
A Centralized and On-line Scheduling Solution to Dynamic MPI Programs

Márcia C. Cera, Nicolas Maillard and Philippe O. A. Navaux
Universidade Federal do Rio Grande do Sul

Instituto de Inforḿatica
{marcia.cera, nicolas, navaux}@inf.ufrgs.br

Abstract

MPI (Message Passing Interface) is a communication li-
brary that is a standard to parallel programming in dis-
tributed memory architectures. After the specification of
MPI-2 norm extending the MPI-1 norm, MPI was nearer to
PVM, making possible to implement MPMD applications.
Amongst the new features of MPI-2 there is the possibility to
dynamically create processes during the application execu-
tion. This feature allows to implement dynamic applications
(which tasks are available on-the-fly) and use dynamic re-
sources (which become available during the application ex-
ecution). In a dynamic context, an efficient scheduling strat-
egy is crucial to get a good applications performance. This
paper presents a simple centralized and on-line solution to
schedule dynamic MPI applications, and further, the use of
dynamic resources through MPI-2 features.

1. Introduction

MPI (Message Passing Interface) (10) specification was
developed to be a standard used to programming paral-
lel distributed architectures. MPI is a communication li-
brary that specify an interface to implement communica-
tion among distributed parallel processes. The library be-
come a standard to High Performance Computing (HPC)
used to solve important scientific problems – Grand Chal-
lenge Problem (12). Originally, the MPI norm follows only
the SPMD (Single Program Multiple Data) programming
model. MPI-2 norm (11) extends the original MPI norm
and define an interface to dynamic processes creation, one-
sided communication, parallel I/O, and other extensions.
These new features allow to program into MPMD (Mul-
tiple Programs Multiple Data) model with dynamic pro-
cesses creation adding flexibility to MPI applications. With
these new features, MPI was nearer to PVM (Parallel Vir-
tual Machine) (6), which is one of the precursors program-
ming environment to attend dynamicity and heterogene-
ity issues to distributed memory machines. The new fea-

tures are been included in the lastest MPI distributionse.g.
LAM/MPI (16), MPICH-2 (9), OpenMPI (8).

Using MPI-2 dynamic processes creation is possible to
program dynamic parallel application. In these applications,
tasks are created and processed during the application ex-
ecution without any previous knowledge about them. To
schedule these applications, the decisions need to be taken
on-line,i.e., as tasks become available. A possibility to pro-
gramming dynamic application with MPI is, as tasks are
created, spawn dynamic processes to execute them. How-
ever, using the dynamic processes creation, the MPI-2 norm
imposes some restrictions for communication among pro-
cesses. In a straight way, the communication is able just be-
tween a process that spawn another ones (the father process)
and their spawned processes (children processes). This re-
striction will affect the policy employed to schedule tasks
among processes as will be shown in this paper.

Beyond the implementation of dynamic MPI applica-
tions, the dynamic processes creation allow use resources
that become available during the application execution. In
dynamic environments a MPI application can identify new
resources available and spawn processes to use them. In this
paper we will show how to the application can adapt to use
resources that become available on-the-fly.

The aim of this paper is shown a proposal to schedule
parallel dynamic application with MPI. It is a simple cen-
tralized and on-line strategy which has been shown efficient
to schedule the applications target (5). It is well-known that
a centralized solution brings bottleneck problems. But this
solution is efficient in environments with few resources and
make possible identify problems in the use of dynamic pro-
cesses creation, attending the paper objectives.

The paper is structured as follow: Section 2 presents
some related works and some perspectives to use dynamic
processes creation in scheduling strategies. Section 3 shows
the proposed scheduling solution to MPI dynamic applica-
tions. After known how applications will be schedule, Sec. 4
presents some tests made to prove the scheduling efficiency.
Finally, Sec. 5 shows the conclusions of this paper and some
future works.



2. Related Works

An important question about MPI-2 is why use dynamic
processes creation in MPI applications. The answer can be
thought in two aspects: resource platform and programming
model. In the first, the dynamic processes creation can help
giving some workload to resources that become available
during the application execution. For programming model,
dynamic processes creation allow to implement dynamic
applications, in which the parallel algorithm get a better per-
formance creating more processes during execution time.

A dynamic programming model was proposed by
Cilk (1), in which programs can be viewed as a di-
rected acyclic graph (DAG) and consist of a collection of
Cilk procedures broken into a sequence of threads (ver-
tices of the DAG). The Cilk model was a precursor and got
relevant results using a Work Stealing scheduling (2) to ef-
ficiently distribute work into shared-memory architectures.
In the Java context, Satin (17) was inspired by Cilk and of-
fer a programming model based in Java threads with
Cilk-like primitives for Divide and Conquer (D&C) pro-
grams on distributed-memory systems. Satin map ef-
ficiently the dynamic processes using a Work Stealing
scheduling design especially to hierarchical wide-area clus-
ters (local steals happen synchronously while a remote
steal was processing asynchronously). Due the MPI-2 fea-
tures, a Cilk-like programming model can be employed to
MPI programs, as will be show in this paper.

Below, there are some key points related to the use of dy-
namic processes creation and some related works.

Program model: To get an efficient scheduling strategy to
MPI programs becomes necessary establish the target pro-
gram model. In general, the model adopted is Bag-of-Tasks
(BoT) because it is simple and need few communications
due the task independence (15; 7; 3). This paper is focused
in a model more complicated in which tasks are known in
execution time, like Cilk model. In this context, the dynamic
processes creation will be used to attend the program model.

Dynamic resources: Here we will show two related works
aiming at adapting the application to changes in the CPU
availability. The first one is Adaptive-MPI (15) that is im-
plemented over FT-MPI (18) (MPI-1 norm) and allows to
add (to use resources that become available) and remove (to
fault tolerance) resources dynamically. Adaptive-MPI auto-
matically spawn new processes (toadd resource event)
and dynamically adjust the communicator to account arriv-
ing or departing nodes. The adjustment of communicator in-
volves a global processes stop, a synchronization of them to
establish a new configuration and a restart of all processes.
However, this solution was implemented in the MPI-1 norm
context with hard implementations issue, like communica-
tor adjust and synchronizations.

Considering the MPI-2 features, there is a system that
dynamically reschedule running processes via automatic
decision-making and processes migration (7). The system
is implemented on top of MPI-2 (LAM/MPI distribution)
and HPCM (High Performance Computing Mobility) mid-
dleware to offer heterogeneous processes migration. To mi-
grate, a process spawn another one in destination machine
and after transfers the execution, memory, and communi-
cation states to the new one. In system evaluation, was de-
tected an overhead of the reschedule operation usually less
that 4%, and a reduction in the application (BoT) execution
time of almost 34%, that are considered a satisfactory re-
sult (7).

In this paper, the use of dynamic resources is done by dy-
namic applications tasks,i.e., as the resources become avail-
able, dynamic tasks are allocated to them.

Load Balance: dynamic processes creation can be used to
implement scheduling decision aiming to get load balance.
An example is presented in (3) that describes a low intrusion
implementation of a hybrid scheduling strategy designed
to cope with the dynamic behavior of grid environments.
This scheduling strategy is part of the EasyGrid (4) mid-
dleware that is a hierarchical distributed application man-
agement system embedded into MPI applications to facili-
tate their execution in the grid. The system is implemented
upon LAM/MPI and use the MPI-2 dynamic process cre-
ation feature to implement the scheduling events. The hy-
brid scheduling adopted by EasyGrid combine static (to
initial processes distribution) and dynamic (to reschedul-
ing) scheduling heuristics. The dynamic scheduling occur
in three levels: global, site, and host. In thehostlevel is de-
termined the order and instant that a process should be cre-
ated based in statisticians calculated on-the-fly.Site level
verifies how much the site is imbalance and if it is high, ac-
tivate the re-distribution policy (scheduling event). Finally,
global level verifies if the global application is imbalance,
and also, when this imbalance statistic is high, it triggersa
scheduling event.

This work presents some important aspects like: the use
of an hierarchical scheduling when is intended to use large
scale systems and the use of dynamic processes creation to
get load balance on-line. In the same context of this related
work, can see the on-line scheduling below.

On-line scheduling: the on-line scheduling make possible
repair load imbalances during the application execution. It
is a powerful option to bypass the effects of dynamicity and
heterogeneity of actual parallel architectures, as was shown
above. In the context of this paper, the on-line strategy is
used to obtain load balance, and also to schedule dynamic
applications once tasks became available on-the-fly.



��

��

��

��

��

Round
Robin

Resources
Workload

MPI_Comm_spawn

MPI_Comm_spawn

scheduler

Figure 1. The proposed scheduler and the
MPI-2 processes

3. A Simple Scheduling Solution

This section presents a quick introduction to a simple
scheduler proposed to schedule MPI-2 parallel dynamic ap-
plication (more informations look at (5)). The scheduler is
centralized and simply determines, on-line, the physical lo-
cation of new processes. Physical location is determinated
following one of two policy: Round-Robin (standard) or
based on resources workload. To make easy the use of the
proposed scheduler, it was integrated inside a MPI distri-
bution (in this case, LAM/MPI distribution). In this way,
an application implemented with dynamic processes cre-
ation can be schedule by the proposed scheduler without
any change in source files.

The scheduler architecture is simple and consists in a
daemon (scheduler) running in one of the resources avail-
able to an application and it will be responsable to take
scheduling decision on-line. In this case, the scheduling de-
cision consists in determine physical location to new pro-
cesses following the policy chose by the user. For each dy-
namic processes creation, the scheduler is requested and it
will answer where is the best physical location to a new pro-
cess.

Figure 1 shows the interaction between scheduler and
MPI-2 processes when they create new processes dynam-
ically. Dotted arrows represent the interactions between
scheduler and MPI-2 processes and the solid arrow mean
the process creation. The scheduling strategy chose in fig-
ure is the based on resources workload. The scheduler archi-
tecture is simple and allows that new policy are added and
support the dynamic resources. The next section shows the
efficiency obtained by the proposed scheduler and some im-
portant issues about it.

4. Experimental Results

This section shows some experimental results of the pro-
posed schedule with dynamic MPI applications. Section
4.1 starts the experimental results and shows the overhead
caused by the use of dynamic processes creation to MPI

applications. In a second moment, Sec. 4.2 presents how
is possible to use the dynamic processes creation together
with dynamic resources and improve the application per-
formance. At end, Sec. 4.3 shows the impact of workload-
based policy in performance of irregular applications.

4.1. Dynamic Processes Creation Overhead

To identify the overhead caused by the dynamic pro-
cesses creation, this section present a comparison between
an application using MPI-1 and MPI-2. To make it possi-
ble, an BoT application was developed in a MPI-1 context
(all processes created in the beginning of application) and
in MPI-2 one (using dynamic processes creation).

The problem target is the generation of a fractal, the
Mandelbrot Set, that is one of the thirteen Cowichan Prob-
lems (19) designed to test parallel programming systems.
Mandelbrot Set is a classical embarrassingly parallel prob-
lem, in which the calculation of a particular data element is
completely independent of the calculation of the other ele-
ments. The calculation is the iteration of the equations

x
′

= x2 − y2 + y0

y
′

= 2xy + x0

to a given initial coordinates(x0, y0) until an iteration limit
is reached or the value diverge. In the paper test, the ini-
tial coordinates are(0.5, 0.5) and the limit is 30500 itera-
tions. To calculate the fractal, it was divided in blocks with
dimension of40 × 40 pixels. Each task represent a fractal
block composed to(x, y) coordinates and the dimension of
the block, which is always the same to all applications ver-
sions.

To identify the overhead of MPI-2 dynamic pro-
cesses creation, it was developed three versions of Man-
delbrot application. In the first version, amaster man-
ager the creation ofworkers in resources available (using
MPI Comm spawn) while there are tasks to execute. Each
worker receive one task, calculate it, send back tomas-
ter a matrix with fractal points, and finalize its execution.
Second Mandelbrot application use MPI-1 which all pro-
cesses are created at the beginning of the execution, and a
mastersend tasks toworkersand receive the fractal points.
To leave the MPI-1 and MPI-2 versions nearer, it was de-
velop another application version. In the third one, amas-
ter create, dynamically, oneworker by processor available
and they will receive tasks and return the fractal points un-
til exist tasks to execute. To MPI-2 implementations, it was
only used the Round-Robin scheduling policy. To Mandel-
brot Set application a workload-based policy did not take
advantages to performance.

Figure 2 shows a graph with the time of execution by
number of workers used to the three applications versions.
Each value shown is the average of 15 executions of appli-
cation to each number ofworkerand the standard deviation



 0

 100

 200

 300

 400

 500

T
im

e 
(s

)

Number of Workers
1 2 4 6 8 10 12 14 16 18 20 22 24

MPI−2 v1
MPI−2 v2

MPI−1

Figure 2. Timing for Mandelbrot Set computa-
tion using MPI-1 (solid line) and two version
with MPI-2 (dotted lines)

is 1.77 in the worst case. The solid line represent the MPI-
1 version and it get the best performance. The worst per-
formance was bring by the MPI-2 version that create one
worker by task executed, and it was in average approxi-
mately 14% worse than MPI-1 one. At last, the second MPI-
2 version that is nearer to MPI-1 pattern get a performance,
in average, approximately 5% worse than MPI-1. This last
result shows that the dynamic processes creation imposes a
low overhead to MPI applications, which can be neglected
in dynamic applications context.

4.2. Using Dynamic Resources

This section presents how dynamic processes creation
can help to use dynamic resources. The application used in
tests is a solution toN -Queens problem. This problem con-
sists in placingN queens on aN × N chessboard, in such
a way that no queen may capture any other. That is to say,
one has to find all the board configurations in which there
exists at most one queen in a given row, column or diago-
nal. Although direct applications of theN -Queens problem
are limited, this problem is often used as a benchmark be-
cause it represents a large class of problems, known as Con-
straint Satisfaction Problems (CSPs) (13).

The standard backtracking algorithm used to solve the
N -Queens problem consists in placing recursively and ex-
haustively the queens, row by row. With MPI, each place-
ment consists in a new spawned task. The algorithm back-
tracks whenever a developed configuration contains two
queens that threaten each other, until all the possibilities
have been considered. A maximum depth is defined, in or-
der to bound the depth of the recursive calls.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

N
um

be
r 

of
 p

ro
ce

ss
es

Time (min)
1 2 3 4 5

Figure 3. Number of processes by time dur-
ing an execution of N -Queens with MPI

Figure 3 is a graph of number of processes by execution
time ofN -Queens using MPI-2. To get dynamic resources,
at each minute a new processor is added to the comput-
ing environment. To add a new processing node (made of
2 CPU), LAM’slamgrow feature has been used. After the
inclusion of a resource in the environment, the application
detect this inclusion and adapts itself by spawning new pro-
cesses on the new processors.

The bar diagram shows how many processes are run on
each CPU, as a function of the time: at the beginning, all
processes are running on the only node available. During
the first minute, only one bar appears, which shows that
all the 11 processes are running on one node. Each time
that a 2-CPUs node turns available, theN -Queens programs
adapts itself by spawning new processes on the newly avail-
able CPUs. At the end of the computation, all the CPUs of
the 5 nodes are running processes of theN -Queens compu-
tation. Since no migration if allowed, the initial nodes run,
until the end, more processes than those that were added
later on.

4.3. Impact of Workload-based Politic

As mentioned in Sec. 3 the proposed scheduler offers
two scheduling policy: Round-Robin (results presented in
Sec. 4.1) and resources workload-based. The workload-
based policy is appropriated to schedule irregular applica-
tions (which tasks are processed with variable duration) or
in heterogeneous environment. This section shows the be-
havior of an irregular application schedule with two policy
options.

The irregular application used in the tests is a Primality
Computation. In this application, the number of prime num-



bers in a given interval (between1 andN ) is computed by
recursive search. To programme a recursive search, a new
process is spawned (MPI Comm spawn) for each recursive
subdivision of the interval. Due to the irregular distribution
of prime numbers and irregular effort to test a single num-
ber, the parallel program is natively unbalanced.

Figure 4 shows the run-times by the workload, as mea-
sured by the sizeN of the interval, with the Round-Robin
and workload-based policy. In the latter case, the proposed
scheduler, transparently, request to a resource manager in
order to obtain on-line information about the load of the
processors. The Round-Robin algorithm maintains a natu-
ral load balance between the processors, and the workload-
based grants that any under-loaded processor executes more
processes. Thus, in both cases, the resources are better em-
ployed.

 0

 20

 40

 60

 80

 100

10x106 15x106 20x106 25x106 30x106 35x106 40x106 45x106 50x106

T
im

e(
s)

Interval size

Figure 4. Timings for the Prime compu-
tation, with Round-Robin (dotted line) and
workload-based (solid line) policy (5)

As can be seen, in the case of this irregular computa-
tion, the use of the on-line scheduler with load informa-
tion enables a consistently better run-time than with Round-
Robin, even when the statistical fluctuations are taken into
account. Also, it can be seen that the time lasted when
used the Round-Robin scheduling increases steady against a
smoother increase when using the resource workload-based.

5. Conclusions

MPI-2 extension are highly promising, once allow use
dynamic resources and make possible to implement dy-
namic applications. This paper shows a simple scheduler
to MPI dynamic applications. This scheduler is centralized
and take scheduling decision on-line. The results show that

there is a low overhead using dynamic processes creation,
which can be neglected in dynamic environment context.
The experimental results shown how to take advantage of
dynamic processes creation to use dynamic resources and
the impact of a workload-base policy in the scheduling of
irregular applications.

The results presented in this paper concentrate the main
aspects of programming using dynamic processes creation.
To get an efficient program that taking advantage of MPI-
2 features, it is necessary to bypass some restrictions of
MPI. For instance, the communication restriction that will
directly affect the schedule decisions.

In this paper, the dynamicity of the environment was re-
stricted to the inclusion of a new resource, more specifically,
the use oflamgrow LAM/MPI primitive. The LAM/MPI
offer a primitive, calledlamshrink, to exclude dynami-
cally one node of resources set. But to application execution
safety, the usage of this primitive needs the implementa-
tion of some fault tolerance aspects, like checkpoints mech-
anisms, inside of application. Fault tolerance issues was out
of scope of this work and will be left to future workers.

Together to the development of the proposed scheduler,
it was studied how to program Divide and Conquer (D&C)
applications using MPI-2 (14).D&C model is natively dy-
namic and can be efficiently schedule by a Work Stealing
strategy. In this context, there was developed a Hierarchical
Work Stealing algorithm to MPI-2 application. This work
shows that the MPI-2 features open possibilities to explore
important aspects in a new range of MPI applications.

References

[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. C. E. Zhou. Cilk:
an efficient multithreaded runtime system.ACM SIG-
PLAN Notices, 30(8):207–216, Aug. 1995.

[2] R. D. Blumofe and C. E. Leiserson. Space-efficient
scheduling of multithreaded computations.SIAM
Journal on Computing, 27(1):202–229, 1998.

[3] C. Boeres, A. P. Nascimento, V. E. F. Rebello, and
A. C. Sena. Efficient hierarchical self-scheduling for
mpi applications executing in computational grids. In
MGC ’05: Proceedings of the 3rd international work-
shop on Middleware for grid computing, pages 1–6,
New York, NY, USA, 2005. ACM Press.

[4] C. Boeres and V. E. F. Rebello. Easygrid: towards a
framework for the automatic grid enabling of legacy
mpi applications.Concurrency - Practice and Experi-
ence, 16(5):425–432, 2004.

[5] M. C. Cera, G. P. Pezzi, E. N. Mathias, N. Maillard,
and P. O. A. Navaux. Improving the dynamic creation
of processes in MPI-2. InLecture Notes in Computer



Science - 13th European PVMMPI Users Group Meet-
ing, volume 4192/2006, pages 247–255, Bonn, Ger-
many, 2006. Springer Berlin / Heidelberg.

[6] J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sun-
daram. Integrated PVM framework supports hetero-
geneous network computing.Computers in Physics,
7(2):166–175, 1993.

[7] C. Du, S. Ghosh, S. Shankar, and X.-H. Sun. A run-
time system for autonomic rescheduling of mpi pro-
grams. In33rd International Conference on Parallel
Processing (ICPP 2004), pages 4–11, Montreal, Que-
bec, Canada, 2004. IEEE Computer Society.

[8] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun,
J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, and T. S. Woodall. Open mpi: Goals,
concept, and design of a next generation mpi imple-
mentation. InRecent Advances in Parallel Virtual
Machine and Message Passing Interface, 11th Euro-
pean PVM/MPI Users’ Group Meeting, volume 3241
of Lecture Notes in Computer Science, pages 97–104,
Budapest, Hungary, 2004. Springer.

[9] W. Gropp. MPICH2: A new start for MPI implemen-
tations.Lecture Notes in Computer Science, 2474:37–
42, 2002.

[10] W. Gropp, E. Lusk, and A. Skjellum.Using MPI:
Portable Parallel Programming with the Message
Passing Interface. MIT Press, Cambridge, Mas-
sachusetts, USA, Oct. 1994.

[11] W. Gropp, E. Lusk, and R. Thakur.Using MPI-
2 Advanced Features of the Message-Passing Inter-
face. The MIT Press, Cambridge, Massachusetts,
USA, 1999.

[12] J. L. Gustafson. A paradigm for grand challenge per-
formance evaluation. In R. K. Kalia and P. Vashishta,
editors,Toward Teraflop Computing and New Grand
Challenge Applications, pages 279–290? Nova Sci-
ence Publishers, Commack, New York, 1995.

[13] V. Kumar. Algorithms for constraint-satisfaction prob-
lems: A survey.AI Magazine, 13(1):32–44, 1992.

[14] G. P. Pezzi, M. C. Cera, E. N. Mathias, N. Maillard,
and P. O. A. Navaux. Escalonamento dinmico de
programas mpi-2 utilizando diviso e conquista. In
VII Workshop em Sistemas Computacionais de Alto
Desempenho, pages 71–79, Ouro Preto, Brazil, Oct.
2006.

[15] L. A. Rao and J. Weissman. Mpi-based adaptive paral-
lel grid services. Technical report, Minneapolis, MN,
USA, 2003.

[16] J. M. Squyres and A. Lumsdaine. A Component
Architecture for LAM/MPI. In Proceedings, 10th
European PVM/MPI Users’ Group Meeting, number
2840 in Lecture Notes in Computer Science, pages
379–387, Venice, Italy, September / October 2003.
Springer-Verlag.

[17] R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal.
Satin: Efficient Parallel Divide-and-Conquer in Java.
In Euro-Par 2000 Parallel Processing, number 1900 in
Lecture Notes in Computer Science, pages 690–699,
Munich, Germany, Aug. 2000. Springer.

[18] J. B. Weissman, L. R. Abburi, and D. England. Inte-
grated scheduling: the best of both worlds.Journal of
Parallel and Distributed Computing, 63(6):649–668,
2003.

[19] G. Wilson. Assessing the usability of parallel pro-
gramming systems : The cowichan problems. InIFIP
Working Conference on Programming Environments
for Massively Parallel Distributed Systems, pages
183–193, 1994.


