
Increasing NP-Complete Branch & Bound Parallel Algorithms’ Performance in
MPI 1.2 with Randomized Work Stealing

Stéfano Mór, Nicolas Maillard
Universidade Federal do Rio Grande do Sul

Instituto de Informática
Grupo de Processamento Paralelo e Distribuı́do

Av. Bento Goncalves, 9500
{sdkmor, nicolas}@inf.ufrgs.br

Abstract

This paper studies the application of the Randomized
Work Stealing Algorithm into the parallel message-passing
work balancing of a branch & bound NP-Complete solver
algorithm. Randomized Work Stealing is a classical and
efficient algorithm for multithreaded computations sched-
ulers’ management.

Brief theoretical analysis and practical results are taken.
For this, we rely on MPI-1.2 and an implementation of the
Parallel Tree Search method for the parallelization of algo-
rithms (based on backtrack or branch & bound) applied for
the well-known Knapsack problem.

Our main contribution is the proposal of a computing
model that preserves some of the main Randomized Work
Stealing known properties at a strict MIMD parallel load
balancing context rather than the original multithreaded
scheduler one, thus improving the former’s performance. At
the end, we show that nearly 80 percent of performance can
be gained for this specific problem without loss of linear
memory usage and almost linear speedup, even at an ho-
mogeneous processor environment.

1. Introduction

Since 1996, MPI (Message-Passing Interface) is the de
facto standard on message-passing parallel computation [3].
One of the main factors behind MPI’s success is its great
flexibility, having few constraints about how a program
should exchange its data and how well this data should
be distributed over multiple processors. Since parallel (spe-
cially MIMD) large-scale computing has assumed a big role
on execution of NP-Complete problems, efficient on-line
workload management on MPI became central in this type
of execution. This work centers on achieving this efficient
workload scheduling by adaptating the Randomized Work
Stealing Algorithm (RWSA), designed originally for dis-
tributed thread scheduling, to a MPI-1.2 context.

RWSA was first seen in [1]. It is a high-level algo-
rithm for scheduling multithreaded computations at an ho-
mogeneous processor environment. It is basically a dis-
tributed algorithm, where each ready, threadless proces-
sor prompts (steals) another randomly-chosen processor for
work (a thread). It achieves a provable optimal performance.
While most work at on-line workload scheduling is nor-
mally highlighted on heterogeneous processors, here we are
interested at the gain of performance that the RWSA pro-
vides on homogeneous processors environments, like most
clusters; even though less workload disbalance occurs, a
great amount of heavy (NP-Complete) problems may over-
charge each occurrence. In this article, we show that an
adapted RWSA provides a good and light solution to this
kind of disbalance.

Parallel Tree Search (PTS) is a model –structured
in MPI prototypes– for parallelizing tree-like progres-
sion algorithms, i.e., algorithms based on branch &
bound/backtrack. It was proposed on the end of [5] and
is designed for dynamically correcting the natural disbal-
ance introduced by the master-slave (MS) classical ap-
proach, where some processors quickly branch short
subtrees and stop computation even if the other proces-
sors are still branching the longest ones. This problem, as
one may notice, occurs even on the presence of an homo-
geneous set o processors. PTS fills perfectly for our pour-
pose, since it may handle huge disbalance of workload
at runtime even on an homogeneous processor environ-
ment.

Our target application is a branch & bound solution for
the Unlimited Knapsack Problem [4], which definition is as
follows:

Definition 1.1 (Unlimited Knapsack Problem). Let n be
the total number of item types (n ∈ N). Each xi ∈
X = {x1, . . . , xn} (X ⊂ N) means the number of items
of type i, where each type has associated a value vi ∈
V = {v1, . . . , vn} (V ⊂ R+) and weight wi ∈ W =
{w1, . . . , wn} (W ⊂ R+). Maximun Knapsack supported
weight is C ∈ R+. The Unlimited Knapsack Problem is,

then,

to maximize
n∑

i=1

(xi × vi)

subject to

(
n∑

i=1

(xi × wi)

)
≤ C

Next section shows an branch & bound algorithm for
solving knapsack and how to parallelize it with PTS.

2. The PTS B&B Knapsack Solution

The worst-case complexity of a Knapsack Prob-
lem branch & bound solver algorithm (henceforward re-
ferred as KBB) is

Cp[KBB](n) ∈ O
((

C

MIN (W)

)n)
We are trying to reduce this exponential execution time by
introducing paralelism. PST applies when we name a job
(or work) a root node of a subtree given by an index on X
as on Definition 1.1. It is important to notice that for our
B&B Knapsack solution one must guarantee that for the 3-
uple input (V,W,C), if i ≤ j then vi/wi ≤ vj/wj (i.e., it is
sorted by density); this work is not taken into account here.

On PST, all processors have a work list (some container
–e.g., a queue– with a list of independent data to be pro-
cessed, potentially out-of-order) and will act as follows:

1. One chosen processor receives the root of the tree
and generate a number of δ tree nodes, possibly us-
ing width-first search. It then scatters the node above
all other processors and each other processor does a
depth-first search on it.

2. Local depth-first search continues until all processor’s
subtree is exhausted or a limit is reached.

3. Whenever a job is completed, it services any requests it
has received for work either with a split from its queue
or a message of no remaining work.

4. Whenever its queue is empty, a processor requests for
more work from another processor, receiving more
work or a message of no remaining work.

The computation ends when all processors have its work
list empty (so prompting another processor will not work)
and, in some way, synchronize themselves on the final out-
put.

Actually, we have performed a slight alteration on PTS;
it originally references MPI processes not processors. How-
ever, MPI process notion is not accurate (some implemen-
tations are over an UNIX process, some are over a set of
Windows processes) and since our initial approach is the-
oretical, we may use an unbounded number of processors
and thus allocate one processor per MPI process.

Some major blanks are placed on PTS definitions, mak-
ing it more generic; e.g., there is no clear indication of
which other processor pj a processor pi must ask for work.

Synchronization for ending computation and the type of
container are also very abstract and, thus, does not allow
much consideration on the impact of the adopted solution
on some algorithm’s complexity. Work granularity is also
undiscussed.

We propose to fulfill this uncleared aspects with concepts
and structures extracted from the multithreaded computa-
tion scheduler RWSA; mapping it to PTS context and prov-
ing some properties of it must provide a robust paradigm in
both theoretical and practical levels. Our test-platform will
be an MPI implantation of a PTS version KBB integrated
with RWSA. Next section will handle RWSA.

2.1. Mapping Randomized Work Stealing Algo-
rithm into PTS

RWSA acts on the context of a multithreaded computa-
tion; having one program that unfolds upon many threads
(more threads than processors), this threads are allocated
on-line by RWSA in order to provide optimal processor use.
Results are only available after execution, since it operates
at runtime.

Each processor has a deque and, whenever this deque is
empty, it steals thereads for another randomly chosen pro-
cessor. Please, see [2] for further details.

It has been proven that RWSA has an expected execution
time of T1/P +O(T∞) on a fully strict computation, where
T1 is execution time with one processor, P is the number of
processors and T∞ (critical path lenght) is the minimum ex-
ecution time with an unbounded number of processors. Sim-
ilarly, the space required for computation is O(S1P) where
S1 is the minimum serial space requirement and any comm-
nication latency is proportional just to the number of mes-
sages and not to any singular snapshot constraint.

We expect to maintain some of this properties by map-
ping RWSA in PTS, obtaining an optimal PTS version
as follows. That is done in two ways: structural map-
ping (where PTS data structures are mapped into RWSA
DAG) and algorithm-step mapping (where algorithm-
specific steps of RWSA are mapped into the PTS ones).

Structural mapping is made this way:

PTS RWSA Method
container deque As main container of PTS we

use RWSA’s deque (double
ended queue) concept.

work/job thread We push jobs to the deque.
job/work
unfold
step

task Each step of the node un-
fold on PTS is a task at
RWSA, since it is sequential
and dependent from the pre-
vious one.

subtree
space

activation
frame

total space of a job is equal to
the memory spent on holding
root node’s subtree.

Algorithm-step mapping is quite more complex:

1. Thread spawning on RWSA is only made at the be-
ginning, being root’s initial input decomposing on PTS

KBB. In this case, there are no dependency edges, since
no job depends on its predecessor. It is clearly fully
strict, by lack of counter-example.

2. Thread stalling on RWSA does not have a mapping on
PTS, since no subtree unfolding blocks.

3. Thread death on RWSA is a complete branch unfold
on PTS. Like RWSA, next job is taken from bottom-
most position of the tree. Whether there are no jobs on
the ready deque, it steals the topmost job from a deque
of a randomly chosen process.

4. Thread enabling on RWSA does not have a mapping
on PTS since a stall does not have it too.

Supposing that all that was left remains like on original
RWSA (v.g., synchronized message attending), we may pro-
pose the following corollary, without presenting the proof:

Corollary 2.1 (PTS/RWSA Kept Properties). By the above
RWSA → PTS mapping, we maintain execution space at
O(S1P) and the expected delay on attending proportional
to the total number of messages M .

Although proof is omitted, it is easily traced by making
the fundamental observations that no proposed changes to
RWSA’s core to adapt it for PTS violates

1. the proof of space complexity S1P , which not depends
on stalling and enabling threads; or

2. the proof of delay time for receiving work proportional
only to the number M for exchanged messages, since
probability remains 1/P for each xir on Balls & Bins
game.

Next section will avail the benefits of both properties
holding, presenting some valuable practical results.

2.2. Results

We have runned PST KBB with MPI-1.2 for showing
practical results based on our previous observations. To our
next considerations, graphical data will be plotted. Our ex-
periments have been run on GPPD’s labtec cluster, with
LAM MPI and the following configurations:

• each configuration run for 30 times, with arithmetical
average taken only when standard deviation were less
than 0.01, what always happened before all the execu-
tions.

• 1000, 1500, 1800, 2000 and 2500 item types.

• 1 ≤ P ≤ 10.

First, Figure 1(a) confirms our assumption of linear
memory grown variating with n, showing physical evidence
of Corollary 2.1’s first part.

Corollary 2.1’s second part implies that the expected
message delay is proportional to M and does not vary with
n. Indeed, Figure 1(b) shows that message exchange is

(a) Memory growing linearly with n.

(b) Message exchange unpaired with n

Figure 1. Linear memory grownth and chaotic
communication behavior with n, as in Corol-
lary 2.1; PST on KBB scales well also be-
cause there is no space complexity adding.

pretty chaotical, relying more on tree shape, bound oper-
ations and the difference in performance from one proces-
sor to another (even on an homogeneous processor environ-
ment like labtec, difference in performances occur, since
memory hierarchy does not have linear behavior).

With Corollary 2.1 holding, we must ensure that PST
KBB still grants great performance gain. In Figure 2(a) we
show that our PST implementations can be until 80 percent
faster than an MS version for the same input; this master-
slave approach will have its resources’ loads unbalanced,
since all work is previously distributed and cannot be recu-
pered. We do not show PST RWSA against PST ad hoc be-
cause we have not found any ad hoc configuration for PST
that could clearly be more efficient than the former. Also,

(a) Execution time of PST KBB (×) against an MS KBB (|).

(b) Memory allocation for a single process of PST KBB (×) against an
MS KBB (|).

Figure 2. PST KBB vs. MS KBB : execution
time and memory allocation.

Figures 2(b) and 3 shows that memory consumption of PST
KBB is the same of MS KBB while it achieves perfor-
mance very close to linear speedup.

2.3. Conclusion & Future Work

Our approach for filling the blanks on original PTS
proved to achieve good results so far. By mapping concepts
of original RWSA we have also mapped some of its prop-
erties and showed that it really holds on a practical context.
However, this work lacks of theoretical basis for founda-
menting performace gain, since our mapping of RWSA is
not yet proven to maintain execution time at T1 + O(T∞)
and, so, we cannot rely on this single result to generalize it.
Our next steps are clearly directed to reach this proof, by

Figure 3. Very close to linear speedup
achieved with PST KBB.

proposing and testing new ways of mapping RWSA thread
context into a cluster context.

Our approach can be extended to an interesting subset of
theNP class. Since any problem ofNP could be automat-
ically converted to a Knapsack problem in polynomial time,
those problems with linear conversion time might prove ef-
ficiently resolved by our solution with very good perfor-
mance. Our work goes in that direction too.

References

[1] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. In Proceedings of the 35th An-
nual Symposium on Foundations of Computer Science. MIT
Laboratory for Computer Science, 1994.

[2] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. Journal of ACM, 46(5):720–
748, September 1999.

[3] W. Gropp, E. Lusk, and A. Skjellum. Using MPI - Portable
Parallel Programming with Message-Passing Interface. Sci-
entific and Engineering Computation Series. The MIT Press,
Massachusetts Institue of Technology - Cambridge, Mas-
sachusetts 02142, 2 edition, 1999.

[4] H. Keller, U. Pferschy, and D. Pisinger. Knapsack Problems.
Springer, 2005.

[5] P. S. Pacheco. Paralell Programming With MPI. Morgan
Kaufmann Publishers, 1 edition, 1997.

