
On Simulation of Massively Parallel Computers

Eduardo Rocha Rodrigues Jairo Panetta
Philippe O. A. Navaux Brazilian Institute for Space Research - INPE

Federal University of Rio Grande do Sul - UFRGS jairo.panetta@cptec.inpe.br
{errodrigues, navaux}@inf.ufrgs.br

Abstract

High performance computers are employing more and
more processors. Many centers worldwide have computers
with hundreds or thousands of processors. Measuring per-
formance of applications on these machines is highly desir-
able because one can use this information to adjust such ap-
plications to achieve better performance. However, the ac-
cess to large machines is still restricted to few users. In this
sense, simulators are a convenient way to measure and even
debug programs intended for computers with many proces-
sors. In this text, we exam the state-of-art of simulators of
large machines and present an experiment performed with
the BigSim simulator.

1. Introduction

Currently, there is a trend towards increasing the num-
ber of processing units (cores) per chip. Companies like
Intel, AMD and IBM have developed chips with up to 8
cores per die and it is expected this number will grow
much more in the future. The high performance comput-
ers are also employing increasingly more processors, as it
can be seen from the TOP500 list [1]. For example, the
BlueGene/L in Lawrence Livermore National Laboratory
(LNLL) has 131.072 processors and Earth Simulator has
640 nodes with 8 vector processors each. This fact imposes
many challenges for development, debugging and manage-
ment of programs executed on those machines. Undoubt-
edly, it will be needed to developed new methods, tools and
strategies to deal with problems which may arise in those
computers.

Although many centers worldwide already have large
computers, it is quite difficult for most researcher to have
access to these machines. Therefore, program development,
testing and optimization for large computers are delayed.
In addition, developing new technologies, such as new in-
terconnection schemes, using real hardware can be really
expensive. In this sense, simulators are a convenient way

to measure and even test and debug programs intended for
computers with large processor counts.

In this text, we are going to present some simula-
tors which enable researchers to develop and test ap-
plications for large machines. Initially we will describe
the type of simulation that is typically employed: Par-
allel Discrete Event Simulations (PDES). Afterwards,
we will compare two of simulators, which are BigSim
and À la carte. Finally, we will show an experiment us-
ing BigSim, since this simulator is available for test.

2. Parallel discrete event simulation

As stated before, simulations can be an alternative to test
large computers when they are not available or before they
are built. However, large machines probably cannot be sim-
ulated using a sequential approach. The simulation itself
should be executed in parallel. Parallel simulations is in-
deed difficult and requires a way to synchronize the proces-
sors in charge of the simulation, so that causality errors do
not occur. In this section, we describe a technique call Par-
allel Discrete Event Simulation (PDES) and some examples
which employ this technique.

Discrete Event Simulation (DES) can be used to simu-
late systems whose behavior is represented by a chronolog-
ical sequence of events. The sequential approach for this
kind of simulations usually employs at least three different
data structures [4]. (1) the state variables that represent the
state of the real system, (2) an event list holding the events
not yet processed, and (3) a global clock variable to denote
the elapsed simulation time. Each event in the event list has
a time stamp that denotes a change in the state variables.
The time stamp correspond to the time when the real sys-
tem state must be modified. Occasionally, an event can trig-
ger new events for execution in the future. The simulation
proceeds taking the smallest time stamp in the event list,
changing the state variables and triggering new events ac-
cordingly.

The sequential approach for DES sometimes cannot deal
with large simulations, due to time or resources restric-



tions. Large machine simulations with thousands of pro-
cessors may fall in this situation. One possible strategy to
solve this problem is to run the simulation in parallel, that is
know as Parallel Discrete Event Simulation (PDES). How-
ever, trying to process events concurrently in different pro-
cessors could cause causality errors, i.e. errors in the rela-
tionship between cause and effect. For example, consider
two events E1 and E2 with timestamps T1 and T2 respec-
tively and T1 < T2. If the event E1 reads state variables
that E2 writes into, then this two events cannot be executed
in parallel. More complex relations can arise and a mecha-
nism is required to synchronize the processors.

Schemes to avoid causality errors can be classified basi-
cally in two categories: conservative scheme and optimistic
scheme. The conservative scheme avoids the possibility of
any causality error ever to occur. These approaches rely
on some strategy to determine when it is safe to process
an event. In its turn, the optimistic approach uses a detec-
tion and recovery mechanism to avoid causality errors, i.e.
causality errors are detected and a rollback mechanism is in-
voked to recover. Many different mechanisms for both cate-
gories have been proposed, as can be seen in the article [4].

An example of simulator that uses the conservative ap-
proach is MPI-SIM [6]. This simulator can be employed
to predict the performance of MPI programs using differ-
ent architectural characteristics, as the number of processors
and communication latencies. Two synchronization proto-
cols (null message and conditional events) were combined
in this simulator in order to reduce the frequency and cost
of the synchronization among the execution of the events.
However, it was used at most 16 processors to execute the
simulation shown in the article. Another example of sim-
ulator that implements the conservative scheme is LAPSE
(Large Application Parallel Simulation Environment) [3].
This simulator uses a distributed memory computer to sim-
ulate a message-passing code running on a large computer.
But only experiments with 512 simulated processors are
presented. A third example that falls in the conservative ap-
proach is Wisconsin Wind Tunnel (WWT) [7]. However it
was developed specifically for evaluating shared memory
computers.

An example of optimistic parallel discrete event simula-
tor is Time Warp Operating System (TWOS) [5]. It was de-
signed to execute on multiple nodes of a parallel processor,
or on several Sun workstations connected by an Ethernet.
TWOS uses an optimistic synchronization method that in-
corporates a full rollback mechanism. TWOS is a generic
PDES simulator, that can be used to simulate many differ-
ent problems.

3. A comparison between two large scale ma-
chine simulators

This section presents two simulators which em-
ploy PDES to specifically simulate large computers. The
first simulator is À la carte simulation framework, devel-
oped in Los Alamos National Laboratory, and the second
is BigSim/BigNetSim, developed at the University of Illi-
nois at Urbana Champaign.

3.1. À la carte

À la carte is an approach for simulating computing ar-
chitectures applicable to extreme-scale systems (thousands
of processors) and to advanced novel architectural config-
urations [2]. It was built using a component-based design
that allows a seamless assembly of architectures from rep-
resentations of workload, processors and network devices.
It was designed to support studies on software scalability
and properties of the systems themselves.

The objectives of this simulator are: (1) study of differ-
ent hardware / architecture design; (2) study of algorithms
and its corresponding implementation at the application and
system levels; (3) determine the system scalability with the
number of processors and other components like network
communication devices; (4) analysis of the trade-offs be-
tween performance and cost; and, (5) testing and validating
analytical models of computation and communication.

The simulator is divided in three parts: component de-
scriptions; configuration descriptions; and an underlying
simulation system, that is a PDES system. Components in
this simulators may be processors, switches, network inter-
faces and applications workloads. À la carte uses the Dart-
mouth Scalable Simulation Framework (DaSSF). DaSSF
was developed as a common parallel simulation API and
employs a conservative scheme to deal with causalities er-
rors. DaSSF manages the synchronization, scheduling, and
delivery of events in the simulation. It has a C++ API and
supports both shared-memory and distributed-memory par-
allelism.

The objective of the À la carte project is to simulate com-
puting platforms like ASCI systems of the Department of
Energy of the USA. However, there are not performance re-
sults of simulations with more than 250 simulated proces-
sors. Furthermore, the simulator is not available for testing.

3.2. BigSim/BigNetSim

BigSim/BigNetSim is a performance prediction environ-
ment for large scale computers [8]. BigSim is the paral-
lel simulator for predicting performance of machines with
a very large number of processors and BigNetSim incor-
porates a pluggable module of a detailed contention-based



network model. This simulator uses Charm++ and AMPI as
the programming model for large scale computers. This lan-
guages are very convenient since it hides from the user the
decision of allocation of tasks to processors.

Charm++ is an oriented object and parallel language
based on C++ and an execution environment. A program
written in Charm++ is made of a collection of distributed
objects whose methods can be called asynchronously. The
execution environment controls the object distribution and
redistribution among the processors and intermediates their
communications. This scheme allows many optimizations
such as load balancing, overlap between processing and
communications and checkpoint/restart mechanisms. AMPI
is a Message Passing Interface (MPI) implementation built
on top of Charm++. In this way this implementation allows
MPI programs adapt its execution to achieve load balanc-
ing.

In order to simulate large machines BigSim emulates
a computing node as a set of threads with a common
shared memory. This threads are classified as communica-
tion threads and working threads. A runtime library built
on top of this abstraction can send a message to a destina-
tion node. The message contains a handler function to be in-
voked at the destination. Communication threads in a node
verify incoming messages and put them in a global buffer
or a local buffer of a worker thread. The worker threads re-
peatedly retrieve messages and execute the corresponding
function. As stated in the article [9], this model is general
enough to encompass a wide range of different possible ar-
chitectures. On top of this abstraction it was implemented a
AMPI and Charm++ version, so that the user can programs
as if it is using a large machine with many of this nodes.

It is clearly impractical, if not impossible, to simulate
thousands of processors in a single processor. But, as par-
allel applications can be described as actions occurring at a
particular time and lasting for a known duration, PDES can
be used to simulate this behavior. However, this approach
has to deal with the complexity of the communication, since
message in this environment may arrive out of order, arising
from the fact that the simulation are using multiple proces-
sors. In order to deal with these causality errors BigSim lets
the simulated applications proceed as usual, while concur-
rently running a parallel algorithm that corrects time-stamps
of individual messages. Since the applications are usually
deterministic, this solutions avoids the high costs of roll-
backs.

Different degrees of accuracy can be used in BigSim to
simulate the sequential blocks of the application code. The
user can supply an expressions to each block of code esti-
mating the time of its execution. This alternative has the ad-
vantage of flexibility, but it burdens the user with the task of
accurate estimation. Another possibility is using the wall-
clock multiplied by a factor to obtain the estimated execu-

tion time of the block on the target machine. A third alterna-
tive is use hardware counter and a heuristic to estimate the
performance on the target machine.

BigSim can also generate logs of sequential computation
blocks, the messages and the dependencies among blocks.
Thus it is possible simulate more complex network topolo-
gies and contention models using the BigNetSim. The logs
are read by BigNetSim which simulates the execution of
the original tasks by elapsing time, satisfying dependencies,
and spawning additional tasks by passing messages through
a detailed network contention model.

Experimental results are presented using up to 32.000
simulated processors to execute a finite element method
software. A molecular dynamic simulation was also exe-
cuted on the simulator. In order to validate the approach,
some results were compared with a real BlueGene/L com-
puter [8].

The Table 1 summarizes a comparison between some
characteristics of both BigSim/BigNetSim and À la carte
systems.

4. The experiment

In this section, we will present an experiment in which
we have used BigSim to simulate four hundred processors
using only forty real processors. The algorithm employed in
this test was the one to find the shortest path in a graph. We
then compare the results with the theoretical performance
model.

A well known algorithm to find the shortest path in a
graph is the Floyd’s algorithm. Its basic operation is to de-
termine a path going from a vertex vi to vj passing through
vk such that the cost is lower than going directly from vi to
vj . This type of algorithm has many application in commu-
nication, transport and electronic problems.

The parallel version employs a domain decomposition
approach. Given an adjacency matrix with dimension N ,
which represents a graph, each one of the P processors
takes a block (with dimension N/

√
P ) in which it computes

the basic operation. The vertex vk may not reside in a cer-
tain processor, therefore, a communication is required.

The parallel performance can be modeled by means of
a simple latency approach. This model considers that each
message requires a certain time to arrive its destination. In
this way, in order to model the Floyd’s performance it is
necessary to count the number of message sent during its
execution. In addition, it is also necessary to count the num-
ber of basic operations which is executed.

The time spent with the basic operations is proportional
to N3/P because it is considered N vertices vk for each
pair in the process’s block. The communication requires two
broadcasts for each vertex vk, one broadcast among the pro-
cessors in the same column and another among the proces-



Simulator Parallel Synchronization accuracy Application
BigSim/ PDES Optimistic user-supplied MPI
BigNetSim direct execution Charm++
À la carte PDES Conservative direct execution MPI

Table 1. Comparison between BigSim/BigNetSim and À la carte.

sors in the same line. Therefore the parallel performance is
given by:

tcN
3/P + 2Nlog

√
Pts

where tc is the basic operation cost and ts is the network
latency.

We used the BigSim to execute the program which im-
plement the Floyd’s algorithm. We developed this program
with the MPI standard so that we could execute it with the
AMPI library. The benefit of this approach is that we could
compile and run the same code which can be executed in a
real machine.

In order to compare both the theoretical model and the
simulation, we choose different adjacency matrix sizes as
input. We feed the model with the simulated latency and the
cost for each basic operation. The final result can be seen
on Figure 1.

Figure 1. Comparison between the theoreti-
cal and simulated time.

This result shows that the BigSim can be used to pre-
dict the performance of a program as if it were executed in
a large machine. This environment, therefore, is able to sup-
port the development of new algorithms and models which
are been developed in the authors’ research project.

5. Final remarks

In this text, we presented a technique and some simula-
tors to simulate the behavior of large computers. Since it is
expected that processor counts will increase in the near fu-
ture, such environments are useful for research of new algo-
rithms and models.

Here, we also presented a result of simulation in which
we used the BigSim to execute a shortest-path algorithm.
The objective was to verify if this simulator could be used
as an environment for future experiments. In this sense, this
software seems to be suitable for the our purposes, which is
to develop load balancing algorithms for large machines.

The next steps include to simulate other applications and
adapt the BigSim to simulate the common network inter-
connect Ethernet.

References

[1] Top 500 supercomputing sites, http://www.top500.org/, 2007.
[2] K. Berkbigler, B. Bush, K. Davis, N. Moss, S. Smith,

T. Caudell, K. Summers, et al. Á la carte: A Simulation
Framework for Extreme-scale Hardware Architectures.

[3] P. M. Dickens, P. Heidelberger, and D. M. Nicol. A distributed
memory LAPSE: Parallel simulation of message-passing pro-
grams. In Proceedings of the 8th Workshop on Parallel and
Distributed Simulation (PADS ’94), 1994.

[4] R. M. Fujimoto. Parallel discrete event simulation. Commun.
ACM, 33(10):30–53, 1990.

[5] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and
M. Diloreto. Time warp operating system. In SOSP ’87: Pro-
ceedings of the eleventh ACM Symposium on Operating sys-
tems principles, New York, NY, USA, 1987. ACM.

[6] S. Prakash and R. Bagrodia. MPI-SIM: Using parallel simu-
lation to evaluate MPI programs. In Winter Simulation Con-
ference, pages 467–474, 1998.

[7] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C.
Lewis, and D. A. Wood. The wisconsin wind tunnel: Virtual
prototyping of parallel computers. In Measurement and Mod-
eling of Computer Systems, pages 48–60, 1993.

[8] G. Zheng. Achieving High Performance on Extremely Large
Parallel Machines: Performance Prediction and Load Balanc-
ing. PhD thesis, Dept. of Computer Science, UIUC, 2005.

[9] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé.
Simulation-based performance prediction for large parallel
machines. In International Journal of Parallel Programming,
volume 33, pages 183–207, 2005.


