
OLAM Performance Evaluation on Multi-Core Environments∗

Claudio Schepke, Nicolas Maillard
Grupo de Processamento Paralelo e Distribuı́do (GPPD)

Instituto de Inforḿatica – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{cschepke,nicolas}@inf.ufrgs.br
WWW home page:http://gppd.inf.ufrgs.br/atmosferamassiva

Abstract

Ocean-Land-Atmosphere Model (OLAM) is a global nu-
merical simulation model developed at Duke University,
USA. It introduces a new dynamic core in the atmospheric
model based on a global geodesic grid with triangular
mesh cells and uses also a finite volume discretization of
the full compressible Navier Stokes equations. Recently this
model was parallelized using Single Program Multiple Data
(SPMD) approach. OLAM is a typical example of appli-
cation of domain decomposition that frequently occurs in
many areas of the science. Moreover, this real application
has a high load computation, being a good candidate for
evaluate multi-core cluster environments. In this context,
this paper discusses the parallel performance of OLAM im-
plementation in multi-core environments. The results show
that the execution in multi-core systems impact significantly
in the performance of the application, obtaining less per-
formance than single core systems.

1. Introduction

Numerical models have been used extensively in the last
years in order to understand and predict the climate and
weather phenomena. In general, two approaches were fol-
lowed for the development of numerical models: global and
regional [3]. Global models have spatial resolution of about
2-5 degrees of latitude and therefore can’t represent very
well the scale of regional weather phenomena. Moreover,
this models must also integrate large-scale atmospheric con-
ditions into its borders side. Therefore it does not simulate
phenomena of large scale.

To solve this problem recently was developed at Duke
University a new model that represents a new generation
of meteorological models. The main feature of this model

∗ Supported by CNPq

called Ocean-Land Atmosphere Model (OLAM) is the
ability to represent global phenomena weather and also al-
lows grids nesting with high resolution enabling more accu-
rate representation of phenomena of local scale [5].

OLAM was developed to extend features of the Regional
Atmospheric Modeling System (RAMS) to a global model
domain [3]. OLAM uses many functions of RAMS, in-
cluding physical parametrization, data assimilation, initial-
ization methods, logic and coding structure, and I/O for-
mats [4]. OLAM introduces a new dynamic core based on
a global geodesic grid with triangular mesh cells [6]. It
use also a finite volume discretization of the full compress-
ible Navier Stokes equations [2]. OLAM was developed in
FORTRAN 90 and recently parallelized with Message Pass-
ing Interface (MPI) [1]. to Single Program Multiple Data
(SPMD) model.

The remainder of this article is divided in four sections.
Next section presents the OLAM global domain grid forma-
tion, algorithm and parallelization. A parallel performance
evaluation executed in a multi-core/multi-computer system
is presented in Sec. 3. Some considerations are described at
the last section, as well the conclusions and future works.

2. Ocean-Land-Atmosphere Model

2.1. Global Grid Structure

.
OLAM’s global computational mesh consists of spher-

ical triangles, a type of geodesic grid that is a network of
arcs that follow great circles on the sphere [5]. OLAM’s
grid construction begins from an icosahedron inscribed in
the spherical earth. Icosahedron is a regular polyhedron that
consists of 20 equilateral triangle faces, 30 triangle edges,
and 12 vertices, with 5 edges meeting at each vertex. The
icosahedron is oriented such that one vertex is located at
each geographic pole, which places the remaining 10 ver-
tices at latitudes of±tan−1(1/2).

1

Figure 1. OLAM subdivided icosahedral
mesh and cartesian coordinate system with
origin at Earth center.

Uniform subdivision of each icosahedron triangle into
N × N smaller triangles, whereN is the number of di-
visions, is performed in order to construct a mesh of
higher resolution to any degree desired. The subdivi-
sion adds30(N2 − 1) new edges to the original 30 and
10(N2 − 1) new vertices to the original12, with 6 edges
meeting at each new vertex. All newly constructed ver-
tices and all edges are then radial projected outward to the
sphere to form geodesics.

Figure 1 shows an example of the mesh at this step with
N = 10. Heavier lines denote original undivided icosahe-
dron. The projection causes most triangles to deviate from
equilateral shape, which is impossible to avoid [5].

The final step of the mesh construction is the definition
of its vertical levels. To do this, the lattice of surface trian-
gular cells is projected radially outward from the center of
the earth to a series of concentric spheres of increasing ra-
dius This creates prism-shaped grid cells having two hor-
izontal faces (perpendicular to gravity) and three vertical
faces. The horizontal cross section of each grid cell and col-
umn expands gradually with height.

OLAM uses a rotating Cartesian system with origin at
the Earth’s center, z-axis aligned with the north geographic
pole, and x- and y-axes intersecting the equator at 0 deg and
90 deg E. longitude, respectively. The three-dimensional ge-
ometry of the mesh, relating to terms in the momentum
equation and involving relative angles between proximate
grid cell surfaces, is worked out in this Cartesian system.

3. Algorithm

OLAM algorithm can be divided in three major parts; the
parameter initialization , the atmosphere time state calcula-
tion and the output write results. In order to find the algo-
rithm routine that more impact in the execution time, we in-
serted timestamps barriers on the routines of the code. We
selected major 7 timestamps (TS1 to TS7) that dominates
the algorithm overhead. Next we present OLAM algorithm
pseudo code and the selected timestamps barriers.

Initialization;
Input Files (ATM/LAND/SEA) Read; (TS1)
Grid Configuration;
Domain Partition Decomposition; (TS2)
Variables Memory Allocation; (TS3)
Initial state calculation; (TS4)
Plot/History Files Initialization; (TS5)
Initialization Time measure;
Do loop for each time step;
Atmosphere time state calculation;
Send frontier variables to neighbors;
Times step Time measure;
If time equal END then; (TS6)

End Do Loop;
Write atmosphere state on disk; (TS7)
Barrier; Output Time measure;

3.1. Parallelization of the Model

OLAM was developed in FORTRAN 90 and recently
parallelized with Message Passing Interface (MPI) [1] to
Single Program Multiple Data (SPMD) model.

All MPI processes have initially the original grid domain
and it data structures created as described in Section 2.1. In
a second moment, if the execution is set as parallel, each
process defines recursively his sub-domain. Data are reallo-
cated after the definition of the sub-domain in each process,
so that only the sub-domain is keep.

After the parallel grid domain decomposition and data
structures redefinition will be process the iterative step.In
the iterative step there are data exchange among the pro-
cesses through asynchronous messages to update physical
properties in neighbor processes.

4. Performance Evaluation

4.1. Simulation Environment

All measurements have been made on the cluster ICE,
at the Institute of Informatics of the Federal University of
Rio Grande do Sul. This cluster is composed by 14 dual
nodes Intel Xeon E5310 Quad-Core of 1.6 GHz and 4 MB
of cache, with 16 GB of RAM memory in each node.

2

We divide each side of the initial icosahedral triangle in
25 parts. So, the distance among the points on the globe sur-
face was around 200 Km. The atmosphere layer was divided
in 28 layers. We simulate 24 hours of integration of an at-
mosphere without any physical calculation. Each timestep
of integration simulate 60 seconds of the real time.

4.2. Scalability

The first test realized consist in evaluate the scalability of
the code in a multi-core machine. In Figure 2 is presented
the speed up obtained using all 8 cores of two processors
in a node of the cluster and the speed up resulted of us-
ing only a core of all 14 nodes of the cluster. The results
show a increase of performance when more processes are
used in both cases. However, the scalability is less expres-
sive using only a node of the cluster. In fact, the speed up
using all 8 cores of one node is only around 5. On the other
hand, executing in only 1 core of all nodes of the cluster re-
sulted more scalability. In this case the speed up with 14
processes was up to 11.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14

S
pe

ed
 u

p

Processes

14 nodes/1 core
1 node/8 cores

ideal

Figure 2. Speed up using 1 node/8 cores × 8
nodes/1 core.

A more specific evaluation was made to better under-
stand this results. In Table 1 are related the best (T. Min)
and worst (T. Max) execution time in milliseconds (ms) of
7 parts of the instrumented code when 8 processes are exe-
cuted in one node and when 8 processes are executed in dis-
tinct nodes, respectively.

Each timestamp (TS) stageTS1, ..., TS7 is following
by a synchronization stage. The synchronization stage mea-
sures the time elapsed between the end of each execution
time stage and a barrier, where all processes must arrive.

Time- T. Min T. Max T. Min T. Max
Stamp 1 node 1 node 8 nodes 8 nodes
TS1 598 618 180 182
Syn 0 31 0 6

TS2 186 225 58 59
Syn 0 39 0 1

TS3 20 23 15 17
Syn 0 39 0 3

TS4 565 601 554 555
Syn 0 1 0 0

TS5 109 280 103 266
Syn 0 170 0 163

TS6 111268 111924 81641 82194
Syn 83 837 129 704

TS7 173 487 132 138
Syn 109 585 130 302

Total 114497 114510 83830 83837

Table 1. Execution time using 8 processes in
1 node and in 8 nodes.

In this table we can observe that timestamp 6 is the most
impact step of the execution. This timestamp monitors the
iterative step of OLAM and in this case represent around
97% of the total execution time in both cases evaluate. How-
ever, the difference between the cases 1 node× 8 nodes is
very significant.

4.3. Execution Time

We distributeP processes toC cores processors to bet-
ter understand how the cores of the architecture influence
the execution of OLAM. ThusP/C nodes will be used to
execute the model.

Figure 3 shows a comparison of the parallel execution
time of OLAM, distributing 14 processes among the ICE
cluster nodes in five different ways. These ways consist in
to distribute the processes respectively in one, two, four,six
and eight cores per processor (C = 1, 2, 4, 6, 8).

The results show that using only a core per node is better
than use more cores per node. The results also demonstrate
that performance decreases as the number of cores used in-
creases. This is more visible when more than 4 cores per
node are used. In fact, quad-core processors share the bus
access. Because this, the performance on access simultane-
ously the memory is not so good, instead large volume of
data are manipulated in OLAM code.

In Table 2 are related the best and worst execution time
in milliseconds (ms) of each of the instrumented code when

3

Figure 3. Execution time distributing the pro-
cesses in 1, 2, 4, 6 and 8 cores.

14 processes are executed using 1 coreC = 1 and 8 cores
C = 8 of the cluster nodes.

Observe that the synchronization time fromTS6 and
TS7 dominates the overhead for bothC = 1 andC = 8.
Also, observe that the synchronization time increases for all
timestamps for theC = 8 test showing that the use of all
cores in a node impact in reduction of performance.

Synchronization time fromTS6 is related to the load
imbalance from the atmosphere time state calculation part.

Time- T. Min T. Max T. Min T. Max
Stamp C = 1 C = 1 C = 8 C = 8
TS1 178 183 177 1095
Syn 0 149 0 959

TS2 57 60 55 201
Syn 1 4 0 147

TS3 9 13 15 18
Syn 1 5 0 38

TS4 323 367 339 374
Syn 0 1 0 8

TS5 88 195 93 191
Syn 0 107 0 90

TS6 47323 49249 70063 72481
Syn 244 2224 463 2862

TS7 43 134 121 175
Syn 254 510 513 964

Total 49884 50786 75496 75552

Table 2. Execution time using 14 processes
which C = 1 and C = 8.

Synchronization increase time fromTS1 to TS7 onC = 8
test are related to the multi-core memory contention. Appli-
cations on systems with a large numbers of multi-core pro-
cessors, with a meager amount of local RAM per core gen-
erally use the majority of this memory, leaving little room
for caching

5. Conclusion

This paper evaluates the performance of the parallelized
version of the Ocean-Land-Atmosphere Model (OLAM) on
a multi-core cluster environment. In order to evaluate the
scalability we present the speed up obtained using all 8
cores of two processors in a node of the cluster and the
speed up resulted of using only a core of all 14 nodes of the
cluster. The results indicate that the memory access is lim-
ited in a multi-core system. We conclude that using many
cores of a multi-core system results in competition to ac-
cess the memory and more cache misses.

In order to find OLAM algorithm routines that increase
the execution time with the number of processors, we in-
serted timestamps barriers on routines of the code. We ob-
serve that the routines that dominate OLAM application ex-
ecution time are related to OLAM model timestep calcula-
tion and to output write operations. The results indicate that
the barrier synchronization time increases as we increase
the number of cores per node.

In future works more tests will occur, including more
mesh refinement and inclusion of a domain decomposition
distribution controller.

References

[1] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-
performance, portable implementation of the MPI Message
Passing Interface Standard.Parallel Computing, 22(6):789–
828, 1996.

[2] J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey.
A finite-volume incompressible navier-stokes model for stud-
ies of ocean on parallel computers.Journal of Geophysical
Research, 102(C3):5753–5766, 1997.

[3] R. A. Pielke and et al. A comprehensive meteorological mod-
eling system-RAMS.Meteor. Atmos. Phys., 49:69–91, 1992.

[4] R. L. Walko and R. Avissar. OLAM: Ocean-Land-
Atmosphere Model - Model Input Parameters - Version 3.0.
Technical report, Duke University, November 2008.

[5] R. L. Walko and R. Avissar. The Ocean-Land-Atmosphere
Model (OLAM). Part I: Shallow-Water Tests. Monthly
Weather Review, 136(11):4033–4044, 2008.

[6] I. Wenneker, A. Segal, and P. Wesseling. A mach-uniform un-
structured staggered grid method.International Journal of
Numerical Methods in Fluids, 40(9):1209–1235, 2002.

4

