
Analyzing the Frequency of Processes
Migration Calls on BSP Application Execution∗

Rodrigo da Rosa Righi, Laércio Pilla, Alexandre Carissimi, Philippe O. A. Navaux
Institute of Informatics - Federal University of Rio Grande do Sul - Porto Alegre, Brazil

{rodrigo.righi, llpilla, asc, navaux}@inf.ufrgs.br

Abstract
This paper presents an analysis regarding the impact of

the frequency of calls for processes migration on a spe-
cific BSP application execution. For that, we are using our
model of processes rescheduling that combines three met-
rics - Memory, Computation and Communication - in order
to measure the potential of migration of each BSP process.

1. Introduction
The use of dynamic resources and irregular applica-

tions are more and more present in distributed computing.
In these situations, the initial mapping of processes to re-
sources may not remain efficient during application run-
time. This occurs because both computing and network re-
sources can suffer modifications in their states. In addi-
tion, the amount of processing as well as network interac-
tion among the processes can vary in application execution.
Concerning this, processes rescheduling (migration) to new
processors becomes relevant in order to improve resources
usage and minimize the waiting time for results[1, 4].

In this context, this paper describes aprocesses
rescheduling model[5] that acts overBSP (Bulk Syn-
chronous Parallelism)[2] applications. Besides compu-
tation and communication phases of a BSP superstep,
our model observes migration operation costs and mem-
ory to decide transferring viability of a process. In addition,
this paper presents some experimental results, emphasiz-
ing the impact of the frequency for processes relocation in
the application execution time as a whole.

2. BSP Processes Rescheduling Model
Our BSP Processes Rescheduling Model is presented in

details in [5]. Here, we will explain its main ideas, as well
as the issues that it addresses in processes migration. Pro-
cesses relocation is made using dynamic process reschedul-
ing, where data is captured during application runtime. Fig-
ure 1 (a) shows a superstepk of a application in which

∗ This work is partially supported by Capes. Process: 1476/08-4

the load (processes) is not balanced among the resources.
The idea of our processes rescheduling model is to reduce
each superstep time. Figure 1 (b) shows the expected re-
sult with processes redistribution at the end of superstepk,
which will influence the execution of the next supersteps,
(includingk+1 and so on). The target architecture is hetero-
geneous and composed by clusters, supercomputers and lo-
cal networks. The model requires that the involved nodes
must have all-to-all connections. The heterogeneous issue
considers the processors’ capacity (all processors have the
same machine architecture), as well as network speed and
level (Fast and Gigabit Ethernet and multi-clusters environ-
ment, for instance). This architecture is assembled with the
notion of hierarchy, with abstractions of Sets (division by
sites) and Set Managers. Set Managers are responsible for
scheduling, capturing data of a specific Set and exchang-
ing it among other managers.

BSP Processes

BSP Processes

Global

Communication

Local

Computation

Barrier

(a) Superstep k: Processes are not balanced among the resources

(b) Superstep > k: Situation after applying the load rebalancing model

Time

Local

Computation

Barrier

Global

Communication

Figure 1: Supersteps in different situations

The final result of the model is a mathematical formalism
that answers the following issues regarding processes mi-
gration: (i) “When” to launch the processes migration; (ii)
“Which” processes are candidates for migration and; (iii)
“Where” to put an elected process from the candidates ones.

The decision for processes remapping is taken at the end
of a BSP superstep (after barrier and before the next super-
step). This migration point was chosen because in this mo-
ment it is possible to analyze data from all BSP processes
at their computation and communication phases. Aiming to
generate the least intrusiveness in application as possible,
it is used a variable calledα. It informs the interval of su-
persteps for the next processes rescheduling call. Up to the
next call, at each superstep a temporary valueα ′ is updated.
α ′ is loaded toα when load rebalancing is activated.α in-
creases if the system tends to stability in conclusion time of
each superstep and decreases case opposite.

The answer for “Which” is solved through Potential of
Migration computation. Each BSP processi computesn
functionsPM(i, j), wheren is the number of Sets andj
means a specific Set.PM(i, j) is found out using Compu-
tation, Communication and Memory metrics. The relation
among them is based on the notion of force from physics
area. Computation and Communication are metrics that acts
in favour of migration, while Memory one represents an
idea of cost and acts in an opposite direction.

Computation metric considers a Computation Pattern
(Pcomp(i)) that measures the stability of a processi regard-
ing the amount of instructions performed at each superstep.
This value is close to 1 if the process presents regularity
(considering an error interval) and close to 0, otherwise. Be-
sidesPcomp(i), this metric also performs a computation time
prediction based on all computation times of each super-
step between two activations of processes rescheduling. In
the same way, Communication Metric computesPcom(i, j)
that means Communication pattern of processi and Setj.
Moreover, this metric uses communication time prediction
of processi and Setj considering data between two rebal-
ancing activations. Memory metric takes into account pro-
cess memory, transferring rate between considered process
and the manager of target Set, as well as migration costs.

PM(i, j) is calculates as follows:PM(i, j) = Comp(i)+
Comm(i, j)−Mem(i, j). A highPM(i, j) means that process
i has high computation time, high communication with pro-
cesses that belong to Setj and presents low migration cost.
There are two heuristics to choose the candidates for migra-
tion, all of them based on a decreasing list composed by the
highestPM value from each BSP process. They are: (i) se-
lect a percentage of processes; (ii) choose just one process.

PM(i, j) of a candidate processi is associated to a set
j. Therefore, the manager of this set will select the most
suitable processor under its control to receive the processi
and this strategy answers “Where”. Before to perform the
process migration, its viability is verified. This operation
takes into account the external load on source and destina-
tion processors, the simulation of considered process run-
ning in destination processor, the BSP processes that they
are executing, as well as the migration cost of considered

process. Finally, for each candidate process is chosen a new
resource or its migration is canceled.

3. Experimental Evaluation
The main aim of this experimental evaluation is to ob-

serve the impact of different values ofα of our processes
rescheduling model on a specific BSP application. Con-
sidering this, we applied simulation in three scenarios: (i)
Application execution simply; (ii) Application execution
with scheduler without applying migrations; (iii) Appli-
cation execution with scheduler allowing migrations. We
are using theSimgrid Simulator[3] (MSG module), which
makes possible application modeling and processes migra-
tion. This simulator is deterministic, where a specific in-
put always results in the same output. In addition, a time
equal toMem(i, j) is paid for each migration of processi to
Set j (this value will determine the migration costs). We as-
sembled an infrastructure with four Sets, which is depicted
in Figure 2. Each node has a single processor. Moreover,
we modeled the BSP implementation of Lattice Boltzmann
Method to Simgrid using vertical domain decomposition.
At each superstep, each processi is responsible for a sub-
lattice computation. After that, this process sends boundary
data to its neighbori +1.

LAN - Set 3 - "lan1...lan8"

Computer - Set 4 - "s1"

Cluster - Set 2 - "a1...a6 "

R2

Cluster - Set 1 - "n1...n8"

R1

R3

R4

R5

"n1...n8" <-> "R1" = 1 Gbps
"a1...a6" <-> "R2" = 100 Mbps

"R4" <-> "R5" = 10 Mbps

"lan1...lan8" <-> "R3" = 100 Mbps

"s1" <-> "R5" = 1 Gbps

"R1" <-> "R5" = 1 Gbps

"R5" <-> "R2" = 1 Gbps

"R3" <-> "R4" = 100 Mbps

"n1...n8"= 1.5 GHz

"a1...a6"= 1 GHz

"lan1...lan8"= 500 MHz

"s1"= 3 GHz

Network Connections

Processing Capacity

Figure 2: Infrastructure for simulations

Initial tests were executed usingα equal to 4, 8 and
16. Furthermore, we observed the behavior of 10 BSP pro-
cesses, used heuristic two to choose the candidate process
for migration (see Section 2 for details) and applied two dif-
ferent initial processes-resources mappings.

• The first mapping:{(p1,n1), (p2,n2), (p3,n3), (p4,n4),
(p5,n5), (p6,n6), (p7,n7), (p8,n8), (p9,a1), (p10,a2)};

• The second mapping puts one process per Set cir-
cularly: { (p1,n1), (p2,a1), (p3,lan1), (p4,s1) (p5,n2),
(p6,a2), (p7,lan2), (p8,s1), (p9,n3), (p10,a3)}.

Besides these mappings, we applied two types of tests:
A and B. Superstep time is dominated by computation in

test A, while in test B communication among the processes
is the more costly part. Each process executes 109 instruc-
tions and communicates 500 KBytes at each superstep in
test A. In test B, the number of instructions changes to 106.
These values were adopted based on real executions of Lat-
tice Boltzmann method in our clusters at UFRGS, Brazil.

Table 1 shows the results of test A and the first mapping.
The system stays stable (α increases at each rescheduling
call). This fact causes low intrusion of our model in applica-
tion’s execution comparing scenarios i and ii. One migration
occurred{(p9,s1)} when executing 10 supersteps, while
two happened between 50 and 2000:{(p9,s1),(p10,s1)}. We
observed that migrations occurred to s1, which is the fastest
processor. We had a profit of 33% after executing 2000 su-
persteps in comparison of scenarios i and iii. In this stud-
ied table, we can observe that does not exist a large varia-
tion whenα is changed, since in all conditions it always in-
creases from its initial value. Besides these results, Table 1
also presents that scenarios ii and iii have similar times in-
dependent of the employedα.

Figure 3 depicts a graphic in which the amount of com-
putation is reduced when compared to test A. This turns the
system unstable, with anα value that never increases. Thus,
the call for processes reassignment is launched several
times, causing a large overhead (scenario ii). Oppositely,
the system begins unstable and becomes stable in scenario
iii. The model indicates two migrations{(p9,n7),(p10,n8)}
in all executed supersteps, independing on theα used. We
verify that the higher is the value ofα, the better is the ap-
plication performance. When 1500 supersteps are executed,
16.99s, 16.03s and 15.10s are achieved withα 4, 8 and 16,
respectively.

Figure 4 illustrates a graphic with the second mapping
and test A. The system stays stable with this configu-
ration, allowing similar times for scenarios i and ii. We
have one migration{(p3,s1)} with 10 supersteps and two
{(p3,s1),(p7,s1)} in the remaining supersteps. The more in-
creased is the amount of supersteps, the higher is the ob-
tained gain with migrations. For instance, a reduction of≈
39% in time is achieved with our rescheduling model when
2000 supersteps are evaluated. Furthermore, we verified that
the second mapping provides longer execution times than
the first one. This is associated with both the infrastructure
heterogeneity and the application’s behavior.

The results of test B with the second mapping are shown
in Table 2. Analyzing this table, we can observe that sce-
nario iii with α equal to 4 presents execution times higher
than scenario i. This occurs because the system is un-
stable and a call for processes reassignment is done at
eachα supersteps (α never changes from its initial value
with this configuration). Usingα equal to 8 and 10 super-
steps, one migration occurred:{(p3,l4)}. If we increase the
executed supersteps up to 50, we have the following migra-

tions: {(p3,a4),(p7,a5),(p10,n4),(p7,n5),(p2,n6),(p8,a1)}.
Maintaining this value ofα and varying the number of su-
persteps from 100 up to 2000, 11 migrations are per-
formed: the same executed with 50 supersteps and
{(p9,a2), (p10,a3), (p4,a6), (p5,a1), (p6,a2)}. When us-
ing α equal to 16, the system becomes stable andα begins
to grow from supersteps higher than 100 (scenario iii). Con-
sequently, the processes rescheduling is postponed and less
intrusion in application execution is added.

0 500 1000 1500 2000

0

5

10

15

20

Scenario (i)
Scenario (iii) with alpha 4
Scenario (iii) with alpha 8
Scenario (iii) with alpha 16

Number of Supersteps

T
im
e
 (
in
 s
o
c
o
n
d
s
)

Figure 3: Test B with the first mapping

0 500 1000 1500 2000

0

1000

2000

3000

4000

Scenario (i)
Scenario (iii) with alpha 4
Scenario (iii) with alpha 8
Scenario (iii) with alpha 16

Number of Supersteps

T
im
e
 (
in
 s
o
c
o
n
d
s
)

Figure 4: Test A with the second mapping

Concerning the results of Table 2, we can improve the al-
gorithm of processes rescheduling launching in order to re-
duce the interference of the model in the following way.
If the system remains unstable and no migrations are per-
formed during several calls for rescheduling, we can in-
creaseα. The higher is this parameter, the better is the re-
sult on unstable scenarios. As a general conclusion, we ob-
served that our experiments prioritized the heterogeneityis-
sue. Thus, future works include the execution of BSP appli-
cations and our model over dynamic environments. Simgrid
allows to write files informing the variation in time of band-
width, latency as well as CPU capacities.

Table 1: Execution of all situations when dealing with Test Aand the first initial mapping

Step Scen (i)
α = 4 α = 8 α = 16

Scen (ii) Scen (iii) Scen (ii) Scen (iii) Scen (ii) Scen (iii)

10 10.01 10.15 11.10 10.15 11.10 10.15 10.15
50 50.51 50.58 40.64 50.53 43.70 50.52 51.83

100 101.02 102.34 75.21 101.94 78.27 101.78 85.40
500 505.12 507.14 345.78 506.08 348.84 505.82 356.97

1000 1010.25 1014.27 682.49 1012.27 685.55 1011.27 692.68
1500 1515.37 1522.38 1019.20 1519.40 1022.28 1518.02 1029.39
2000 2020.50 2034.37 1354.90 2030.53 1357.97 2027.48 1365.10

Table 2: Execution of all situations when dealing with Test Band the second initial mapping

Step Scen (i)
α = 4 α = 8 α = 16

Scen (ii) Scen (iii) Scen (ii) Scen (iii) Scen (ii) Scen (iii)

10 2.02 3.6 3.2 2.82 2.78 2.02 2.01
50 10.11 19.70 14.48 14.91 9.41 12.51 8.5

100 20.23 40.41 29.07 29.82 17.20 25.03 14.77
500 101.18 201.25 141.72 150.72 83.85 125.95 22.58

1000 202.36 401.30 282.53 302.44 167.65 251.91 35.46
1500 303.55 603.36 423.34 452.96 250.65 377.86 43.35
2000 404.73 802.45 590.02 608.62 330.04 504.82 52.23

4. Conclusion and Future Works

This paper presented the main ideas of our BSP pro-
cesses rescheduling model. In addition, we discussed the
employment of multiple values of initialα and their im-
pact in application execution.α indicates the next interval
to launch processes reorganization. Its value is adaptable,
varying according to system stability (the higher isα during
execution, the lower is the time disparities among the pro-
cesses per superstep). In general, application performance
variations using different contents of initialα are not large
in stable scenarios, sinceα doubles its value at each call
for processes rescheduling. On the other hand, the choos-
ing of α is important in unstable scenarios, because it rep-
resents the minimum interval for the next call for migra-
tion. Our results showed in Figure 3 and Table 2 some val-
ues ofα where the system starts unstable and becomes sta-
ble, achieving high performance with processes migration.
Moreover, our results suggests an adaptation of our algo-
rithm if the system is unstable (large variation among the
conclusion time of each process per superstep) and no mi-
grations are indicated. The idea in this situation is to in-
crease the value ofα in order to minimize the impact of
model execution in application performance.

Besides experiments with dynamicity issue, future works
include simulation of our model over Grid5000 platform.
We intend to develop other BSP applications and test the
model’s scalability over this platform. Finally, researchdi-
rections cover two aspects. The first one is the analysis of

processes migration costs and their dilution over more than
one superstep. The other one deals with self-adjusting of the
weights of each considered metric. Initially, this topic will
be studied based on the work of Wieczorek et al.[6].

References

[1] G. Aggarwal, R. Motwani, and A. Zhu. The load rebalanc-
ing problem. InSPAA ’03: ACM symposium on Parallel algo-
rithms and architectures, pages 258–265, 2003. ACM Press.

[2] O. Bonorden. Load balancing in the bulk-synchronous-
parallel setting using process migrations. In21th Inter-
national Parallel and Distributed Processing Symposium
(IPDPS 2007), pages 1–9. IEEE, 2007.

[3] H. Casanova, A. Legrand, and M. Quinson. Simgrid: A
generic framework for large-scale distributed experiments. In
Tenth International Conference on Computer Modeling and
Simulation (uksim), pages 126–131, Los Alamitos, CA, USA,
2008. IEEE Computer Society.

[4] C. Du, X.-H. Sun, and M. Wu. Dynamic scheduling with pro-
cess migration. InCCGRID ’07: Seventh IEEE International
Symposium on Cluster Computing and the Grid, pages 92–99,
2007. IEEE Computer Society.

[5] R. Righi, A. Carissimi, and P. O. A. Navaux. On the dy-
namic load-rebalancing of bsp application using process mira-
tion. In V Workshop em Processamento Paralelo e Distribudo
(WSPPD 2007), pages 31–36, 2007.

[6] M. Wieczorek, S. Podlipnig, R. Prodan, and T. Fahringer. Bi-
criteria scheduling of scientific workflows for the grid.Inter-
national Symposium on Cluster Computing and the Grid (CC-
Grid), pages 9–16, 2008.

