
GraphProgramming: a tool for grid and parallel programming

Felipe Severino
Universidade de Passo Fundo

Instituto de Cîencias Exatas e Geociências
Passo Fundo, RS, Brasil

felipelseverino@gmail.com

Marcelo Rebonatto
Universidade de Passo Fundo

Instituto de Cîencias Exatas e Geociências
Passo Fundo, RS, Brasil

rebonatto@upf.br

Abstract

This paper describes a project of a tool to assist the de-
velopment of parallel and distributed applications with em-
phasis in grid environments. A graph structure will be used
by the tool to represent the processes and the communi-
cation among them, and also to generate the application
source code. In addition, this work will present the charac-
teristics of grid computing and Globus Toolkit, which is a
standard in terms of middleware for grid computing.

1. Introduction

The grid computing allows the user to execute their ap-
plication in a high performance structure using resources
widely distributed. Even that the grid computing be similar
to conventional parallel and distributed environments, some
characteristics differ the grid from these environments, like
geographically distributed resources and multiple adminis-
trative domains.

To create this complex environment, a specific kind of
software, called middleware, is needed. One of the most
used middlewares for grid computing is the Globus Toolkit,
a set of components that works together to deal with issues
like heterogeneity, security and execution of the applica-
tions. To develop applications for this environment, is com-
mon to use a solution used by conventional parallel and dis-
tributed environment, like MPI or Web Services, with few
alterations.

Tools for visual programming, that represent graphically
the concurrence of the processes, become a solution for the
development of complex applications. Those tools help the
programmer to develop the application without regard about
the technology used. That way, a tool that allows the user to
define graphically the execution flow of the applications to
be executed in the grid environments can help the develop-
ment of applications. In addition, the tool can generate the

communication code (among the processes) of the applica-
tion, abstracting from user the technology used.

This paper describes a project of a tool for help the de-
velopment of applications for grids using the MPI stan-
dard. The tool should use visual resources, like graphs, to
represent the communication and processes of the applica-
tion, and generate the source code of the developed appli-
cations. The section 2 describes the main characteristics of
grid computing and Globus Toolkit. Section 3 brings some
requirements for grid programming. In the section 4 the
GraphProgramming tool project is presented. The section
5 conclude this paper.

2. Grid Computing

Grid computing is a hardware and software infrastruc-
ture that provides dependable, consistent, pervasive, andin-
expensive access to high-end computational capabilities [5].

Even that grid computing looks similar to conventional
parallel and distributed environments, some characteris-
tics differ from that environments [14], like scale and se-
lection of resources, heterogeneity, dynamic and unpre-
dictable structure and multiple administrative domains [4].
A grid environment can have thousands of computational
resources, widely distributed, each one with distinct access
politics, authorization and authentication mechanisms or
availability. The application that executes in the grid should
select the resources available that matches with the applica-
tion needs (the availability of resources changes frequently,
common causes for the lack of resources may include the
network and problems with the resource).

One way to build a grid infrastructure is use a specific
kind of software, called middlewares. The middleware is
used to change information between different programs,
hiding from the programmer the differences of communi-
cation protocols and operational system dependences [2].
One option of middleware widely used is the Globus Toolkit
(GT), developed by Globus Alliance, considered a standard
in terms of middleware for grid computing [7].



Maintaining the same configuration of older versions of
the toolkit, the Globus Toolkit 4 (GT4) is compounded by
a group of components that implement the basic services
of a grid environment, like security, resource management
and communication [6]. Each component of the toolkit can
be used separately in a specific application, or all compo-
nents can be used together to build a complete grid struc-
ture. Examples of services are the Globus Resource Alloca-
tion Manager (GRAM) Globus Metacomputing Directory
Service (MDS) and Globus Security Infrastructure (GSI).

The GT4 has, basically, two models for applications
communications: Web Services (WS) and Message Pass-
ing Interface (MPI). The tool described in this paper will
focus in the implementation of the MPI standard, letting to
the future works the implementation of others communica-
tion models.

To programming for GT, the most common implemen-
tation of the MPI standard is MPICH-G2 library, a grid-
enable implementation of the library MPICH. The MPICH-
G2 library uses services from GT, like job startup, security,
and so on, to execute the applications in the grid [10]. To
use the MPICH-G2 a device (globus2) should be choose in
the installation of the MPICH library, and the applications
will run over this device. More information about Globus
Toolkit installation and MPICH-G2 can be found in [7] and
[13], respectively.

3. Grid Programming

The grid computing is a recent technology and, as ev-
ery new computational structure, takes a while to develop a
specific programming model to this environment. Currently,
the development of applications for grids uses the same so-
lutions used in parallel and distributed environments, be-
cause of similarity of the environments.

Considering the technologies used in the environment,
the requirements of a tool for grid programming should fol-
low the same requirements of a tool for parallel and dis-
tributed programming. Some of the requirements are porta-
bility, essential in a heterogeneous environment as the grid,
and programming abstraction, that allow the programmer
to read their application in a high level abstraction, focus-
ing in the solution of the problem [12]. Other important re-
quirement for a development tool is the representation of
the concurrence among the processes, which helps in both
development and depuration of the application. This con-
currence can be represented by a graphic interface, using a
graph structure, which is considered more appropriated for
this programming paradigm [12].

In terms of tools for application development, some re-
lated works can be provided to establish a comparison with
the tool described in this paper. The first tool is the P-
GRADE [15], which have very similar proposes, but isnt

free and cant be expanded with collaboration of other devel-
opers. Other tool is called DOBuilder [3], which propose to
help the development of applications that uses distributed
objects. Unfortunately, as the development of the tool de-
scribed in this paper is not concluded, a complete compari-
son of the tools cannot be done yet, that should be done af-
ter the conclusion of the development of the tool.

4. The GraphProgramming Tool

In this section the project of a tool to help the develop-
ment of applications for computing grids is presented.

4.1. General Characteristics

To help the development of applications for complex en-
vironments, such as grid, some visual resources may help
the user to comprehend the structure of the program [11].
In the proposed tool, the structure of the application will be
represented as a graph, which will have process elements
represented as nodes, and the communication elements as
arcs.

The main goal of the tool will be help the development
of applications for grid computing, using C/C++ language
with MPI library. To achieve this goal, the tool will use
some resources to assist the user in some steps of the de-
velopment, which are: define the execution flow; choose the
type of communication; insert the processing code in each
node of the application. Those steps dont have to occur in
order. The user can insert some nodes and choose the com-
munication types and data transferred in those nodes, then
insert other nodes, and so on. When the entire flow were
defined (the tool will have marks for begin and end of the
flow), the tool will be able to generate de source code of the
application, based on the informations inserted previously.

For the first version of the program, the MPI standard
was chosen as communication model. The reason for that
are many, which include the high number of users around
the world, the documentation available and the similarity
with the conventional parallel and distributed programming.
Thus, routines will be available for point-to-point commu-
nication (MPI Send, MPI Recv, so on) and collective com-
munication (MPIBcast, MPIReduce, so on). The types of
data transferred by those communications will be scalar and
vector.

Another functionality of the tool will be the support to
generate applications MPI using the library C-XSC. C-XSC
is a library for development of numerical algorithms with
high accuracy and automatic verified results [9]. The use of
C-XSC with MPI is a recent union, and its not knew a vi-
sual tool with similar functionality [8].



4.2. Processing Elements

The processing elements will be represented like nodes
in the graph that represent the developed application struc-
ture’s. Each node of the structure should contain a complete
set of informations needed for the code generation. Some of
these informations are the source code of the process rep-
resented by the node and the data (with their respectively
types) to be communicated by the process.

There is three types of nodes that can be used to repre-
sent groups of processes: the P nodes, that represent a single
process; the N nodes, that represent all nodes of the appli-
cation; and the N-1 nodes, that represent all the nodes ex-
cept the root (usually the process 0). This nodes described
above should be used with the communication elements to
create the structure of the developed application.

4.3. Communication Elements

Graphically represented by the arcs in the graph, the
communication elements will get the information in the
nodes to create the communication almong the processes.
The MPI standard define dozens of functions, but only the
following functions will be supported by the tool.

4.3.1. MPI Init,MPI Comm rank, MPI Comm size
and MPI Finalize These functions are, usually, called
only once and with predefined arguments. Thus, the tool
should call these functions automatically, defining the ap-
plication’s limits, and these limits should be represented
graphically.

4.3.2. MPI Send and MPI Recv These functions com-
pound the point-to-point group of functions supported by
the tool. The uses of these functions can be mapped with
the nodes described in the section 4.2, producing the results
showed in the Figure 1.

In the Figure 1, the communication with a symbol (rep-
resented as a vector) at his side means that the communi-
cation send (or receive) more than one data in the message.
As can be noted in the figure, the possibilities of use of the
send and receive can replace the use of other functions sup-
ported by the tool. The user should choose the comunica-
tion that fits better with the developed application.

4.3.3. MPI Bcast, MPI Reduce, MPI Scatter and
MPI Gather These collective communication func-
tions are supported by the tool. As the point-to-point
group, the collective communications can be mapped
with the nodes described above. The result of this map-
ping is show in the Figure 2.

4.3.4. MPI Barrier The barrier function cause to all pro-
cesses to wait to the last one reach the call of the function,
synchronizing all the processes. Their representation should

Figure 1. Mapping of the send and receive
functions

Figure 2. Mapping of the collective communi-
cation functions

differ from the others, simbolizing the call of the function
for all the processes.

4.4. Code insertion

To help the programmer in the development of the appli-
cation, the tool must have two different interfaces: graphic
and textual. As the graphic interface, the textual interface
must use some resources to help the development of the ap-
plication. Some of those resources are indentation and high-
lights [1].

5. Conclusions

Both programming and utilization of the grid are, in most
cases, done thought a textual interface, as the shell in Linux



operating systems. This interface can inhibit the use of the
system for inexperienced or new users, as occurs in users of
other areas of research, like basic science. This is one reason
for the tool use resources to help the development, like vi-
sual resources, that was described in this paper. Others pos-
sible users for this tool can be the students of parallel and
distributed programming that, can use the graphic represen-
tation to better understand the paradigm.

The next step of this work include the implementation of
the GraphProgramming tool. The language for the imple-
mentation will be Java, because some characteristics of the
language are important for the tool, as portability (allowing
execution in different systems, architectures, etc.) and flexi-
bility (allowing the reuse of the code used in the LAM/MPI
Designer tool [1], that implements some resources for tex-
tual programming). The tool should have opensource, en-
abling the development of improvements for the tool.

References

[1] M. P. Bastos. Uma ferramenta para facilitar a escrita de
aplicaç̃oes paralelas com mpi. Trabalho de conclusão de
curso (Graduaç̃ao em Cîencia da Computação). Universidade
de Passo Fundo, 2006.

[2] G. F. Coulouris, J. Dollimore, and T. Kindberg.Distributed
systems: concepts and design. Addison-Wesley, Harlow, 4
edition, 2005.

[3] DOBuilder. Dobuilder.
http://www.inf.ufrgs.br/procpar/hetnos/DOBuilder, au-
gust 2008.

[4] I. Foster and C. Kesselman. Globus: a metacomputing infras-
tructure toolkit. International Journal of High Performance
Computing Applications, 11(2):115–118, 1997.

[5] I. Foster and C. Kesselman.The Grid: Blueprint for a New
Computing Infrastructure, chapter 2, pages 15–51. Morgan
Kesselman Publishers, Inc., San Francisco, 1999.

[6] I. Foster and C. Kesselman.The Grid: Blueprint for a New
Computing Infrastructure, chapter 11, pages 259–309. Mor-
gan Kesselman Publishers, Inc., San Francisco, 1999.

[7] Globus. About the globus toolkit. http://www.globus.org,
may 2008.

[8] C. A. Holbig, M. T. Rebonatto, and M. J. Brusso. Resolução
numérica de aplicaç̃oes com alta exatid̃ao em ambientes de
alto desempenho. InEscola Regional de Alto Desempenho,
pages 5–41, 2008.

[9] Karlsruhe. C-xsc. http://www.rz.uni-
karlsruhe.de/ĩam/html/language/cxsc/cxsc.html, july 2008.

[10] C. Lee and D. Talia.Grid Computing: make the global in-
frastructure a reality, chapter 21, pages 555–578. Wiley,
West Sussex, 2003.

[11] J. Malacarne. Ambiente visual de programação distribúıda
em java. Dissertaç̃ao (Mestrado em Ciência da Computação).
Universidade Federal do Rio Grande do Sul., 1999.

[12] J. Malacarne. Ambientes de programação visual paralela e
distribúıda. Trabalho Individual (Curso de pós-graduaç̃ao

em Cîencia da Computação). Universidade Federal do Rio
Grande do Sul., 1999.

[13] MPICH-G2. Mpich-g2. http://www.hpclab.niu.edu/mpi,
march 2008.

[14] Z. Németh and V. Sunderam. A formal framework for defin-
ing grid systems. InIEEE/ACM International Symposium on
Cluster Computing and the grid (CCGrid’02), pages 202–
211, 2002.

[15] P-GRADE. P-grade. http://www.lpds.sztaki.hu/pgrade/, au-
gust 2008.


