
Programming Languages and Models for Parallel Multi-level Architectures

Claudio Schepke, Nicolas Maillard
Grupo de Processamento Paralelo e Distribuı́do

Instituto de Inforḿatica – Universidade Federal do Rio Grande do Sul
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{cschepke,nicolas}@inf.ufrgs.br

Abstract

The demands of large computational resources has stim-
ulated the search for new alternatives to add performance
to computer architectures. Parallel approaches are used to
increase the power of processing of computers. These ap-
proaches include the use of multi-core, multiprocessors and
clusters and grids architectures. The use of multi-level par-
allelism is a solution to increase the power of computers
processing in the actual stage of computers development.
However, parallel programming this levels is not a trivial
work. On the other hand, there are many solutions to pro-
gram efficiently a specific parallel level. In addition, there
are some works that show solutions to program more than
one parallel level. In this way, this work presents the state
of the art in terms of parallel programming techniques, in-
cluding parallel programming languages and models.

1. Introduction

In the recent years a large number of computers systems
has been available to the market, with a considerable range
of resources that meets the needs of developers of software.
This fact can be clearly seen when holding the composi-
tion of the 500 machines with greater capacity for process-
ing of the world, which are composed of several process-
ing units (processors) interconnected, either through a com-
mon bus, or through special networks, which are aimed for
many applications [12]. Usually, these solutions are based
on the development of parallel architectures [14]. The use of
vector machines, multiprocessors, and, currentlymulti-core
systems has been some of the alternatives. These technolo-
gies can also be combined through the formation ofclus-
tersandgrids. Thus we have the composition of platforms
with multiple levels of parallelism.

At the same time that there is progress in the develop-
ment of hardware, especially on parallel architectures, there

is a need to provide resources for programming compat-
ible with the different computing environments available.
Moreover, is also important that there are mechanisms for
programming able to integrate the various existing parallel
architectures, simplifying the programming process. Thus,
there is a layer of abstraction between the application itself
and its platform for implementation, which may be made
through specific programming libraries.

Though already exist apparently satisfactory solutions,
specially for homogeneous systems, the way to explore in
practice the most of computer resources existing in each of
the different parallel machines that compose the system is
not easy. Mechanisms for efficient programming for a spe-
cific form of parallelism cannot be apply to the others be-
cause they are generally quite specific. Integrate them into
a single application, that is, use them combined in a single
code, seems to be the most appropriate solution as a way to
potentially what each mechanism offers individually. The
challenge is to determine how best to achieve this integra-
tion dynamically in an environment with multi-level paral-
lelism, scheduling the processes to maximize the use of re-
sources.

In this context, this article presents as theme of research
the parallel programming of environments with multiple
levels of parallelism, which involves the convergence of
many forms of parallelism and high performance solution
for applications development. This proposal includes the
study of tools and resources of parallel programming that
can hold an abstraction of different levels of parallelism.

2. Multi-level Parallelism

Besides the application itself and the adopted strategy of
parallelization, environment, planning and implementation
must also be considered for the development of a concur-
rently application. The parallel computing environments,
especially forcluster and grid, are increasingly heteroge-
neous of its composition. On the other hand, architectures
multi-corewith different amounts of processing cores be-



Multi−processors

Multi−computers

Grids

Multi−coreG
ra

nu
la

rit
y

Figure 1. Multi-level Parallelism

gins to emerge. Consequently, these environments also pro-
viding a multi-level parallelism.

Multi-level parallelism has several levels of parallel ab-
stractions The different levels of abstraction of parallel
processors may be in themselves (multi-core), an internal
computer (multiprocessor) or between multiple computers
(clustersandgrids), creating a hierarchy as shown in Fig-
ure 1. This figure shows that the granularity of the process
or task increases as higher levels of parallelism are adopted.

The management of each level of parallel abstraction is
done through specific mechanisms:

• In processor level - The flow of instructions is de-
fined by the core or by the implementation of regis-
ter in hardware. Thus, the control is done by instruc-
tions inassembler.

• In level of operating system core - The flow of in-
structions is defined by processes orthreads. The con-
trol of the flow of instructions is done through calls to
the operating system.

• In level of middleware management- The flow of in-
structions is a communicant process. The control is
done through libraries for inter-processes communica-
tions.

It is therefore up to the programmer to use different tools
for the implementation of a program to explore many levels
of parallelism.

You can imagine, for example, a program implemented
with the technique of divide and conquer, which create
heavy processes in the first division and then pass to shoot
threadsas a way to use processors efficientlymulti-corein
an environment ofcluster.

Ensuring the portability of applications and efficient use
of resources is the great difficulty of existing parallel imple-
menting environments, because the programming tools cur-
rently available are designed specifically to only one levelof
parallelism, which limits the potential of its use on another
level. Moreover, it is difficult to control the way a parallel
application will be enforced, since, regardless of the level of

abstraction, different ways of mapping the flow of instruc-
tions may occur. Who decides this is a library of communi-
cation or a compiler.

3. Classical Parallel Programming Interfaces

ClassicalApplication Programming Interfaces(APIs)
for parallel programming are quite specific, focusing only
one level of parallelism. In this sense, there are some pat-
terns of programming for each level of parallelism, as fol-
lows:

• Multi-core: we utilize the standardPosix Threads as a
way to create light processes (threads) [1].

• Multiprocessors: we use theOpenMP library, which
allows call parallel operations through simple com-
mands (reserved words) during the writing of code [5].

• Multicomputers: for inter-processors communication
it are adopted the standardMessage Passing Inter-
face (MPI), especially in languages Fortran and C,
where it is possible to communicate synchronous and
asynchronous, collective and mapping de communica-
tions using Cartesian coordinates [9], andJava Re-
mote Method Invocation (Java RMI), which allows
the call of remote methods, ensuring the implementa-
tion of a distributed applications [7].

Another classic pattern of programming that can be men-
tioned is High Performance Fortran(HPF). HPF is an ex-
tension and modification of the standard language Fortran.
It was developed to high performance for multicomputers
based on parallel architectures and has portability for dif-
ferent architectures.

HPF support the use of data parallel programming tech-
nique and has open interfaces and interoperability with
other languages as C and paradigms of programming as
MPI. Another characteristic of HPF is the provision for fu-
ture improvements in the language, and on implementations
of standards Fortran and C. Because of these characteristics
many applications of High Performance Computing (HPC)
were implemented using HPF, especially for weather and
climatology.

Although the resources previously presented have be-
come a pattern for each type of environment, they hardly
offer the same performance when ported to other environ-
ments. The same is true for other similar and less popular
programming parallel APIs. Thus we can conclude that you
can not program effectively, with a single interface, differ-
ent levels of parallel abstraction.



4. Programming Languages and Models for
Multi-level Architectures

Some attempts to overcome the limitations imposed by
traditional parallel programming interfaces have already
been proposed [2]. These solutions are based onSingle Pro-
gram Multiple Data(SPMD) orPartitioned Global Address
Space(PGAS) models of programming.

The SPMD model offers mechanisms to specify the par-
allel computing and the distributed data structures. The dis-
tributed data and their allocation in each processor must be
manually set. During the execution of the program occur
also stages of communication and synchronization. Thus,
we can say that there is a multi-cooperation of the applica-
tion because the developer is aware of all the interactions of
the program.

The main advantage of SPMD model is the simplicity.
With this type of programming language is clearer to under-
stand the functioning of the parallel implementation. With
that, it is possible get a high level of transparency in ex-
ecution, allowing also a high level of portability. Further-
more, the explicit management shadows to understand the
algorithm, contributing to the introduction of programming
errors. It is also required to the user to manually control
the data fragmentation, communication and synchroniza-
tion among the instances of the program.

The languages developed in the PGAS model have a
model of memory in which a global address area space is
logically partitioned so that each part is from a local proces-
sor. This kind of language is typically implemented in dis-
tributed memory systems and create a virtual address space
using libraries of communication.

PGAS languages offers abstractions for the construction
of distributed data structures and communication among co-
operatives instances of the code. Although the purpose of
these languages is to increase the capacity of writing the
code, they are still limited in terms of providing an overview
of parallel computing.

Some programming languages that allow the program-
mer considers a large-scale computing environment as a
unified system, similar a shared memory environment are
presented as follow.

• Unified Parallel C (UPC) - Is an extension of the
C programming language developed at Berkeley Uni-
versity for high performance computing in large-scale
parallel machines [16]. The language provides an uni-
form model of programming for both shared mem-
ory and distributed systems. UPC abstract the SPMD
model of programming where the parallelism is set be-
fore the execution, and each flow of execution is des-
tined for a processor. So the environment can be con-
sider as a single system of shared memory in which

processors can read and write the variables, though
they are physically associated with a single processor.

• Co-Array Fortran (CAF) - It has similar properties
to UPC implementation, being implemented in Fortran
[11]. CAF is an elegant extension of Fortran, support-
ing the SPMD model of programming. Moreover, the
language includes features of the next standard version
of Fortran. The name of the language comes from the
implementation of a new type of array calledco-array.
This feature is used to referimages(multiple coopera-
tives instances) of a program in a SPMD model. Each
image can access remote instances of a variable by the
indexing of a dimension ofco-array. A variable de-
clared in a dimensionco-array allocates each image
into a copy of the variable. The way to create aco-
array is similar to create arrays in Fortran. The lan-
guage provides also synchronization cooperatives rou-
tines to coordinate the images.

• Titanium - is a language developed at Berkeley as a
SPMD paradigm for Java [15]. Titanium increases var-
ious features of Java, including support for iterations
with multi-dimensional vectors, sub-vectors and copy
operations, classes with unchanged values andregions
that support memory management oriented to perfor-
mance as an alternative garbage collector. The lan-
guage support among instances of the program devel-
oped in SPMD through primitives of synchronization
and communication, methods and variables that enable
the synchronization in isolation, and a concept of pri-
vate and shared reference.

• Chapel - is a programming language developed by
Cray, being part of a larger project known asCas-
cade[4]. Chapel provides a higher level of abstraction
for the expression of parallel programs than other pro-
gramming languages. Moreover, the language offers a
separation between the development of the algorithm
and the details of the implementation of data struc-
tures. Chapel supports amultithreadedmodel of pro-
gramming, providing abstractions for data and tasks
parallelism.

• Fortress - is a tool for efficient and secure high-
performance programming designed by SUN [13]. The
language is based on Fortran. While its syntax is in-
novative, Fortress was developed enabling program-
ming similar to a mathematical notation. With this, it
is believed that the development of the code is easier
for scientists. The fundamental components of a code
Fortress areobjectsthat define the variables and meth-
ods, andtraits, which declare a set of methods, both
abstract and concrete. Fortress is an interpreted lan-
guage, and the interpreter runs on the Java Virtual Ma-



chine, implementing a small part of the specification
of language.

• X10 - X10 is an experimental programming language
developed by IBM in partnership with academic in-
stitutions [6]. The purpose of the language is to of-
fer new techniques for implementation that provide
a scalable and optimized parallel environment man-
aged in run-time. X10 offers all traditional features
of Java programming language, for bothSymmetric
Multi-Processors(SMP) andclustersenvironments.

All these tools provide a layer of abstraction, making ho-
mogeneous the mechanism of implementation. At the same
time, it is not possible to extract parallelism in all levels
that the architectures offer, since these were not always ad-
equately abstracted in the tools, as for the case ofmulti-core
architectures.

However, solutions to this problem can be made using,
for example, the inclusion ofthreads in the creation of
new processes. An example is the combination of MPI and
threadsfor the development of applications, both in user
level as in MPI implementation level [10]. If this is done in
a transparent form, there is another level of parallelism in-
cluded in the abstraction tools.

Another aspect that can be mentioned is the possibility of
creating dynamic processes, namely the creation and launch
of new processes in run-time. Thus, it is possible to load
balancing in run-time, or even better distribute the granu-
larity of the processes. In according, several improvements
and implementations have already been developed in the re-
sources existing in the interprocessors communication li-
brary MPI2 [8], especially for launching the mechanism of
dynamic processes offered by thespawnfunction [3]. MPI2
standard offers other important resources to HPC, such as
parallel reading of files, which is especially useful for pre
and post data processing.

5. Conclusion and Future Works

This article contributed especially, listing a wide range of
techniques and resources for parallel programming, as for
one level of parallelism, as for more than one level, through
abstractions of the real parallel model used. These resources
are fundamental to understanding how can be made a pro-
gram exploring effectively three levels of parallelism forex-
ample, defining properly the parallelism of the application
in each layer.

The use of multi-level parallel architectures is a solution
to increase the computing capacities, making possible the
efficient computing of large applications. Among these soft-
ware applications we have a special interest for weather and
dynamics of fluids simulations. The idea is continue this
work determining forms to distribute data for a large appli-
cation among different parallel levels.

References

[1] G. R. Andrews.Foundations of Multithreaded, Parallel, and
Distributed Programming. Addison-Wesley, Reading, 2001.

[2] D. E. Bernholdt. Component architectures in the next genera-
tion of ultrascale scientific computing: challenges and oppor-
tunities. InCompFrame ’07: Proceedings of the 2007 Sym-
posium on Component and Framework Technology in High-
Performance and Scientific Computing, pages 1–10, New
York, NY, USA, 2007. ACM.

[3] M. C. Cera, G. P. Pezzi, M. Pilla, N. Maillard, and P. Navaux.
Improving the Dynamic Creation of Processes in MPI-2. In
Proceedings of Euro-PVM/MPI, volume 4192, Bonn, Ger-
many, 2007. Lecture Notes in Computer Science.

[4] B. L. Chamberlain, D. Callahan, and H. P. Zima. Paral-
lel Programmability and the Chapel Language.Interna-
tional Journal of High Performance Computing Applica-
tions, 21(3):291–312, August 2007.

[5] R. Chandra. Parallel Programming in OpenMP. Morgan
Kaufmann Publishers, USA, 2001.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing.SIG-
PLAN Not., 40(10):519–538, 2005.

[7] J. Farley. Java Distributed Computing. OŔEILLY, Cam-
bridge, MA, USA, 1998.

[8] W. Gropp, L. Ewing, and R. Thakur. Using MPI-2 - Ad-
vanced Features of the Message-Passing Interface.The Mit
Press, 1999.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-
performance, portable implementation of the MPI Message
Passing Interface Standard.Parallel Computing, 22(6):789–
828, 1996.

[10] J. V. Lima and N. Maillard. Aplicaç̃oes Din̂amicas MPI-2
com Threads. InANAIS, Oitava Escola Regional de Alto
Desempenho, Porto Alegre / RS / Brasil, 2008. Sociedade
Brasileira de Computação - UFPEL / UNISC / UCS.

[11] R. W. Numrich and J. Reid. Co-array Fortran for parallel pro-
gramming.SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[12] Top 500. Top 500 Supercomputing Site, Jun. 2008.
Dispońıvel em <http://www.top500.org>. Acesso em jun.
de 2008.

[13] M. Weiland. Chapel, Fortress and X10: novel languages for
HPC. Technical report, University of Edinburgh, Edinburgh-
UK, October 2007.

[14] B. Wilkinson and M. Allen. Parallel Programming: Using
Networked Workstations and Parallel Computers. Prentice
Hall, New Jersey, 1998.

[15] K. Yelick, L. Semenzato, G. Pike, C. Miyamato, B. Li-
blit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. Colella, and A. Aiken. Titanium: A high-performance
Java dialect.Concurrency: Practice and Experience, 10(11-
13):825–836, 1998.

[16] K. Yellick, D. Bonachea, and C. Wallace. A Proposal for
a UPC Memory Consistency Model, v1.0. Technical report
LBNL-54983, Lawrence Berkeley National Lab, May 2004.


