
Interleaved Multithreading on a MIPS Processor

Felipe Madruga, Philippe Olivier Alexandre Navaux
Universidade Federal do Rio Grande do Sul

Instituto de Informatica
Caixa Postal 15.064 91.501-970 Porto Alegre RS Brazil

flmadruga,navaux@inf.ufrgs.br

Abstract

The work exposed here intend to discuss the imple-
mentation of Interleaved Multithreading on the miniMIPS
pipeline. We interleave instructions from two threads in a
way that there is no need to predict branches neither flush
the pipeline. The IMT technique was applied on a MIPS-I
soft core called miniMIPS. Along the paper, we show prac-
tical issues and talk about performance and occupation in
a FPGA synthesis of the modified core.

1. Introduction

The increased frequency of processors together with
the extraction of Instruction Level Parallelism (ILP) have
brought problems. Among these problems, we can cite the
severe penalty for branch missprediction and complexity
of the pipelines. Moreover, the speed in accessing memory
have not followed the advance in speed of execution of in-
structions, causing the penalty for a cache miss to be of sev-
eral cycles. These factors make the processor stay stalled in
up to 75% of cycles [3]. To keep the processor busy with
events of great latency, as cited above, were created tech-
niques called hardware multithreading[8].

To illustrate the theme and develop properly, this docu-
ment deals with the modification of the internal organiza-
tion of MiniMIPS processor so that it has the functional-
ity of explicit Multithreading interleaving the execution of
two threads, to remove the parts of the organization respon-
sible for treatment of dependencies.

This interleaving means that the treatment of data and
control dependencies can be eliminated, since the execution
of a thread does not execute in contiguous stages within the
pipe. Here, we talk about the elimination of the treatment of
dependencies and insertion of another thread in the pipeline
with IMT, considering performance and area.

Experiments were made by modificating the hardware
description of the processor and using specialized tools.

Throughout the text this work is examinated. It is impor-
tant to emphasize that this approach inted to increase the
throughput, not the execution time of a single task. Our ob-
jective is to analyze the impact of the IMT technique in the
core.

The organization of this document is as described below.
In section 2 some arguments about the context of this work
are given, in section 3, we discuss the proposed changes
in the organization of miniMIPS processor and, finally, are
made closing comments in the last section.

2. Motivation

2.1. Interleaved Multithreading

Basically, the hardware multithreading is based on main-
taining more than one context in the processors registers, so
that the instructions of a context execute when there is hard-
ware available to do so. Interleaved Multithreading (IMT),
Blocked Multithreading (BMT) and Simultaneous Multi-
threading (SMT) are categories that the majority of the im-
plementations fits, as can be seen in the classification of Fig-
ure 1[8]. In BMT, the switching between contexts is caused
by high-latency events or explicitly. The SMT is applied us-
ing different execution units for different threads, and its
use is more appropriate in superescalar processors. In IMT
[2], one instruction of each thread is fetched from mem-
ory at a cycle, which means that the instructions are inter-
leaved along the pipeline.

Some studies [5][7] show that the IMT technique can
bring benefits to the design of processors. The IMT, also
called multi-fine grain, is one in which, in each cycle in-
structions of a thread are fetchched.

In Figure 2[8], are shown the exchange of context in
different models of hardware in multithreading processor
with one execution unit. In (a), is shown a processor with a
thread, performing a high-latency event and inserting bub-
bles in the pipeline. In (b) is shown the IMT, and (c), is il-
lustrated the BMT.



Figure 1. Hardware Multithreading Taxonomy.

Given that the IMT eliminates dependencies of control
and data in the pipeline, the pipeline hazards should not ap-
pear and the processor can be more easily constructed, with-
out the need for complex ways of forwarding or branch pre-
dictions.

The technique has been implemented in the IMT Denel-
cor Heterogeneous Processor Element (HEP) [6], and the
Niagara processor [3]. However, the best example of imple-
mentation is the network processor LEXRA LX4580 [1].

The HEP processor is designed to have up to sixteen pro-
cessors with a maximum 128 threads per processor. There
were a large number of registers dynamically allocated and
managed so that the threads share them.

Figure 2. Multithreading on Singlescalar Pro-
cessors.

The network processor LX4580 implements the instruc-
tion set of the MIPS32 to complete the processing in soft-
ware for IP packets. It has seven stages of pipeline and four
threads, whose instructions are fetched in a circular order. In
this processor, the IMT benefits a better use of the pipeline,
removing the bubbles that are normally included in branch

misspredictions, with conditional branches and stalls be-
cause of memory access.

2.2. The miniMIPS Processor

The MiniMIPS [4] is a processor described in VHDL
that implements fifty-one instructions of the MIPS-I stan-
dard, and its code is freely distributed under Gnu Public Li-
cense. Hence, it has a well known organization and it is rea-
sonably well documented.

The internal structure of the miniMIPS processor is
shown in Figure 3. The top entity of the processor is com-
posed of the following entities.

• renvoi: takes care of data dependency, decides some
control signals and does operand bypassing (BYP);

• syscop: operates on the co-processor calls, interrup-
tions and exceptions;

• predict: it is responsible for the branch predic-
tion, monitorates some control signals of each
pipeline stage and flushes the pipe on a misspredic-
tion (BRP);

• banc: Register Bank (BCR);

• pf: PC Calculation (PF);

• ei: Instruction Fetch Stage (EI);

• di: Decoding Stage (DI);

• ex: Instruction Execution (EX);

• mem: Pipeline stage where some instruction access
the memory (MEM);

• bus ctrl: handles the interface with the memory.

Figure 3. miniMIPS Organization.

The miniMIPS pipeline is composed of the following
five stages.

• Address Calculation (PF);

• Instruction Extraction (EI);

• Instruction Decoding (DI);

• Execution (EX);

• Memory Access (MEM).



3. Changes Made

The solution proposed here and analyzed using IMT
aimed to eliminate the bubbles created by data and control
dependencies in the pipeline, not by cycles lost due to ac-
cess to memory. Doing this, one can simplify the pipeline
and keep it busy and without the need to clean it in con-
flict situations.

In its original version, the miniMIPS pipeline works as
table 1. There a instruction flow without branches, called A,
is exposed. Where there is a conditional branch, it will only
be resolved in the fourth stage, which leaves the three fol-
lowing instructions depending on the result of the branch.
To address this problem, you can: rearrange the instructions
(which would be hard, because there are too many branches
in a typical program); insert bubbles in the pipeline or use a
predictor of branches.

Ciclos PF EI DI EX MEM
1 A1
2 A2 A1
3 A3 A2 A1
4 A4 A3 A2 A1
5 A5 A4 A3 A2 A1

Table 1. miniMIPS Pipeline

Designers of miniMIPS solved the problem using a pre-
dictor based on a branch history table. A misspredict causes
the loss of three instructions that are already in the pipeline.
Table 2 shows the example of a branch that has been taken
and, in the execution stage (EX), it is discovered that it
should not have been taken.

Ciclos PF EI DI EX MEM
1 A1
2 A58 A1
3 A59 A58 A1
4 A60 A59 A58 A1
5 A2 CLEAR CLEAR CLEAR A1

Table 2. Missprediction on The miniMIPS

The implementation of IMT in the pipeline makes con-
trol dependence be of only one instruction (as explained in
Table 3, with two threads: A and B). In the same way as
in the processor LX4580, we withdraw the branch predictor
from the project, considering a branch delay slot. To illus-
trate this, table 3 is showed. Assuming that the instruction
A1 is a conditional branch, the instruction A2 is fetched be-
fore A1 reach the forth stage (this explains the branch de-

lay slot), however A3 is fetched after A1 pass through the
forth stage. Given this, A3 will always be the right instruc-
tion to fetch. Thus, we can eliminate the branch predictor.

Ciclos PF EI DI EX MEM
1 A1
2 B1 A1
3 A2 B1 A1
4 B2 A2 B1 A1
5 A3 B2 A2 B1 A1

Table 3. miniMIPS Pipeline with IMT

To make the execution of two independent threads pos-
sible, it is necessary to provide basically more one program
counter (PC) and one register bank. The chosen way to do
so was to double the entities pf and Banc cited in the previ-
ous section and add a selection logic in their buses.

The solution used to synchronize the stages so that do
not cause inconsistencies was make a bit counter that se-
lects the duplicated entities. Were associated multiplexers
and demultiplexers to the PC and register bank, these be-
ing selected by the earlier cited bit counter.

With the changes described above, the organization of
miniMIPS (shown in Figure 3) becames as the way illus-
trated in Figure 4.

Figure 4. miniMIPS with IMT.

The following considerations are made about the impact
of changes made. It is also made a performance analysis of
applications in this new structure.

3.1. Area Occupation Impact

The increase in area tends to be considerable, because it
was doubled a component that occupies much of the proces-
sor, the register bank. The synthesis of the bank registes re-
sulted in 992 Flip-Flops, about half of Flip-Flops of the im-
plementation of the original miniMIPS. Nevertheless, the
increase was mad mainly by the register set, what indicates
that in larger processors will make a smaller increase, pro-
portionately.



Table 4, consider the area occupied by the original pro-
cessor and with IMT. Also, in the last column, it is showed
the percentage increase in the corresponding matter. The
data generated were obtained using the Xilinx ISE 10.1 tool.
It was considered the implementation in a FPGA XC2V100
from the Virtex2 family.

Without IMT With IMT Increase
Slices 2578 2997 15.5%

Flip-Flops 1919 2712 41.3%
4-LUTs 4865 5322 9.4%

Max-Freq 64.309MHz 62.418MHz -3.0%

Table 4. Comparison on a FPGA Synthesis

3.2. Performance Impact

The execution time of a unique thread is not the target of
the inclusion of IMT in the pipeline miniMIPS. The idea is
to increase the troughtput (number of tasks completed over
time).

In the original miniMIPS, the execution time is linked to
the number of cycles per instruction (CPI). The CPI, in turn,
due to the branch predictor, depends on the accuracy of fore-
casts and the number of branches of the program. The CPI
is related to the jumps and predictor as follows

CPI = (pp ∗ pb) + (1− pb) + pb ∗ (1− pp) ∗ 4

where, pb is the percentage of jumps in the program and pp
is the percentage of correct predictor of violations. For ex-
ample, if a program has 20% of branches and hits 70% of
predictions we have CPI = 1.18. But in the case with IMT,
the CPI is equal to 1 for the two threads. But a sequential
program is equal to the CPI 2. Let’s look at three exam-
ples to verify the performance of the processor miniMIPS
with IMT.

The first example is two completely independent appli-
cations that need to be executed. Each of them will take
twice the time to be executed, however, when one end the
other ends as well. It occurs in the same way as if the two
were executed one by one in a processor with CPI equal to
one, not counting the cost of exchanging context that with
IMT is nil.

In the second example, let’s consider an application that
can be tottaly parallelized, as a matrix multiplication. The
task would be fully completed with CPI equal to one.

Consider now two independent applications in the pres-
ence of an operating system that should treat them so that
the two perform at the same time in a processor without
IMT. There will be all the overhead of an context switch,

clock interruption treatment (in case of an operating sys-
tem with preemption), such as the shorter the implementa-
tion of each task, more switching, therefore more overhead.
With IMT that overhead can be considerably reduced, due
to the context switch with no cost.

4. Conclusions

Analyzing the results, we see that the increase in area
tends to be acceptable, however, it is possible that an imple-
mentation with two processors whole miniMIPS can take
better advantage of applications that are not parallel or re-
quire a better performance in terms of execution time, but
this obviously occupy more area. Besides, it is important to
say that the critical path was not affected by the modifica-
tion.

The elimination of a branch predictor is a desirable thing
because the execution time of a program would not de-
pend this factor. In [1], it is shown that branch predictors
can have very poor performance when operating in certain
workloads.

As future work, would be possible to analyse the
feasability on a situation with a memory hierarchy and oc-
cupation of cycles in which the processor waiting for
data from a high-latency access memory. Another possi-
ble improvement is considering sharing some of the regis-
ters, in an attempt to reduce the area occupied. Moreover,
tests on the power consumption and a more comprehen-
sive validation is shown necessary.

References

[1] H. P. K. Gelinas, B. Finegrained hardware multi-threading: A
cpu architecture for high-touch packed processing. lexra inc.,
waltham, ma. white paper. 2002.

[2] M. H. J. Laudon, A. Gupta. Interleaving: A multithreading
technique targeting multiprocessors and workstations. Proc.
of the Sixth ASPLOS-VI. 1994.

[3] A. K. O. K. Kongetira, P. Niagara: 32-way multithreaded
sparc processor. IEEE Comput. Soc. 2005.

[4] L. M. O. S. S. Hangout, S. Jan. The
minimips project. available online at
http://www.opencores.org/projects.cgi/web/minimips/overview
2005.

[5] J. L. S. Kapil, H. McGhan. A chip multithreaded processor
for network-facing workloads. IEEE Micro. 2004.

[6] B. J. Smith. Architecture and applications of the hep multi-
processor computer system. SPIE. 1981.

[7] B. H. H. J. Stephan Suijkerbuijk. Implementing hardware
multithreading in a vliw architecture. International Confer-
ence on Parallel and Distributed Computing Systems. 2005.

[8] J. S. Theo Ungerer, Borut Robic. A survey of processors with
explicit multithreading. ACM Computing Surveys. 2003.


