of Workload-based Politic

are limited, this problem is often used as a benchmark be-

cause it represents a large class of problems, known as Con- As mentioned in Sec. 3 the proposed scheduler offers

straint Satisfaction Problems (CSPs) (13). two scheduling policy: Round-Robin (results presented in
The standard backtracking algorithm used to solve the Sec. 4.1) and resources workload-based. The workload-

N-Queens problem consists in placing recursively and ex-based policy is appropriated to schedule irregular applica

haustively the queens, row by row. With MPI, each place- tions (which tasks are processed with variable duration) or

ment consists in a new spawned task. The algorithm back-in heterogeneous environment. This section shows the be-

tracks whenever a developed configuration contains twohavior of an irregular application schedule with two policy

queens that threaten each other, until all the possilsilitie options.

have been considered. A maximum depth is defined, in or- The irregular application used in the tests is a Primality

der to bound the depth of the recursive calls. Computation. In this application, the number of prime num-

4.2. Using Dynamic Resour ces

bers in a given interval (betwednand V) is computed by

there is a low overhead using dynamic processes creation,

recursive search. To programme a recursive search, a newhich can be neglected in dynamic environment context.

process is spawnedl _Commspawn) for each recursive
subdivision of the interval. Due to the irregular distrilout
of prime numbers and irregular effort to test a single num-
ber, the parallel program is natively unbalanced.

Figure 4 shows the run-times by the workload, as mea-
sured by the sizév of the interval, with the Round-Robin

The experimental results shown how to take advantage of
dynamic processes creation to use dynamic resources and
the impact of a workload-base policy in the scheduling of
irregular applications.

The results presented in this paper concentrate the main
aspects of programming using dynamic processes creation.

and workload-based policy. In the latter case, the proposedTo get an efficient program that taking advantage of MPI-

scheduler, transparently, request to a resource manager i
order to obtain on-line information about the load of the

processors. The Round-Robin algorithm maintains a natu-
ral load balance between the processors, and the workload
based grants that any under-loaded processor executes mo

R features, it is necessary to bypass some restrictions of
MPI. For instance, the communication restriction that will
directly affect the schedule decisions.

In this paper, the dynamicity of the environment was re-
gricted to the inclusion of a new resource, more specificall

processes. Thus, in both cases, the resources are better erthe use of angr ow LAM/MPI primitive. The LAM/MPI

ployed.

100

80

60

Time(s)

40

.....]

20

20x10° 25x10° 30x10° 35x10° 40x10° 45x10° 50x10°

Interval size

Figure 4. Timings for the Prime compu-
tation, with Round-Robin (dotted line) and
workload-based (solid line) policy (5)

As can be seen, in the case of this irregular computa-
tion, the use of the on-line scheduler with load informa-
tion enables a consistently better run-time than with Reund
Robin, even when the statistical fluctuations are taken into
account. Also, it can be seen that the time lasted when
used the Round-Robin scheduling increases steady against

smoother increase when using the resource workload-based.

5. Conclusions

MPI-2 extension are highly promising, once allow use
dynamic resources and make possible to implement dy-

namic applications. This paper shows a simple scheduler [5]

to MPI dynamic applications. This scheduler is centralized

and take scheduling decision on-line. The results show that

offer a primitive, called anshri nk, to exclude dynami-
cally one node of resources set. But to application exegutio
safety, the usage of this primitive needs the implementa-
tion of some fault tolerance aspects, like checkpoints mech
anisms, inside of application. Fault tolerance issues was o
of scope of this work and will be left to future workers.
Together to the development of the proposed scheduler,
it was studied how to program Divide and Conque&(C)
applications using MPI-2 (14P&C model is natively dy-
namic and can be efficiently schedule by a Work Stealing
strategy. In this context, there was developed a Hieraathic
Work Stealing algorithm to MPI-2 application. This work
shows that the MPI-2 features open possibilities to explore
important aspects in a new range of MPI applications.

References

[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. C. E. Zhou. Cilk:
an efficient multithreaded runtime systeACM SIG-
PLAN Notices30(8):207-216, Aug. 1995.

R. D. Blumofe and C. E. Leiserson. Space-efficient
scheduling of multithreaded computationsSIAM
Journal on Computing27(1):202—-229, 1998.

C. Boeres, A. P. Nascimento, V. E. F. Rebello, and
A. C. Sena. Efficient hierarchical self-scheduling for
mpi applications executing in computational grids. In
MGC '05: Proceedings of the 3rd international work-
shop on Middleware for grid computingpages 1-6,
New York, NY, USA, 2005. ACM Press.

C. Boeres and V. E. F. Rebello. Easygrid: towards a
framework for the automatic grid enabling of legacy
mpi applicationsConcurrency - Practice and Experi-
ence 16(5):425-432, 2004.

M. C. Cera, G. P. Pezzi, E. N. Mathias, N. Maillard,
and P. O. A. Navaux. Improving the dynamic creation
of processes in MPI-2. lhecture Notes in Computer

2]

[3]

a

[4]

Science - 13th European PVMMPI Users Group Meet- [16] J. M. Squyres and A. Lumsdaine.

ing, volume 4192/2006, pages 247-255, Bonn, Ger-
many, 2006. Springer Berlin / Heidelberg.

[6] J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sun-

(7]

(8]

daram. Integrated PVM framework supports hetero-
geneous network computingComputers in Physigs
7(2):166-175, 1993.

C. Du, S. Ghosh, S. Shankar, and X.-H. Sun. A run-
time system for autonomic rescheduling of mpi pro-
grams. In33rd International Conference on Parallel
Processing (ICPP 2004pages 4-11, Montreal, Que-

bec, Canada, 2004. IEEE Computer Society. [1

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun,
J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,

concept, and design of a next generation mpi imple-
mentation. InRecent Advances in Parallel Virtual
Machine and Message Passing Interface, 11th Euro-
pean PVM/MPI Users’ Group Meetingolume 3241

of Lecture Notes in Computer Scienpages 97-104,
Budapest, Hungary, 2004. Springer.

[9] W. Gropp. MPICH2: A new start for MPI implemen-

[10]

[11]

[12]

[13]

[14]

[15]

tations.Lecture Notes in Computer Scien@d74:37—
42, 2002.

W. Gropp, E. Lusk, and A. Skjellum.Using MPI:
Portable Parallel Programming with the Message
Passing Interface MIT Press, Cambridge, Mas-
sachusetts, USA, Oct. 1994,

W. Gropp, E. Lusk, and R. Thakur.Using MPI-

2 Advanced Features of the Message-Passing Inter-
face The MIT Press, Cambridge, Massachusetts,
USA, 1999.

J. L. Gustafson. A paradigm for grand challenge per-
formance evaluation. In R. K. Kalia and P. Vashishta,
editors, Toward Teraflop Computing and New Grand
Challenge Applicationspages 279-290? Nova Sci-
ence Publishers, Commack, New York, 1995.

V. Kumar. Algorithms for constraint-satisfaction o
lems: A surveyAl Magazine 13(1):32—-44, 1992.

G. P. Pezzi, M. C. Cera, E. N. Mathias, N. Maillard,

and P. O. A. Navaux. Escalonamento dinmico de
programas mpi-2 utilizando diviso e conquista. In

VII Workshop em Sistemas Computacionais de Alto
Desempenhopages 71-79, Ouro Preto, Brazil, Oct.

2006.

L. A. Rao and J. Weissman. Mpi-based adaptive paral-
lel grid services. Technical report, Minneapolis, MN,
USA, 2003.

[17]

A Component
Architecture for LAM/MPI. In Proceedings, 10th
European PVM/MPI Users’ Group Meetingumber
2840 in Lecture Notes in Computer Science, pages
379-387, Venice, ltaly, September / October 2003.
Springer-Verlag.

R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal.
Satin: Efficient Parallel Divide-and-Conquer in Java.
In Euro-Par 2000 Parallel Processingumber 1900 in
Lecture Notes in Computer Science, pages 690-699,
Munich, Germany, Aug. 2000. Springer.

8] J. B. Weissman, L. R. Abburi, and D. England. Inte-

grated scheduling: the best of both worldsurnal of
Parallel and Distributed Computing3(6):649-668,
2003.

R. L. Graham, and T. S. Woodall. Open mpi: Goals [19] G. Wilson. Assessing the usability of parallel pro-

gramming systems : The cowichan problemsIAHP
Working Conference on Programming Environments
for Massively Parallel Distributed Systempages
183-193, 1994.

