
An Overview of Memory Virtualization Techniques Based on Intel VT ∗

Manuela K. Ferreira, Henrique C. Freitas, Philippe O. A. Navaux
Informatics Institute, Universidade Federal do Rio Grandedo Sul, Brazil

{mkferreira, hcfreitas, navaux}@inf.ufrgs.br

Abstract

Once confined to specialized server and mainframe
systems, virtualization is now becoming more broadly
available. This is due to processing improvements and the
benefits provides by virtualization like concurrent execution
of multiple operating systems (OSs) with total isolation
of them. Intel VT is a hardware support proposal with
the goal of simplify the Virtual Machine Monitor (VMM)
and increase the virtualized systems performance. This
technology includes definition of new data structures, new
forms of CPU operation, a new instruction set architecture
(ISA), and new memory techniques. So, the goal of this
paper is to present the memory techniques used by Intel
VT architecture to manage access to the memory of virtual
machines (VMs).

1. Introduction

Virtualizing physical resources of mainframe systems to
achieve improved sharing and utilization is well-established
concept since 1960’s, when IBM began developing the first
VM that allowed one computer to be shared as if it was
several [8].

The virtualization offers benefits like concurrent
execution of different operation systems (OSs) with
dynamic load balancing that increases the utilization of the
system resources. Users can isolate untrusted applications
of unknown quality. The isolation improves system security
and prevent software failures in one VM to effect the
other VMs. It allows a system manager to configure the
environment in which guest OSs will run. This provides
the ability to run legacy OS and a developer can easily
test application on a virtual environment. These features
can be used to construct system software for scalable
computers that have anywhere from 10 to 100 processors.
Through physical resources abstraction 10 real processors

∗ Supported by Microsoft Company.

can appears to application software as 1; or 1 processor can
appears as 10 [7].

Virtualization is the capacity to run multiple OS at same
time on a single physical plataform sharing the system
resources. A virtualized system includes a new layer of
software, the virtual machine monitor (VMM). The VMM’s
principal role is to arbitrate accesses to the underlying
physical host plataform’s resources so the multiple OSs
(which are guests of the VMM) can share them. The
VMM presents to each guest OS a set of virtual plataform
interfaces that constitute a virtual machine (VM).

Once confined to specialized server and mainframe
systems, virtualization is now becoming more broadly
available due to performance processing improvement.
Then more effort is spent to improve the virtualized systems
performance. To achieve this goal there are software and,
recently, hardware proposals [1].

Intel VT is the Intel Virtualization Technology for x86
processors that provides hardware virtualization support
with the goal of simplify the VMMs in order to increase
the virtualized systems performance [5]. This technology
includes definition of new data structures, new forms of
CPU operation, a new ISA, and new memory techniques.

With virtualization there is one level more of address to
be translated. In this paper will be presented the memory
techniques used by Intel VT architectures to manage the
memory and accesses from virtual machines (VMs). These
techniques will provide basement to extend the model
presented in [4].

First, the memory virtualization techniques used in Intel
VT technology are detailed. After, a research proposal is
presented in order to extend the MIPS-vt model. Then the
ArchC framework, necessary to extend the model, is briefly
presented. Finally the conclusions and future works.

2. Intel VT Memory Virtualization

This section presents the memory virtualization
techniques used in Intel VT technology. How a guest
physical addres is translated to host physical address is
detailed.



In architectures without explicit support for MMU
virtualization the hidden page faults, caused by misses
in the shadow page table, cause the switch to the VMM
to construct an appropriate page table entry. This incur
significant overhead.

In the memory virtualization scheme of Intel VT,
the VMM maintains a hardware-consulted nested page
table that translates guest physical addresses to host
physical addresses. This mapping allows the hardware to
dynamically handle guest MMU operations, eliminating
the need for VMM interposition. The operation of
this scheme is illustrated in Figure 1. While running
in hardware-assisted guest execution, the Translation
Look-aside Buffer (TLB) contains entries mapping guest
virtual addresses to host physical addresses. The process
of filling the TLB in case of miss is described foward.
Considering the case of a guest reference to virtual address
V that missis in the hardware TLB:

1. The hardware uses the guest page table pointer (%cr3
to locate the top level of the guest’s hierarchical page
table.

2. %cr3 contains a guest physical address, which
must be translated to a host physical address before
derreferencing. The hardware consults the nested page
table for the guest’s%cr3 value to obtain the host
physical pointer to the top level of the guest’s page
tabel hierarchy.

3. The hardware reads the guest page directory entry
(PDE) correnponding to guest virtual address V.

4. The PDE read in step 3 also yields a guest physical
address which must also be translated via the nested
page table before proceeding.

5. Having discovered the host physical address of the
final level of the guest page table hierarchy, the
hardware reads the guest page table entry (PTE)
corresponding to V. In our example, this PTE points
to guest physical address A, which is translated via a
third consult of the nested page table to host physical
address B.

6. The translation is complete: virtual address V maps to
host physical address B. The page consult hardware
can now fill the TLB with an apropriate entry (V,B)
and resme guest execution, all without software
intervation.

For anM-level guest page table on anN-level nested
page table, a worst-case TLB miss requiresMN memory
accesses to satisfy. Nested paging holds the promise of
allowing guest context switches without VMM intervation.
By resolving the most important source of overhead in
current VMM [1], nested paging hardware should easily
repay the cost of slower TLB misses.

Figure 1. Nested paging hardware [1]. guest
virtual address (gVA), guest physical address
(gPA), host physical address (hPA).

Intel VT also has Virtual Processor Identifiers (VPID).
This feature allows a VMM to assign a different non-zero
VPID to each virtual processor (the zero VPID is reserved
for VMM). The CPU can use VPIDs to tag translations in
the TLBs. This feature eliminates the need for TLB flushes
on every each context switching between VMs and VMM
and eliminates a significant overhead of those flushes on
performance [5].

3. Research Proposal using ArchC

In this section the proposal to model the memory
virtualization from Intel VT is described. Then is
overviewed the ArchC framework and some ArchC works.

In [4] and [3] a MIPS model increased with instructions
and structures of Intel VT-x, the MIPS-vt model, is
presented. The proposal is to extend the MIPS-vt model
with memory hierarchy, modeling the nested page table
and the VPIDs from Intel VT(Section 2) using ArchC.

3.1. ArchC Tool

ArchC is an architecture description language (ADL)
that can automatically generate simulators using the
SystemC (hardware description language) and it is
capable of describing processor and ISA design and
memory subsystem. Memory hierarchies can be declared,
containing several levels of memories and caches. Caches
can be configured to simulate different set associativities,
write polices, replacement strategies, and line size [6].

SystemC is a class set in C++ that extends the language
to allow hardware and system modeling. Although SystemC
supports several computing models, communication and
abstraction levels, is dificult to extract from processors
description in SystemC all the necessary information to
designers experiment and evaluate a new ISA.[9].

The goal of ArchC is to improve the abstraction for
SystemC models. ArchC provides enough information, at
an appropriate abstraction level, to allow designers explore



and check a new architecture by software framework
automatic generation like assemblers, simulators,
deployment and communication interface [9].

A processor architecture description in ArchC is
divided in to two parts: i) the instruction set architecture
description in ArchC (ACISA) provides details about
instruction formats, size and names combined with all
information necessary to decoding and the behavior of each
instruction; ii) in the Architecture Resources (ACARCHC)
description, the user informs storage devices, pipeline
structure, memory hierarchies, etc. Based on this two
descriptions, ArchC will generate a behavior simulator
written in SystemC for the architecture [6] .

ArchC is capable of describing hierarchies composed
of caches and memories distributed at different levels. The
cache can be customized by an user through parameters as
follows:

• Associatity: direct mapped (”dm”) or 2-way
associative (”2w”), 4-way associative (”4w”) or
fully associative (”fully”).

• Number of lines: the number of cache lines.

• Word per lines: number of words storage in a cache
line.

• Replacement strategy: least-recently-used (”lru”) or
random (”random”). Only in associative caches.

• Write policies: write-through (”wt”) or write-back
(wb).

• Write load policies: if the cache line was loaded when
a write miss occurs: write-allocate (”wal”); or if the
line was modified only on a down level and was not
loaded on cache: write-around (”war”).

An example is illustrated in the cache declarations
contained in the example in Figure 2 at lines 2 and 3.

The user creates the hierarchy by describing the
connections among these devices, through the method
bindsTo, as illustrate in the last two lines of the example.

Using these ArchC frameworks it is possible to extend
the MIPS-vt model with memory hierarchy from Intel VT.

3.2. ArchC-based Works

The work [10] describes the cache configuration
exploration using ArchC. ArchC was extended to support
more details of a system memory. As a result the Sparc-V8
processor model had its memory organization optimized
for an image processing application.

Current version of ArchC [9] is capable of describing
and simulating (using SystemC) a multi-core processor. In
[2], ArchC was extended in order to provide a mechanism
to support multiprocessor platforms. The main contribution

Figure 2. Example of cache declaration using
ArchC.

for educational activities is related to the efficient design
exploration.

4. Conclusions

This paper presented the memory virtualization
techniques used in Intel VT technology. These techniques
consist in a hardware-consulted nested page table that
translates guest physical addresses to host physical
addresses, allowing guest context switches without VMM
intervation. To avoid TLB and cache flush at each context
switching, the Intel VT technology provide a VPID. The
CPU can use VPIDs to tag translations in the TLBs. This
way in the context switch is not necessary to flush the TLB.

The proposal presented in this paper is to extend the
MIPS-vt model, with memory hierarchy, modeling the
nested page table and the VPIDs from Intel VT using
ArchC.

In Section 3.1 was presented the ArchC framework
necessary to modeling the virtualization memory
techniques extending the MIPS-vt model. An example
of the description of hierarchies composed of caches and
memories was presented.

Future works focus on statistical analyses of the MIPS-vt
with memory hierarchy model and design this new model
with two or more cores, also based on an ArchC model.

References

[1] K. Adams. A Comparison of Software and Hardware
Techniques for x86 Virtualization. 12th International
Conference on Architectural Support for Programming
Languages and Operation Systems, pages 2–13, March 2006.

[2] C. Arajo. Platform Designer: An Approach for Modeling
Multiprocessor Platforms based on SystemC.Journal of



Design Automation for Embedded Systems, 10(4):253–283,
Springer 2003.

[3] M. K. Ferreira. From Intel VT-x to MIPS: An ArchC-based
Model to Understanding the Hardware Virtualization
Support. Workshop on Computer Education Architecture,
Beijing, China, pages 9–15, June 2008.

[4] M. K. Ferreira. Modificaes no MIPS Inspiradas na Intel VT-x
para Suporte Virtualizao Utilizando ArchC.Escola Regional
de Alto Desempenho, Santa Cruz/RS, pages 245–248, March
2008.

[5] G. Neiger. Intel Virtualization Technology: Hardware
Support for Efficient Processor Virtualization. Intel
Computer Journal, 10:166–178, August 2006.

[6] S. Rigo. Teaching Computer Architecture Using an
Architecture Description Language.Workshop on Computer
Architecture Education, 2004.

[7] J. S. Robin. Analysis of the Intel Pentium’s Ability to
Support a Secure Virtual Machine Monitor.9th USENIX
Security Symposium, page 16, March 2000.

[8] R. Rose. Survey of System Virtualization Techniques.
CiteSeer.IST, http://citeseer.ist.psu.edu/720518.html, March
2004.

[9] T. A. Team. The ArchC Architecture Description Language
Reference Manual. Computer System Laboratory (LSC)
Institute of Computing, http://www.archc.org, 2004.

[10] P. Viana. Exploring Memory Hierarchy with ArchC.
Symposium on Computer Architecture and High
Performance Computing, pages 2–9, 2003.


