
Testing the Performance of Parallel File Systems

Rodrigo Virote Kassick Francieli Zanon Boito
Philippe O.A. Navaux

Grupo de Processamento Paralelo e Distribuı́do
Universidade Federal do Rio Grande do Sul
{rvkassick,fzboito,navaux}@inf.ufrgs.br

Abstract

Cluster architectures allow applications to profit from
it’s distributed processing and to scale in an efficient and
cheap manner. The slow evolution of I/O devices, on the
other hand, turns the I/O subsystem into a great bottleneck
for applications that need to store and manage large sets of
data. Parallel File Systems try to overcome such problems
through the distribution of the IO system into several in-
dependent servers, thus aggregating their storage and net-
work bandwidths. The performance of such systems can be
affected by how they manage the application’s data on the
storage level or how they transport such data through the
network between the servers and the clients. This work pro-
poses a study of such behaviors to define what are the best
strategies to be used by an application when using such sys-
tems.

1. Introduction

Cluster Architectures, as defined by Baker et al[1] are
composed by a set of independent machines connected
through a network. Applications gain in performance ex-
ploring the processing parallelism of such architecture and
using the network to communicate data between different
instances when needed.

Several scientific applications manipulate large sets of
data and need to store this data in between executions. Since
the data must be available to all the machines in the cluster,
the utilization of a distributed file system is a very natural
solution.

Given the necessity of good performance on such sys-
tems, traditional centralized distributed file systems arenot
suitable to this task, since the central server will quickly
became a bottleneck when several clients try to access the
files. Parallel File Systems or High Performance Distributed
File Systems are a kind of distributed file system in which
the client’s data is distributed onto several servers. Thisway,

the network bandwidth and the disk capacities are summed,
improving the performance of the storage system. Two of
such storage systems are the dNFSp and the Lustre File Sys-
tem.

dNFSp – Distributed NFS, Parallel – is a parallel file sys-
tems that keeps full compatibility with the NFSv3 protocol.
Such protocol has the advantage of it’s widespread avail-
ability – the necessary drivers have been part of the Linux
kernel for several years – thus not requiring any special con-
figuration on the client side.

Lustre (a blend between the words Linux and Clus-
ter), on the other hand, is a built-from-the-ground dis-
tributed file system that aims at profiting from mod-
ern network and storage technologies (like multiport
FiberChannel-connected disks and high performance SAN1

like Infiniband and Myrinet).

These systems treat both the data transport and it’s stor-
age in different manners. As a result, same data-access pat-
terns may result in different performances in these file sys-
tems.

Getting to know how these access patterns behave in
each of these file systems is important both to know how
to set up the systems for different applications and to know
how to develop the application’s I/O subsystem to profit the
best out of these storage systems.

This work proposes a set of tests to evaluate these file
systems in situations similar to those experienced when ex-
ecuting scientific applications.

The remainder of this paper is divided as follows. Sec-
tion 2 and Section 3 give an overview of the dNFSp and
Lustre parallel file systems. In Section 4 we present a test
set that will allow us to examine certain aspects of both file
systems. In Section 5 we present some conclusions.

1 System Area Network



2. Parallel File Systems

dNFSP[2] is a parallel file system based on the NFSv3
protocol. This way, it is compatible with any client that has
drivers to use normal NFS servers - virtually any UNIX
based system, like the Linux and BSD family.

Client access the file system through a metadata server or
metaservers. A metaserver is responsible for keeping track
of the file’s metadata. Clients are divided among the set of
available metaservers, so the load is divided among them.

dNFSp divides data in fixed-length blocks and distributes
them equaly among a fixed-length-set of storage destina-
tions (VIOD’s). This technique is well known on parallel
file systems and is called “striping“.

A VIOD in dNFSp is composed by a set of at least one
storage server (or IOD, I/O Daemon). A single IOD may be
present in more than one VIOD, although in this case the
performance of the system may be degraded. VIOD’s with
more than one IOD use these servers to replicate data. This
is useful for fault-tolerance, allowing up-to-date servers to
replace failed ones.

dNFSp also allows the utilization of exclusive data
servers for an application. These IOD’s are called “applica-
tion IOD’s” and they treat requests coming from a list of
clients belonging to a same application.

An application IOD substitutes a whole VIOD during the
execution. As a result, there’s no mirroring of data until the
end of execution. While this sacrifices fault-tolerance while
the application is being run, the gains in performance are
significant[3].

Since dNFSp utilizes NFS protocol, client-server com-
munication is done via Sun RPC. The metaserver-IOD com-
munication is done via simpler message-driven protocol.

3. Lustre File System

The Lustre File System [4] was created intending to re-
move the bottlenecks commonly found in traditional par-
allel file systems. Lustre tries to scale to a large set of
client nodes (1000 and above). It’s architecture is composed
by a centralized metadata service (MDS server) and sev-
eral object-based storage servers (Object Storage Targets,
OST’s).

Like in dNFSp, the metadata service is responsible for
information on the data and it’s distribution on the OST’s.
The centralized MDS was a choice made during the devel-
opment of the file system - it was then considered that in-
tensive metadata operations workloads were not very com-
mon, and as a result, the cost of keeping a distributed ver-
sion of such service would be too high compared to the ad-
vantages.

To decrease the impact of such workloads, Lustre clients
implement metadata cache. The MDS must then keep track

Figure 1. dNFSp file system’s architecture

of such cached data and assure some level of consistency
among them.

Lustre data storage is based in objects. An object repre-
sents a storage unit and resides in a single OST. An object
may be anything from a whole file to a slice of it. The strip-
ing of the file into objects and their placement on the avail-
able OST’s might be defined by the user via a command line
interface.

Lustre fault tolerance is based on fail-over servers. MDS
and OST servers may have backup server that shares the
same storage device (as a multiport disk or a network-
synchronized partition line DRBD[5]).

Lustre’s network communication layer was based on the
Portals API [6]. Such library allows the utilization of ad-
vanced network level resources like RDMA2 transfers and
can be implemented within advanced network interconnec-
tion chips to profit from some network specific details.

4. Parallel File Systems Testing

The main objective of any parallel file system is to in-
crease the total performance of file I/O for applications.
On the other hand, applications utilize such systems in
very specific patterns that may cause the system to perform
poorly.

2 Remote Direct Memory Access



Figure 2. Lustre file system’s architecture

Simply testing the file system to evaluate it’s raw perfor-
mance (how much data it is able to transfer to client’s in a
given time) does help giving an overall idea of the PFS per-
formance, but there is no guarantee that applications will
have the same performance level as the benchmarks.

Some aspects of the file system may affect the perfor-
mance of applications according to how they make access
to data. We focus on two of these aspects: data caching and
data distribution.

Data caching is used to avoid repeated requests to be
treated repeated times. In distributed file systems, caching
is yet more important as it avoids not only the treating of
the requests multiple times, but also avoids the transport of
significant amounts of data from clients to servers.

Since the storage on PFS is normally divided among sev-
eral servers, the way that an application’s data is distributed
into them may influence the overall performance of the I/O
system. Additionally, the distribution of data from differ-
ent applications may influence the performance when they
are executed concurrently on the cluster.

With this in mind, we propose a set of tests that try to
evaluate the dNFSp and Lustre file system according to
some access patterns observed in bibliography[7, 8, 9].

The proposed tests are:
SFWR - Single File, Whole Read The test consist in

several clients reading a whole shared file.
SFWR-SMP - Single File, Whole Read, SMP-Nodes

Just like SFWR, but several instances of the application are
executed on a same computing node.

SFSR - Single File, Segmented Read This tests utilizes
sequential reads just like SFWR, but there is no overlapping
in data read by two instances of the application.

SFSS - Single File, Shared Segments This test is di-

vided into 2 distinct phases: first, each instance of the par-
allel application does read and write operations on it’s own
segment of a shared file. In the next phase, segment’s off-
sets are altered so that they include data written by a neigh-
bor instance.

MFNS - Multiple File, No Sharing In this test, each in-
stance of the application reads and writes from it’s own file
instead of it’s exclusive segment (as if SFSR).

MFSS - Multiple File, Shared Segments This test eval-
uates the behavior seen in SFSS with the one-file-per in-
stance strategy of MFNS.

TheSFWR andSFWR-SMP tests focus on read perfor-
mance. They try to emulate applications that have large in-
put datasets that must be read by all clients as part of the
application initialization. The SMP variant of such test tries
to evaluate if client-side caching is able to cope with sev-
eral repeated read requests. This situation tends to become
more common with the deployment of several-core comput-
ing nodes.

SFSR simulates distributed applications that oper-
ate over a shared file but that work over independent seg-
ments of it. This is common for applications that read
large datasets in their initialization but that need to oper-
ate over independent data through the first computing phase.
This test allows us to see the performance of the file sys-
tem without the influence of caches (client side or server
side), given that no two instances read the same data. Per-
formance change due to data distribution might be notice-
able in this test.

TheSFSS tries to simulate applications that initially op-
erate over independent datasets but that eventually need ac-
cess to a neighbor’s data. This test focus on the change of
application’s behavior and if original data distribution will
affect performance of the second I/O phase.

The Multiple-File family of tests intends to observe
multiple-file data distribution and how it affects the per-
formance of the applications on the I/O level.MFNS is an
equivalent of SFSR, since both operate over independent
segments of a larger dataset. In MFNS, on the other hand,
each segment of data is stored into an independent file.

MFSS is an equivalent of SFSS. Into it’s second phase,
application’s instances will to access data from neighbors
and, in MFSS case, that means reading from different files.

5. Conclusions

Several aspects may influence the performance of a par-
allel file system. We are proposing some tests to evaluate
two PFS’s behaviors under situations similar to those found
in real-life HPC applications and study some aspects con-
sidered important in a PFS.

Knowing the behavior of file systems under certain con-
ditions is important both to the development of parallel ap-



plications. Developers may try to make their code in man-
ners that profit from certain characteristics of the file sys-
tem while avoiding to do operations that are known to de-
grade performance.

Administrators might also use the results of such tests to
deploy a PFS configuration that better fits the kind of appli-
cation expected to be executed in their clusters.

References

[1] Mark Baker and Rajkumar Buyya, “Cluster computing: the
commodity supercomputer”, inSoftware and Practice and
Experience, 1999.

[2] Rafael BohrerÁvila, Uma Proposta de distribuiç̃ao do servi-
dor de arquivos em clusters, PhD thesis, Universidade Fed-
eral do Rio Grande do Sul, 2005.

[3] Everton Hermann, Danilo Fukuda Conrad, Francieli Zanon
Boito, Rodrigo Virote Kassick, Rafael BohreŕAvila, and
Philippe Olivier Alexandre Navaux, “Utilização de recursos
alocados pelo usuário para armazenamento de dados no sis-
tema de arquivos dnfsp”, inAnais do VII Workshop em Sis-
temas Computacionais de Alto Desempenho (WSCAD 2006),
Ouro Preto - MG, October 2006.

[4] “Lustre: A scalable, high-performance file system”, Cluster
File Systems Inc. white paper, version 1.0, November 2002.

[5] “Distributed replicated block device homepage”, 2006,
http://www.drbd.org/.

[6] “Portals api”, 2008,http://www.cs.sandia.gov/Portals/.
[7] Tara M. Madhyastha and Daniel A. Reed, “Learning to clas-

sify parallel input/output access patterns”,IEEE Trans. Par-
allel Distrib. Syst., vol. 13, no. 8, pp. 802–813, 2002.

[8] Evgenia Smirni and Daniel A. Reed, “Workload character-
ization of input/output intensive parallel applications”, inin
Proceedings of the 9th International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation.
1997, pp. 169–180, Springer-Verlag.

[9] Tara M. Madhyastha and Daniel A. Reed, “Input/output ac-
cess pattern classification using hidden markov models”, inIn
Proceedings of the Fifth Workshop on Input/Output in Paral-
lel and Distributed Systems. 1997, pp. 57–67, ACM Press.


