
Investigation Through Set Associativity on Shared L2 Cache Memory
in a Multi-Core Chip Architecture

Marco A. Z. Alves, Philippe O. A. Navaux
Informatics Institute - Universidade Federal do Rio Grande do Sul - UFRGS

{marco.zanata, navaux}@inf.ufrgs.br

Abstract

Memory latency has been one of the most perfor-
mance bottleneck in single-core processors and nowa-
days on multi-core processors. As future one can spot that
many cores shall be available with great performance, but
still needing more cache performance to obtain good mem-
ory throughput for all processing cores. Considering the
present context, this paper examined the effect of iso-
lated and shared L2 cache by two cores, in a 32 cores chip
multiprocessor, where the results shows that even with re-
duction of cache miss, the final performance is dominated
by the cache latency. Thus, some evaluations on set asso-
ciativity were made in order to obtain more cache hits and
thus, try to lead a final performance gain. The results con-
sider increase on set associativity on both L1 and L2 cache,
where some cache miss reductions where observed but con-
sidering the increase of cache latency it was not enough to
lead a performance gain.

1. Introduction

Nowadays, computer systems looks for high thread level
parallelism, this can be observed mainly on the increase
of multi-core processors projects, which even having more
than one core, are designed in the same physical area of
an single-core processor [10], what is just possible with the
usage of more simple processing units for each core. Be-
sides more parallelism on its same size, multi-core proces-
sors presents other attractive properties as simpler control
unit and less power consumption in many cases. The future
high-performance processors shall have tens or even hun-
dreds of cores [6]. In this context, increases on the num-
ber of cores should consider that progress must be made in
all areas to support this type of technology as the memory
hierarchies, the coherence control, the interconnection net-
works and others.

Nowadays some commercial multi-core processors are
using shared L2 cache [3], but at same time, others multi-

core architectures are adopting isolated L2 cache [11] for
each core. Both architectures, sharing or isolating L2 cache
have some great and bad points, but it is not clear how
should be the best cache memory organization for multi-
core or even many-core processors. The work presented on
[2] shows that for some applications the amount of cache
miss can be reduced using shared L2 cache, but on the other
hand, if the application is not architecture aware, this shar-
ing can lead to a decrease on the final performance.

The set associativity is a well know cache memory map-
ping strategy where each block can be placed inn differ-
ent ways, wheren is the set associativity used, its adopted
normally to increase the cache hit rate [5], but this strategy
has the drawback of the hit time increase. The results pre-
sented on [4] aim to study the performance of shared cache
on multi-threaded architectures using trace driven simula-
tors, the study shows that both cache size and set associa-
tivity needs to increase as the number of threads increase in
order to maintain comparable performance.

The present paper aims to establish the performance im-
pact of some cache memory parameters on processors with
multiple processing cores considering real memory laten-
cies, this way studying how the memory cache shared be-
tween multiple cores and the increase of set associativity
affects the performance, considering the improvement on
the cache hit rate and estimates on cache latency. In this pa-
per the instruction set architecture simulation was applied to
study the system performance of a 32 cores chip multi-core,
with shared and isolated L2 cache organizations on the first
experiment and with changes in the set associativity on the
second experiment, executing NAS parallel benchmark to
represent a typical workload.

This paper is organized as follows, the section Methodol-
ogy brings some methodological considerations, the model
and latency estimates, simulation, and the workload infor-
mation, the Results and Analysis section presents the exper-
imentation results and data analysis, the Conclusion and Fu-
ture Work section presents the main conclusions and some
interesting future work topics, then finally the Acknowl-
edgement is presented.



L2 Slices Cores Size L1 Cache L2 Cache L1 R/W L2 R/W L1 R/W L2 R/W
per Slice per Slice Set Assoc. Set Assoc. Latency (ns) Latency (ns) Penalty Cycles Penalty Cycles

32 1 1 MB 2 Ways 8 Ways 0.74 1.77 2 4
16 2 2 MB 2 Ways 8 Ways 0.74 2.16 2 5
32 1 1 MB 4 Ways 8 Ways 0.78 1.77 2 4
16 2 2 MB 4 Ways 8 Ways 0.78 2.16 2 5
32 1 1 MB 2 Ways 16 Ways 0.74 2.62 2 6
16 2 2 MB 2 Ways 16 Ways 0.74 2.83 2 6

Table 2. Modeled Cache Systems and Cache Organizations.

Component Parameter Value
Cores 32

Chip Execution In-Order
Multiprocessor Frequency 2 GHz

CPI 1.0
Size 32 KB + 32 KB

Line Size 32 B
Set Associative Variable (Table 2)

L1 Cache Feature Size 45 nm
R/W Latency Variable (Table 2)
Replacement LRU
Write Policy Write-Through

Size 1 MB per Core
Line Size 64 B

Set Associative Variable (Table 2)
L2 Cache Feature Size 45 nm

R/W Latency Variable (Table 2)
Replacement LRU
Write Policy Write-Through

Size 1 GB
Main Memory Feature Size 65 nm

Latency 100 Cycles

Table 1. Base Components Parameters.

2. Methodology

Performance evaluation is required at every stage in the
life cycle of a computer system, including its design and
manufacturing [7]. On design of an processor architecture
some different evaluation techniques can be used, but the
appropriate selection of techniques, performance metrics
and workloads for a system could be used to compare archi-
tectural and organizational modifications. In terms of eval-
uation techniques three mainly methodologies may be con-
sidered: analytical modeling; simulation and; measurement.

For a general purpose computer architecture evaluation
with complex memory organization, simulation offer good
features once it does not need prototyping nor hard and im-
precise analytical formulations. Thus, for our study, all the
evaluations were made using simulation techniques.

2.1. Modeling and Simulation

The simulation environment used was Simics (ver. 3.31),
from Virtutech [9], which was chosen because it is a full
system simulator platform at the instruction set level. Thus,
the results of execution time are measured in executed in-

Name Description Operations
per Thread

BT.W Block Tridiagonal Solver 1.14 Mop/s
CG.W Conjugate Gradient 0.42 Mop/s
MG.W Multigrid 1.14 Mop/s
EP.W Embarrassing Parallel 0.08 Mop/s
SP.W Solve Scalar Pentadiagonal System 0.74 Mop/s
LU.W Decomposition LU 1.20 Mop/s
IS.W Integer Sort 0.09 Mop/s
FT.W 3D FFT PDE 0.58 Mop/s
UA.W Unstructured Adaptative 0.01 Mop/s

Table 3. Workload Description.

structions and cycles. The number of cycles is given by the
number of instructions executed added to the stall cycles
generated by the latency of each architecture component.

On the first proposed experiment consider a base CMP
(Chip Multiprocessor) with 32 cores, each core with its own
L1 cache simulated with isolated and shared L2 Cache. Ta-
ble 1 show the parameters used on the base system, the mod-
eled parameters where based on a chip multiprocessor fea-
tured in 45nm integration technology and with the main
memory build on 65nm technology.

The simulated latencies for all memory hierarchy models
considers estimates based on the parameters used on each
simulation, where the latencies shall have differences as the
modeled cache change. The simulation latencies modeled
were obtained based on CACTI memory modeling tool ver-
sion 5.3. Table 2 brings the specific values for each cache
parameters evaluated.

2.2. Workloads

Application benchmarks are formed with representative
subset of application functions of well know algorithms.
Thus, such benchmarks are generally described in terms of
functions to be performed. In this paper, the workload NPB
(NAS Parallel Benchmark) [8], was used for all evaluations,
this benchmark is formed with a set of applications where
each application represents one different kernel of numeri-
cal methods described in details on Table 3. The NPB work-
load used was version 3.3 compiled with SunStudio 11 with
-fastperformance parameter.



Figure 1. Execution cycles, caches misses and cache miss stall cycles for NPB benchmark execu-
tion on systems with isolated and shared L2 cache.

3. Results and Analysis

This section presents the results obtained running the
NPB workload applications on the modeled experiments,
obtained based on one execution of each experiment, where
each experiment was executed once previously in order to
reduce transient effects as cold start effects [1].

The first evaluation was studying the L2 sharing impact
on multi-core processor, considering one 32 cores CMP,
with two organizations, the first considering one L1 cache
and one L2 cache for each core (1core/L2). On the second
using one core with its own L1 cache and each L2 cache
shared for two cores (2cores/L2). Both organizations mod-
eled with the same total amount of L2 cache memory, using
the total of 32 MB, with 1 MB for each core.

Figure 1 show information about the first two simula-
tions considering an isolated and a shared L2 cache. On this
experiment, one can observe that execution cycles increases
1.03% as the L2 cache becomes shared for two cores and
it happens even with the reduction of 1.39% on the num-
ber of cache misses on L2 cache. However, this behavior is
very easily explained when the cache memory access time
latency is considered, where the latency from the first for
second simulation had 22.03% of increase.

The second experiment evaluates the impact of the in-
crease of set associativity on the two previous analysed
cache organizations. Thus, based on the first experiment pa-
rameters, the set associativity parameter was doubled for
both L1 and L2 cache, once a time, in order to increase the
cache hit rate and thus, increase the execution performance.
Figure 2 show the results of cache miss and lost stall cy-
cles generated by cache misses for L1 change on set asso-
ciativity, where the experiment with L1 cache using 4 ways
set associativity had impacted on L1 cache miss decrease of
3.74% on 1core/L2 and reduction of 1.54% on 2cores/L2,
and on the L2 cache miss increase of 29.75% and reduc-
tion of 0.60% for 1core/L2 and 2cores/L2 respectively. In
terms of wasted stall cycles by cache latency, the total of

Figure 2. Cache Misses and Stall Latency by
increase on set associativity of L1 cache.

Figure 3. Cache Misses and Stall Latency by
increase on set associativity of L2 cache.

cycles wasted was 11.81% greater for 1core/L2 and 1.19%
lower for 2cores/L2 comparing the modified L1 set associa-
tivity with the base configuration used on the first experi-
ment. Figure 3 show the results of cache miss and stall la-
tency generated by cache misses for L2 change on set as-
sociativity, where the L2 cache using 16 ways set associa-
tivity which achieved L2 cache miss increase of 9.06% on
1core/L2 and reduction of 25.41% on 2cores/L2. In terms
of wasted stall cycles by cache latency, the total of cycles



Figure 4. Execution cycles for NPB bench-
mark execution on different set associativity.

wasted was 6.79% greater for 1core/L2 and 26.20% lower
for 2cores/L2 comparing the modified L2 set associativity
with the base configuration used on the first experiment.
Figure 4 show the plots about the execution cycles for each
execution and each application. Its clear that even changing
the set associative, the execution cycles for the NPB bench-
mark execution increased comparing the configuration of
isolated L2 cache with shared L2 cache, where the execu-
tion cycles suffered increases on both L1 and L2 changes
of set associativity, where the Figure 2 and Figure 3 asso-
ciated with the cache parameters (Table 2) explains the be-
havior of the increase on execution cycles.

The performance was not improved by neither decreas-
ing the cache miss by sharing the L2 cache for more cores,
nor increasing the set associativity, what is explained by the
increase of latency that cache suffers when its size or the as-
sociativity increases.

Considering the sharing of L2 cache, it lead the system to
a decrease on cache misses, but on the other hand, as the L2
cache size increases its latency also increases, thus, the ex-
ecution time of all experiments increased. The set associa-
tivity also had great impact on decrease of cache miss when
the cache was shared for two cores, where the change on L2
cache associativity showed good results in terms of cache
hit, but all modifications on set associativity where not able
to reduce the execution time, once the cache hit does not
pay the increase on latency.

4. Conclusion and Future Work

On the context of chip multi-core processors, this paper
evaluated some cache memory organizations in order to in-
vestigate the L2 cache sharing impact on a CMP, and also
try to examine the impact of set associativity on isolated and
shared L2 cache memory.

On the first experiment of sharing one L2 cache for each
2 cores, it lead the system to a decrease on cache misses,
the same occurs when the set associativity where doubled,
but as the L2 cache size increases and as the set associativ-

ity increases too, the cache memory latency also increases,
thus, the execution time of all experiments increased, show-
ing that execution on both cases where degraded by cache
latency.

For future work, we consider to expand the experimen-
tation for more cores sharing the same L2 cache slice, and
combine the sharing with the increase of set associativity
and block size, in order to study the impact of all factors try-
ing to reduce the cache miss rate and thus execution time.

5. Acknowledgment

This work was supported in part by Projeto Universal
and CNPq (Brazilian Government).

References

[1] A. R. Alameldeen, C. J. Mauer, M. Xu, et al. Evaluating non-
deterministic multi-threaded commercial workloads.Com-
puter Architecture Evaluation using Comercial Workloads,
2002.

[2] M. A. Z. Alves, H. C. Freitas, F. R. Wagner, and P. O. A.
Navaux. Influência do compartilhamento de cache l2 em
um chip multiprocessado sob cargas de trabalho com con-
juntos de dados contíguos e não contíguos. InWorkshop em
Sistemas Computacionais de Alto Desempenho (WSCAD),
2007.

[3] J. Chang, S. Member, and M. Huang. The 65-nm 16-mb
shared on-die l3 cache for the dual-core intel xeon proces-
sor 7100 series.Journal of Solid-State Circuits, 42(4), 2007.

[4] Y.-Y. Chen, J.-K. Peir, and C.-T. King. Performance of
shared cache on multithreaded architectures.IEEE Euromi-
cro International Conference on Parallel, Distributed, and
Network-Based Processing - PDP, pages 541–548, 1996.

[5] J. L. Hennessy and D. A. Patterson.Computer Architecture:
A Quantitative Approach. Elsevier, Inc., United States of
America, fourth edition, 2007.

[6] Intel. Advancing multi-core technology into the tera-scale
era. Intel Teraflops Research Chip, 2007.

[7] R. Jain. The art of computer systems performance analysis.
J. Wiley, New York, 1991.

[8] H. Jin, M. Frumkin, and J. Yan. The openmp implementa-
tion of nas parallel benchmarks and its performance. InNAS
Technical Report NAS-99-011. NASA Ames Research Cen-
ter, 1999.

[9] P. S. Magnusson, M. Christensson, J. Eskilson, et al. Simics:
A full system simulation platform.IEEE Computer Micro,
2002.

[10] K. Olukotun et al. The case for a single-chip multiproces-
sor. Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2006.

[11] L. Peng, J. Peir, T. K. Prakash, Y. Chen, and D. Koppel-
man. Memory performance and scalability of intel’s and
amd’s dual-core processors: A case study. InInternational
Performance, Computing, and Communications Conference
(IPCCC), 2007.


