
Towards Space-Efficient Dynamic Process Scheduling
for Recursive Divide and Conquer Programs

in MPICH2

Stéfano D. K. Mór, Nicolas B. Maillard
Federal University of Rio Grande do Sul, Porto Alegre/RS, Brazil,

{sdkmor, nicolas}@inf.ufrgs.br

Abstract

MPICH2’s dynamic process creation scheduler produces
undesired workload imbalance with recursive D&C algo-
rithms due to its default scheduling algorithm. The mem-
ory limitations, at the overloaded nodes, turn critical for
the programs to scale well. To overcome this constraint, we
have modified MPICH2’s dynamic process creation
(MPI Comm spawn) in order to implement a ring-based,
distributed, load balance scheduling algorithm that imple-
ments work stealing. This is a (stricter) distributed version
of previously published work [2]. Experimental results con-
firm the expected performance: benchmarks achieved near-
optimal spatial complexity, allowing MPICH2 to run in-
stances four times larger than usual while keeping execu-
tion time nearly the same.

1. Introduction

Recursive divide and conquer (D&C) is one of the most
important programming techniques in Computer Science
[3], allowing a programmer to write elegant solutions for
problems like data sorting or combinatorial optimization. It
also leads to a natural introduction of parallelism by dy-
namic process creation: each recursive function call can be
mapped to a process spawned in parallel; a parent process
blocks until all its spawned children return their outputs,
which will later be combined. For such algorithms, usually
with irregular load balancing constraints, one useful idea
with MPI is to use MPI Comm spawn to dynamically cre-
ate new processes.

MPI-2 has introduced MPI Comm spawn (and a family
of correlated primitives) to allow a given executing process
to spawn MPI processes dynamically. It has not imposed,
however, any canonical way to schedule these processes
across the available nodes, leaving it up to the programmer
or to the operating system. The default round-robin strategy,
used by some major MPI-2 implementations (e.g., LAM-
MPI and MPICH2), is very problematic when one consid-
ers parallel recursive D&C; some nodes are unnecessarily
overloaded, while others remain idle. The scheduler’s in-
efficient load balancing behavior bounds the size of a given

problem’s instance by unnecessarily increasing spatial com-
plexity due to overloaded nodes reaching memory limits too
soon during the execution. Sec. 2 discusses this topic with
more details.

Thus, space-optimal load balancing of dynamic pro-
cesses is critical when considering parallel execution on a
multicomputer with a limited number of resources. It would
allow to maximize the simultaneous running processes in
MPI-2 D&C programs. This work has modified MPICH2
to do so, because this implementation is the basis for many
commercial distributions of the norm (e.g., Intel’s and Mi-
crosoft’s) as well as popular in the academic field.

The remainder of this paper is organized as follows. Sec-
tion 2 shows, in short, how MPICH2 handles a new MPI
process spawn. Section 3 specifies parallel D&C algorithms
and their bounds. Section 4 shows the modifications re-
quired in order to achieve space-efficient D&C scheduling
with MPICH2, while Section 5 shows some results on prac-
tical experiments that reinforce previous considerations and
statements. Finally, Section 6 brings some final remarks and
conclusions.

2. On-line Scheduling of Dynamic Processes
in MPICH2

MPD, written in Python, is the process manager daemon
in MPICH2. Each active node has a MPD running. It is re-
sponsible for initializing the system and to handle the cre-
ation of MPI processes, both static and dynamic, and to
schedule the dynamic processes.

As a Python class, two components are highlighted in the
context of this work.

MPDRing is a component class for ring-based communi-
cation. It also provides detection of and union with an
already established ring.

MPDMan is a component class that works as a “header”
for a running C, C++, or Fortran user MPI process. It
is implemented as a separate process.

The default dynamic process creation in this ring topol-
ogy works basically as follows. Consider a process proc
working on a node, and that all MPDs own a queue Q of
processes to be spawned:

1. proc invokes MPI Comm spawn, sending, through in-
ternal function calls, a corresponding message to its
MPDMan that, on its turn, re-pass it to the correspond-
ing MPD.

2. MPD, after receiving the spawn message from a
MPDMan, pushes it on top of Q.

3. From time to time, MPD tests Q; if it is empty, MPD
proceeds with its normal execution. If it is not, MPD
sendsQ’s top message to the MPD of the next node (at
“right”) on the ring. Whenever a spawn is being pro-
cessed, no message is popped from Q. When an “ack”
is received, the same process goes on again.

4. When a given MPD receives a spawn message from
the “left” node on the ring, it spawns locally a given
number of processes, specified by the spawn message,
decrements this number from the total number process
to be spawned and re-pass the message to its “right”
node on the ring. This goes on until the total number of
already spawned processes is reached. The last MPD to
spawn a process sends an “ack” message to the origi-
nal spawner (identified in the message).

The above approach leads to imbalance and non-efficient
space usage when one considers recursive D&C program-
ming. The next section will show why.

3. Recursive Divide and Conquer Paral-
lel Programming with MPI-2

Recursive D&C parallel function calls (henceforward
referred as spawn) can be easily coded with the use of
MPI Comm spawn, as described in Sec. 1. When com-
bined with the MPI Recv family of primitives, it provides
a robust way to block until all the produced outputs arrive
from the children (henceforward referred as sync). In other
words, one may express parallel recursive D&C in MPI-2
by defining

spawn := MPI Comm spawn plus data sending
sync := MPI Recv (or similar).

The parallel D&C MPI program, thus, divides its input,
performs a spawn, that recursively runs the program, and a
sync. After having received all children’s results, the con-
quer phase is run to merge them.

A threshold is used to impose a minimal granularity to
the recursive tasks, as usual in sequential implementations.
We assume that the runtime of this minimal, sequential task,
is constant (i.e. for a given input of size n, even if the num-
ber of tasks increases with n, the size of the sequential task
will not); and that the time it takes to divide the input among
P processors and to merge the output are, both, proportional
to P .

The default behavior of MPICH2 (when based on MPD)
described in Sec. 2 produces workload imbalance when one
considers D&C programming like Fig. 1(a). Fig. 2 shows
examples of the process scheduling for typical D&C pro-
grams spawning δ = 3 processes recursively. The rounded-
corner thin-line squares represent a processor p where each

int
fib (int i)
{
int a, b;
MPI::Intercomm comm1, comm2;

if (i <= THRESHOLD)
return seq_fib(i);

// EVAL BEGIN //
if (i == 0 || i == 1) return i;
// EVAL END //

// DIVIDE BEGIN //
a = i-1; b = i-2;
// DIVIDE END //

// SPAWN BEGIN //
comm1 = MPI::COMM_WORLD.Spawn
("./FibTask", [...]);

comm1.Send
(&a, 1, MPI::INT, [...]);

// SPAWN END //

/*seq. branch*/
b = fib(b);

// SYNC BEGIN //
comm1.Recv
(&a, 1, MPI::INT, [...]);

// SYNC END //

// CONQUER BEGIN //
return a+b;
// CONQUER END //

}

(a) Using MPICH2’s (MPD) default scheduler.

int
fib (int i)
{
int a, b;
MPI::Intercomm comm1, comm2;
MPI::Request req[2];

[...]

// SYNC BEGIN //
req[0] = comm1.Irecv
(&a, 1, MPI::INT, [...]);

MPI_Block_notf();
while (! MPI::Request::Testall(1, req))
sched_yield();

// SYNC END //

// CONQUER BEGIN //
return a+b;
// CONQUER END //

}

(b) Using RBWS as the scheduler.

Figure 1. Parallel calculus of the i-th term of
Fibonacci’s series on a language similar to
C++/MPI-2. “[...]” represents non-important
parameters in function calls and, on (b), repli-
cated code from (a).

MPI process has already spawned all its dynamic pro-
cesses. Rounded-corner thick-line squares represent proces-
sors where no MPI process has created another MPI process
dynamically. Dashed arrows connect parent MPI processes
with their sons.

δ = 3

p1 p2 p3 p4 p5 p6

· · ·

Figure 2. Example of execution with
MPICH2’s default scheduling algorithm
for D&C programs.

If we consider that, on each node, the available mem-
ory bounds the number of processes by node to 15 (like on
p6), the computation ends with p1 having running only one
process, bounding the total number of processes to 30, just
two times the individual upper limit. An ideal load balanc-
ing mechanism would lead to run 15 processes by processor
(90 in total, six times the upper limit).

The next section proposes a ring-based work stealing al-
gorithm that provides near-optimal load balancing for D&C
MPI-2 programs.

4. Space-Efficient D&C Scheduling in
MPICH2

In order to enable spatial-complexity efficiency, we pro-
pose a ring-based algorithm to replace the default imple-
mentation of MPICH2. It works as follows:

1. proc invokes MPI Comm spawn, sending, through in-
ternal function calls, a corresponding message to its
MPDMan that, in turn, re-passes it to the correspond-
ing MPD.

2. MPD, after receiving the spawn message from a
MPDMan, pushes it on top of Q.

3. Whenever one MPD is not executing any MPI pro-
cess (or all of the executing ones are waiting for sub-
optimal results), it verifies Q and

(a) if Q 6= ∅, then it pops the bottom-most message
to spawn a process; or

(b) if Q = ∅, then it sends a work-stealing message
across the communication ring and waits for its
answer.

4. When one MPD receives a work-stealing message, if
it has any message on Q and the stealing request has
no work attached, then it attaches the top-most spawn

message ofQ to it. Then it forwards the message to the
“right” node in the ring.

5. The sender s of a Work Stealing request receives the
original message after one complete loop on the ring.
If it has a spawn message attached, then s spawns this
process locally. If not, s re-sends the message. This cy-
cle continues until the computation reaches its end.

This algorithm is named ring-based work stealing
(RBWS), because a given node uses the ring of MPICH2
control messages in order to “steal” waiting-to-be-spawned
processes from another node’s queue. Work stealing, as
stated by [1], is a more efficient way to balance work-
load because, in opposition to work-pushing, it is an idle
node which spends time trying to steal work, not an al-
ready working one.

RBWS has near-optimal space consumption. To under-
stand why, let us consider an execution of this algorithm.
Consider that the program is run on P nodes (1 proces-
sor per node). At a given time, if all Qs have spawn mes-
sages, then the system is at optimal balancing, even if these
Qs have different sizes. Whether a node is not executing any
MPI process (or all its processes are blocked at sync), then it
has an empty Q. This node, then, sends a work-stealing re-
quest around the ring. Given that, three situations may hap-
pen, exclusively:

1. At least one Q has a spawn message.
2. NoQ has any spawn message; the remainingP−1 pro-

cessors are processing under-threshold inputs sequen-
tially.

3. No Q has any spawn message; some of the remain-
ing P − 1 processors are executing the phases of di-
vide or conquer of the input/output. The others (if any)
are processing under-threshold inputs sequentially.

If the program is in situation (1), then it will be trivially
balanced again after one loop over the ring. If it is in situa-
tion (2), then it is already balanced and a distributed ending
is in progress, because the sequential final tasks do not pro-
duce new processes. Finally, in situation (3), the program is
again balanced after O(P) time, since both divide and con-
quer steps take this time, as well as the spawn step, which
takes a constant number of ring loops.

Thus, in all the cases, in time O(P), the system will be
balanced.

One important remark is that this implementation is not
fully transparent. Considering item 3 from RBWS, when all
running processes on a given node are executing the sync
step, this node is able to steal from the queue of another
node. Because MPD is unable to directly know when all its
processes are blocked on sync, we have defined a new prim-
itive, MPI Block notf(), that explicitly does it, thus re-
defining the sync step as follows:

sync := MPI Block notf() and non-blocking waiting.

Whenever some process is blocked, waiting for all of its
sub-optimal results, MPD is notified by MPI Block notf
and spawns the next process on Q or send work stealing

message. Doing it allows the system to avoid busy-waiting.
Effective receive of sub-optimal results is done through
pooling, using a combination of MPI’s non-blocking receive
primitives and UNIX system call sched yield. This ap-
proach is showed on Fig. 1(b).

The next section shows some practical results about this
discussion.

5. Results

All the experiments have been performed on the cluster
ICE of the Parallel and Distributed Processing Group of the
Federal University of Rio Grande do Sul. Its configuration
is:

• 14 Dell PowerEdge 1950 nodes.
• Each node with two Intel Xeon E5310 Quad Core de

1.60 GHz.
• Each processor with 2×4MB cache memory (1066

Front Side Bus).
• Node interconnection made by a 3Com 2816 switch

with Gigabit Ethernet.

All executions have been made on 12 nodes (96 proces-
sors) with 30 random-generated input sets, where each in-
put has been executed 5 times (150 executions in total).

Fig. 3 shows the execution time of an algorithm with
variable spatial complexity, Mergesort. It shows that the re-
duction of the memory consumption is considerable on vari-
able memory consumption (2×), while the execution time
was nearly the same with all the schedulers.

6. Conclusions and Final Remarks

Experimental results meet our theoretical assumptions:
the proposed distributed scheduler for D&C MPI programs,
based on spawning dynamic processes, shows near-optimal
spatial complexity, with just the same execution time as the
default MPICH2 scheduler.

The present work can be seen as a stricter and distributed
version of the previously published work [2]. It extends the
latter because its distributed nature solves the problem of a
centralized bottleneck.

Supporting D&C with dynamic tasks in MPI meets the
current trend in parallel programming in shared memory
systems: Intel’s Thread Building Blocks [5] and OpenMP3
are shared memory examples that address the same prob-
lem. Projects like KAAPI [4] are also proposal to use re-
cursivity and task-based parallelism, this time in C++ and
for distributed memory. Having this kind of expression of
the parallelism natively supported by MPI would be an im-
provement for a whole set of algorithms.

References

[1] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. In In Proceedings of the
35th Annual Symposium on Foundations of Computer Science
(FOCS), pages 356–368, 1994.

n

te
m

po
(s

)

MPICH2
RTMPD

512 16384 32768 65536 131072

0
2

4
6

8
10

Figure 3. Mergesort execution. Execution
time t vs. vector size. Black points represent
average execution time, with the standard de-
viation being always ≤ 0.01. The threshold for
Mergesort was n = 256.

[2] M. C. Cera, G. P. Pezzi, E. N. Mathias, N. Maillard, and
P. O. A. Navaux. Improving the Dynamic Creation of Pro-
cesses in MPI-2. Lecture Notes in Computer Science - 13h
European PVM/MPI Users Group Meeting, 4192/2006:247–
255, Sept. 2006.

[3] H. T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to Algorithms, Second Edition. The MIT Press,
September 2001.

[4] T. Gautier, X. Besseron, and L. Pigeon. KAAPI: A thread
scheduling runtime system for data flow computations on
cluster of multi-processors. In PASCO ’07: Proceedings of
the 2007 international workshop on Parallel symbolic compu-
tation. ACM, 2007.

[5] C. Pheatt. Intel®threading building blocks. J. Comput. Small
Coll., 23(4):298–298, 2008.

