
Controlling Task Granularity of Dynamic MPI Programs with threads

João Vicente Lima, Nicolas Maillard
Instituto de Informática – Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

{joao.lima, nicolas}@inf.ufrgs.br

Abstract

Granularity control is an important requirement on par-
allel programming performance. Regular problems can
archive this with suitable data distributions or map-
pings to processors, whereas on irregular problems the
imprecision about workload until execution difficult this ap-
proach. Irregular problems solve imprecision through a
recursive-like programming model like Divide and Con-
quer (D&C) but it depends of a tool that supports dynamic
task creation. Some tools like Cilk and KAAPI offer dy-
namism and granularity control, however both have little
usage in HPC. MPI, which is a standard in HPC, added dy-
namic process creation and multithreaded execution but
lacks of implementation issues. This work presents the ad-
vantages of task granularity control with threads in MPI dy-
namic programs. A mechanism (libSpawn) changes the
default process creation for tasks, and decides when cre-
ate processes or threads. Our experiments demonstrate
that libSpawn offers a good performance improvement
near to 85% with Cilksort, which is a sorting algo-
rithm based on D&C model.

1. Introduction

Granularity is an important requirement on parallel pro-
gramming performance. Regular problems can archive this
with suitable data distributions or mappings of task to pro-
cessors. Irregular problems, however, can not efficiently
control the load of each task because of irregular communi-
cation patterns and load imbalances. One way to solve this
uses a recursive-like programming model, as Divide and
Conquer (D&C) strategy. D&C consists on partitioning a
problem recursively into smaller sub-problems, until their
solution become trivial. A parallel D&C program needs a
tool which has support to dynamic task creation and syn-
chronization.

Tools that archive this approach offer dynamism and
granularity control through the concept of abstract task,
which can be a process or a thread. Cilk [2] and KAAPI [11]

provide granularity control at compile time or run-time, as
well as extend languages to provide task creation and syn-
chronization. Despite these features, both are either limited
to shared memory systems or little used in high performance
computing (HPC). MPI, which is a standard in HPC, added
dynamic process creation and multithreaded execution at its
second version [7].Yet, the standard lacks of implementa-
tion issues as task definition and management.

This paper presents the advantages in task granularity
control with threads on MPI dynamic programs. A mech-
anism named libSpawn changes default process creation
for tasks, and decides when create a process or a thread.
This mechanism spawns POSIX threads until a limit, which
means its granularity. After this limit, libSpawn creates
tasks as processes. We evaluate libSpawn against a sorting
algorithm based on D&C model named Cilksort, originally
implemented in Cilk. Our experiments demonstrate that the
mechanism offers a good performance improvement near
to 85%. The goals of libSpawn appear at task creation and
message passing cost reduction.

The remainder of this paper is structured as follows. In
section 2 we present the context on irregular and dynamic
problems, then section 3 discusses the state of the art on
tools for dynamic programming. In the next section, our
mechanism is detailed and section 5 shows the results ob-
tained. Finally, section 6 offers some concluding remarks
and plans for the future.

2. Dynamism and Parallel Irregular Applica-
tions

Irregular problems mean that the load of tasks is usu-
ally not known until execution time [6]. This imprecision
can be related between two main factors: computing plat-
form and algorithm behavior. An irregular computing plat-
form is an heterogeneous environment where shared re-
sources and hardware configurations influence program per-
formance. For example, Grid, NOW (Networks of Worksta-
tions), and clusters are computing platforms with heteroge-
neous resources and sometimes shared [9, 1, 3]. Parallel ap-
plications can address irregular platforms through load bal-



ancing or resource allocation on demand. These methods
depend of a programming tool which offers primitives to
express dynamism and synchronization among tasks.

Irregular algorithms present variations in its computa-
tional effort which may be input dependent or may involve
the computation itself [15]. The characteristics of which al-
gorithms involve:

• input data can be irregular, like sparse matrices;

• internal structure can be dynamically growing or
shrinking during runtime;

• locality of data dependencies.

The D&C programming model works with irregular data in-
puts. Moreover, a program implementation must depends of
a programming tool for dynamic task creation on demand.
Such dynamism comes from tasks created to resolve sub-
problems of the total problem in parallel. The programming
tools with dynamism are presented in the next section.

3. Tools for Dynamic Programming

The tools for dynamic programming can be specific to
SMP (Symmetric multiprocessor) architectures or clusters.
Cilk [2] is a C-based run-time system for SMP architectures
with 3 keywords to express parallelism and synchroniza-
tion. Cilk describes tasks as user threads which have asyn-
chronous execution and Work-Stealing scheduling. Data de-
pendencies and available processors are the granularity pa-
rameters to Cilk scheduler. The efficiency of Cilk appears
in other works [2, 10], but it lacks of a efficient implemen-
tation for distributed architectures.

KAAPI [11] is a programming tool to SMP and multi-
core clusters based on concept of global memory and data
dependencies among tasks. The language extends C++ with
2 keywords for express parallelism and synchronization.
KAAPI tasks are user level threads mapped to virtual pro-
cessors (VT’s), and the VT’s are kernel threads assigned to
processors available for execution. Its scheduler follows the
Work-Stealing method as Cilk and its granularity depends
on idle VT’s and data dependencies. KAAPI reaches effi-
cient and stable results [11, 5], however its programming
effort does not appear on previous works.

MPI (Message-Passing Interface) [7] is a recognized
standard for HPC programming in distributed memory en-
vironments. The MPI-2 version added new features like
dynamic process creation and multithreaded programming.
Its task creation is specified as asynchronous and collec-
tive in cases of two or more processes. Whereas, MPI lacks
of implementation issues about task creation and manage-
ment. Other recent works proposed improvements on dy-
namic programs for load balancing like a scheduler mod-
ule [4] and an Hierarchical Work-Stealing scheduler algo-
rithm [13].

The description of multithreaded MPI programs offers a
new level of parallelism on shared memory systems, mainly
on SMP multicore architectures. An user program must call
MPI Thread init to indicate the level of thread support
desired, and the MPI implementation will return the level
it supports. The standard specifies four levels of thread-
safety and the MPI THREAD MULTIPLE level means that
when multiple threads make MPI calls concurrently, the
outcome will be as if the calls executed sequentially in any
order. Also, MPI says that is user responsibility to prevent
races when threads within the same program post conflict-
ing communication calls. Some researchers have been stud-
ied thread-safety issues [12, 16] on MPI implementations.

4. libSpawn: Controlling Task Granular-
ity with threads on MPI

Granularity represents an important requirement to good
performance results in parallel programs. Besides, this re-
quirement is relevant to irregular problems because of data
dependencies and task creation costs [8]. On MPI-2 con-
text, granularity can be controlled through creating tasks as
threads or processes. This approach offers significant reduc-
tions on task creation and communication. Thus, this paper
evaluates benefits in controlling granularity using threads in
dynamic MPI programs.

libSpawn overloads 10 MPI calls which act on task cre-
ation and communication. This mechanism lets a process
create some threads until a limit defined at compilation
time. The begin of process creation happens when this limit
is reached. As well as task creation, libSpawn handles mes-
sage communications among threads because MPI does not
identify threads within a communicator.

4.1. Granularity Control

The procedure MPI Comm spawn contains the mecha-
nism of granularity control where two tests decide between
create a thread or a process. The first matches the command
name against the program name on execution, and if them
are different a new process will be spawn. In the next test,
if the number of execution threads is greater than the limit
established a process will be spawn. Otherwise, a POSIX
thread will be created.

A compile time macro MAX THREADS defines the thread
limit of a process. This is tested on MPI Comm spawn pro-
cedure with a global variable which counts the number of
execution threads in a process.

4.2. Message-Passing between threads

libSpawn controls message passing between threads
through MPI Send and MPI Recv calls. Two lists of



send and receive messages maintain requests to be fin-
ished with mutual exclusion that prevents race condi-
tions.

Requests also carry information that can be used to dis-
tinguish messages. This information consist of a fixed num-
ber of fields named message envelope, as MPI standard
defines[7]. These fields are:

• source - message sender

• destination - message destination

• tag - identifier of message

• communicator - communicator used

The library creates a thread on its initialization to find
and complete matching requests on each MPI Send and
MPI Recv call. This thread searches for requests according
to message envelope and completes them through a memory
copy operation. The completion thread also signals threads
involved in the communication, so they can execute again.

5. Results

5.1. Parallel Sorting with Cilksort

Cilksort is a parallel sorting algorithm that follows the
D&C programming model [10]. This algorithm divides an
input recursively in 4 parts and spawns tasks to sort in par-
allel. When tasks reach a limit of elements, a sequential sort
is applied. The merge phase performs union of sorted parts
in parallel like sorting but divides its input in 2 parts.

The MPI version of Cilksort does sorting in same way
but limits the synchronization phase. The D&C model per-
mits restrict communications between created tasks (child
tasks) and its parent (parent task) [14]. Consequently, MPI
sorting has two synchronizations: input send to child tasks
and return result to parent. Sending input has two commu-
nication calls that send input size and elements respectively.
At return result, child tasks send the sorted parts to parent
with one communication per child.

Furthermore, Cilk parallelism is MIMD (Multiple In-
struction Multiple Data) while MPI is MPMD (Multiple
Programs Multiple Data). So, Cilksort in MPI is composed
of 3 programs: cilksort-start, cilksort-sort and cilksort-
merge. cilksort-start reads input elements from a file and
begins the algorithm spawning cilksort-sort. cilksort-sort
and cilksort-merge contains sort and merge functions, as
well as synchronization operations. The sequential sorting
begins with 2.048 elements in each case. The correspon-
dent algorithms are quicksort for sort phrase and mergesort
for merge phrase.

5.2. Performance Evaluation in Function of Gran-
ularity

Figure 1 shows Cilksort results and granularity configu-
rations using libSpawn. We evaluated 3 inputs of 3 million
elements in random order, hence generating 13.313 tasks.
All tests are done on 10 nodes of Grid5000 with 2 Dual
Core processors and Gigabit Ethernet network. Each mea-
sure is a mean of 20 executions.

 0

 20

 40

 60

 80

 100

 120

 140

Random(1) Random(2) Random(3)

tim
e 

(s
ec

.)

Threads per process with 3 million elements

Granularity
without

1
2
4
8

12
16
20
40
60
80

100
120
140

Figure 1. Results obtained from Cilksort with
3 million elements

The configuration with 1 thread shows the worst case
because of library costs on creating tasks as processes.
Whereas, 2 threads configuration already shows a signifi-
cant gain of 37%, while a granularity of 100 threads repre-
sents the best time around 85% of gain. This performance
improvement has archived from cost reduction on task cre-
ation and communication. A characteristic of D&C algo-
rithm contributes to our gains since the first tasks transfer
bigger messages on sending inputs and returning results.

Measures for 1, 4, and 20 threads evidence cost man-
agement of libSpawn when process creation increases, even
though last two cases bring some cost reduction. The 2
threads configuration leads to process creation on sorting
phase, since program wants create 4 tasks which is greater
than the granularity limit. In that configuration, merge phase
spawns threads and processes improving performance gain.
A granularity of 4 threads leads sorting phase spawns 4
tasks as threads on first recursive call, however on next call
the tasks will be processes. Thus, a increase in process cre-
ation reduce libSpawn efficiency. Also, the figure shows
other characteristic which is a overhead when granularity
increases. Results obtained beyond 80 threads are equal or
greater than previous because of substantial memory con-
tention.



Measures considered worst case when elements are in
decreasing order, and best case when elements are in in-
creasing order. These inputs generated 7.154 tasks and re-
sults were similar as presented about random elements,
which the lower time was 14, 28 sec. with standard devi-
ation of 1, 18.

6. Conclusion

The imprecision about workload until execution time
characterizes irregular problems, which are related to a het-
erogeneous platform or irregular algorithm. Implementa-
tions of these problems archive this imprecision through
task creation on demand, or dynamically, that difficult a
appropriate granularity control. A tool which supports this
control and dynamic task creation is essential to efficient
implementations.

Tools like Cilk and KAAPI offer dynamism, but your
limitations difficult its usage in HPC. MPI, which is a
standard in HPC, has dynamic process creation and mul-
tithreaded support on MPI-2 version but it lacks on task im-
plementation issues. This article has presented the advan-
tages on granularity control with threads in MPI dynamic
programs, through a mechanism named libSpawn that de-
cides when create threads or processes. Its implementation
allows a process spawns many threads per process.

Our evaluation used Cilksort algorithm that is based on
D&C programming model. Measures show significant gains
about 85% against results without the mechanism, thanks to
task creation and communication optimizations. Also, the
library overhead influenced fine-grain configurations where
granularity is greater than 100 threads.

Future work on libSpawn is archive more MPI pro-
cedures like non-blocking and collective communications.
Furthermore, we intend improve our mechanism through
granularity decisions based on load measures at runtime.

References

[1] M. A. Bender and M. O. Rabin. Online Scheduling of Paral-
lel Programs on Heterogeneous Systems with Applications
to Cilk. Theory of Computing Systems Special Issue on
SPAA00, 35:289–304, 2002.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiser-
son, K. H. Randall, and Y. Zhou. Cilk: An Efficient Multi-
threaded Runtime System. In PPOPP ’95: Proceedings of
the fifth ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming, pages 207–216, New York,
NY, USA, July 1995. ACM Press.

[3] N. Capit, G. D. Costa, Y. Georgiou, G. Huard, C. Martin,
G. Mounié, P. Neyron, and O. Richard. A batch scheduler
with high level components. In Cluster computing and Grid
2005 (CCGrid05), 2005.

[4] M. C. Cera, G. P. Pezzi, E. N. Mathias, N. Maillard, and
P. O. A. Navaux. Improving the Dynamic Creation of Pro-
cesses in MPI-2. Lecture Notes in Computer Science - 13h
European PVM/MPI Users Group Meeting, 4192/2006:247–
255, Sept. 2006.

[5] V. Danjean, R. Gillard, S. Guelton, J.-L. Roch, and T. Roche.
Adaptive Loops with Kaapi on Multicore and Grid: Applica-
tions in Symmetric Cryptography. In PASCO ’07: Proceed-
ings of the 2007 international workshop on Parallel sym-
bolic computation, pages 33–42, New York, NY, USA, 2007.
ACM.

[6] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Tor-
czon, and A. White, editors. Sourcebook of Paralllel Com-
puting. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

[7] M. P. I. Forum. MPI-2: Extensions to the Message-Passing
Interface. Technical Report CDA-9115428, University of
Tennessee, Knoxville, Tennessee, July 1997.

[8] I. Foster. Designing and Building Paralllel Programs.
Addison-Wesley, 1995.

[9] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Inter-
national Journal of High Performance Computing Applica-
tions, 15(3):200–222, 2001.

[10] M. Frigo, C. E. Leiserson, and K. H. Randall. The Imple-
mentation of the Cilk-5 Multithreaded language. In Pro-
ceedings of the ACM SIGPLAN ’98 Conference on Program-
ming Language Design and Implementation, pages 212–223,
Montreal, Quebec, Canada, jun 1998.

[11] T. Gautier, X. Besseron, and L. Pigeon. KAAPI: A thread
scheduling runtime system for data flow computations on
cluster of multi-processors. In PASCO ’07: Proceedings of
the 2007 international workshop on Parallel symbolic com-
putation. ACM, 2007.

[12] W. Gropp and R. Thakur. Thread-safety in an MPI imple-
mentation: Requirements and analysis. Parallel Computing,
33(9):595–604, Sept. 2007.

[13] G. P. Pezzi, M. C. Cera, E. Mathias, N. Maillard, and P. O. A.
Navaux. On-line Scheduling of MPI-2 Programs with Hi-
erarchical Work Stealing. SBAC-PAD 2007: 19th Interna-
tional Symposium on Computer Architecture and High Per-
formance Computing, 2007., pages 247–254, 2007.

[14] G. P. Pezzi, M. C. Cera, E. N. Mathias, N. Maillard, and
P. O. A. Navaux. Escalonamento Dinâmico de programas
MPI-2 utilizando Divisão e Conquista. WSCAD’06 - Work-
shop em Sistemas Computacionais de Alto Desempenho,
7:71–78, 2006.

[15] G. Rünger. Parallel Programming Models for Irregular Algo-
rithms. Lecture Notes in Computational Science and Engi-
neering - Parallel Algorithms and Cluster Computing, 52:3–
23, 2006.

[16] R. Thakur and W. Gropp. Test Suite for Evaluat-
ing Performance of MPI Implementations That Support
MPI THREAD MULTIPLE. Lecture Notes in Computer
Science - 14h European PVM/MPI Users Group Meeting,
4757:46–55, Sept. 2007.


