A First Approach on Pareto’s Honeypots

Stéfano D. K. Moér, Nicolas B. Maillard
Federal University of Rio Grande do Sul, Porto Alegre/RS, Brazil,
{sdkmor, nicolas} @inf.ufrgs.br

Abstract

On peer-to-peer and grid environments one potential
problem is malicious attacks. One method to defend this
kind of structure is the Monte-Carlo probabilistic certifi-
cation, that indicates when massive attacks (i.e., attacks on
a large number of processing nodes) occurred with a finite,
desired error rate. This paper extends the ideas proposed by
Krings (2005), Roch (2007) and Chayeh (2009) , which con-
sider the probability of an attack occurring to be the same
among all participating nodes and the attacker to have pre-
viously knowledge of the target task-distribution structure.
The idea of a Paretto’s Honycomb is introduced; we model
the distribution of attack attempts using Pareto’s probabil-
ity distribution, specially the application of the Pareto Prin-
ciple, where the user elects 20% of the vulnerable tasks to
be the most important and, thus, to have 80% of the Monte-
Carlo random guesses focused on it.

1. Introduction

Distributed computing systems like Grids and peer-to-
peer networks, which are based on sharing computational
resources, must have a permanent focus on data integrity.
One potential modern threat is the use of large-scale dis-
tributed attacks, or massive attacks, which aim to falsify the
result of a parallel task in a given computational node — or
nodes — to produce an advantage in the real world (e.g. rais-
ing a bank account, gaining a powerful new weapon on an
online game, efc. ).

A paper by Krings et al. [5] considers a distributed sys-
tem where each task may spawn other tasks during runtime,
thus generating dependencies among “parent” and “sons”
tasks. There is also a whitepaper by Roch et al. [6] extend-
ing these results to divide and conquer algorithms used for
calculating a product between a vector and a matrix of num-
bers. Also, the work by Chayeh et al. [3] approaches this
kind of issues, proposing a new algorithm that evades too
many program re-executions.

All these papers propose probabilistic algorithms (asso-
ciated with error rates) to detect forged task results when
the number of attacked nodes is large. For this, all of them
share the common point of supposing two main factors: (1)
that the probability of any task being attacked is the same

among all tasks, and (2) that the user has a complete knowl-
edge of which nodes execute which tasks.

The point of this paper is that condition two induces the
attacker(s) to not fulfil condition one, i.e., to have an uni-
formly distributed probability of attacking any node; once
the user knows where the most important tasks are running,
it is more likely that those tasks are the one being forged
rather than a random minor task. Our main proposition to
cover this scenario is replacing the supposed uniform prob-
ability function with classical Pareto’s probability function,
which is shown to model many real world — in natural, so-
cial and economical fields — qualitative distributions.

The remain of this paper is disposed as follows: Section 2
introduces the fundamental concepts and notations. Section
3 introduce the concept of a Pareto’s Honeypot and relate it
to the evaluated scenario. At last, Section 4 traces some con-
clusions on the subject and lists the issues still open when
this technique is adopted as a defence mechanism.

2. Concepts and notations

Let V be a set composed by two kinds (sets) of tasks, T’
and D, ie.,V =T U D. Let T denote the tasks as seen in
the traditional context of task scheduling — the smallest pro-
gram unit of an instance of execution.

Tasks in T" are executed on (a potentially large number
of) unreliable workers. In order to verify the correctness of
the results of the execution, verifiers, implemented by re-
liable resources, re-execute selected tasks. Communication
between workers and verifiers is assumed to be fail-proof.

Let D denote the data tasks. Data tasks represent the in-
puts and outputs of a task. In the remainder of this paper,
when talking about a task, it is implied to be a task t € T".
Data tasks will be referred to as inputs or outputs of ¢ . The
sizeof T',in V, is n.

Before proceeding, we will first establish the notion of
program execution and the impact of faults. Let X denote
the execution of a workload represented by V' with a set 1
of initial inputs on a set of unreliable resources (workers)
— one could imagine it as set of 4-uples; inputs, task, de-
signed worker, and output. It is assumed that V' is static.
Each task ¢ in X executes with inputs (¢, X') and creates
output o(t, X).

We will use X to denote a set just like X, but with all
its tasks executed only over trusted workers (verifiers). If

X = X, ie if every task in X uses the same inputs and



computes the same outputs as those in X, then X is said to
be “correct”. Conversely, if at least one task in X produced
a wrong result and the execution results in X # X, then
it is said to have “failed”.In order to differentiate whether a
task execution is considered to be on a client or verifier and
whether the inputs and outputs of the execution are those

of X or X, the following notation is adopted. Note that a
“hat” always refers to a reliable resource, input or output.
Let (¢, X) denote the input of ¢ in X and i(¢, X) the in-
put of ¢ in X . Furthermore, let o(¢, X) denote the output of

¢ on the client, 6(¢, X) the output of ¢ on the verifier based

on inputs from X, and 6(¢, X) the output of ¢ on the veri-
fier based on inputs from X. Note that the notations 6(¢, X)

and 6(t, X) differ. Both indicate outputs generated on a ver-

ifier, but the first assumes (¢, X ) and the later i(¢, X ) as in-
puts.

2.1. Probabilistic Certification

Given an execution X of V, consider probabilistic cer-
tification based on a probabilistic algorithm that uses ran-
domization in order to state if X has failed or not. A Monte
Carlo certification is defined as a randomized algorithm that
takes an arbitrary , 0 < € < 1, as input and delivers (1) ei-
ther CORRECT or (2) FAILED, together with a proof that X
has failed.

The probabilistic certification is said to be with error € if
the probability of the answer CORRECT, when X has actu-
ally failed, is less than or equal to e. For instance, a Monte
Carlo certification may consist of re-executing randomly
chosen tasks in V' on a verifier, comparing results to those
obtained in X . If the results differ, X has failed. Otherwise,
X may be correct or failed. However, if X has failed, a
probabilistic certification with error ensures that the prob-
ability of non-detection of failure (based on randomly se-
lecting tasks in V' for re-execution) is less than or equal to
€.

In the sequel we denote the number of forged tasks at
V by nr . We are considering the two scenarios where ei-
ther all tasks execute correctly, i.e., np = 0, or np is large,
corresponding to a massive attack. A massive attack with
attack ratio ¢ consists of falsifying the execution of at least
ng = [¢xn] < np tasks. X is said to be “attacked with ra-
tio q” and nr > q. It should be noted that q is assumed rel-
atively large.

We will only consider the case where all tasks in V' are
independent. (For more information on dependent tasks see
Roch et al. [6]) In this case, certification of tasks is equiv-
alent to certification of results. The following Monte-Carlo
Test (MCT), based on task re-execution on a verifier, will
be used to detect if execution X contains forged tasks.

Algorithm MCT

1. Uniformly choose one task ¢ in 7'. The input and out-
put of ¢ in X are i(¢, X) and o(¢, X), respectively.

2. Re-execute ¢ on a verifier, using inputs from X, i.e.,
i(t, X), to get output 6(¢, X). If o(t, X) = o(T, X),
then return FAILED and exit.

3. Return CORRECT and exit.

Since all tasks in 7" are independent we always have
i(t, X) = i(t, X). If Algorithm MCT selects a forged task,
then one knows with certainty that the execution X has
failed. However, if MCT returns CORRECT, then one can
only make conclusions based on the probabilities of ran-
domly selecting a falsified or non-falsified task.

As demonstrated by Krings et al. [5], for any error rate
€, the minimum number NV of random re-executions needed
to achieve probabilistic certification € is

%2 |5

3. Pareto’s Honeypots

A honeypot is a classical trap for catching an oblivious
attacker. Generally speaking, it is a special machine/data
chunk that seems to be important and easily targeted, but
is designed to capture the attacker or to spare the entire sys-
tem from the massive attack. We use this word in the sense
that we expect the attacker to focus on certain tasks. These
tasks are statistically selected and are more likely to be cho-
sen by a weighted version of Algorithm MCT.

As previously stated, Pareto’s Honeypots are first deter-
mined statistically. Over a certain number of massive at-
tack attempts (it does not matter whether they are success-
ful or not), a statistical analyser tags normal tasks accord-
ing to the number of times they were detected to be forged.
So, the most forged tasks receive rank 0, the second most
forged tasks receive rank 1, and so on.

After this statistical analysis, it makes little sense to uni-
formelly choose the tasks to be re-executed; its more effec-
tive for the attacker to target important tasks and for the de-
fender to be pooling those more important tasks. Neverthe-
less, switching to a certain static task pooling distribution
is too restrictive, since attack load is suitably different from
system to system.

What we do, instead, is to build, first, a Pareto’s Dia-
gram. Here are the four main steps at doing so:

1. Consider the total number of tasks J.

2. Assemble a frequency histogram H of type o task vs.
how many times it was forged.

3. Taking the histogram from step (1), assemble a mono-
tonic function ¢ that act as follows: ¢(H, ¢) returns the
sum of how many times the ¢-est most forged tasks
were forged. E.g., ¢(H, 2) returns the sum of the num-
ber of times that task O (the most forged one), task 1
(the second most forged), and task 2 (the third most
forged task) were forged.

4. Taking the histogram from step (1), assemble a func-
tion 6 that act as follows: 6(H, 1) returns a histogram



H' C H containing only the i-est most forged tasks
and its reports.

The name “Pareto’s Diagram” refers to the fact that H
and ¢ are usually plotted at the same graphic.

The interesting property (for us) of a Pareto’s Diagram is
the fact that it (non-strictly) follows Paretto’s Principle:

“20% of the values are reported 80% of time.”

Pareto’s Principle is even more relevant than this because
it is recursive; i.e., 20% of the initial 20% of the values
are reported 80% of the original 80% of time, ad infini-
tum. Pareto’s Principle is non-strict because the percentage
do not need to be 20/80 — resulting at a nice sum of 100.
In fact, both values are not bounded by its sum; they mea-
sure different things and are not required to sum up to 100
or any other value.

In our case, the expected values — following the proposed
notation and Pareto’s Principle — are:

¢(0(H,0)) ~

Ul >,

and when generalizing to a recursive case it would be

0
k
O(0"(H,0) ~
where k is the recursion level and 6% is the k-est recursive
call of function @ over initial input (H,0).

An interesting aspect of the fact above is that the use of
both numbers 0 and 5 is not required to effectively model
the defence scenario. Both could be replaced, respectively,
by ¢ — meaning the defence grain size (i.e., the ¢ — th level
of pooling concentration) — and by C, a constant that bet-
ter fits the attack distribution among the number of tasks. As
we will see after, C' could be easily modelled using the con-
cept of a power law.

Our choice of Vilfredo Pareto’s principle was not ran-
dom, as seen next. The principle is an instance of a prob-
ability distribution of a continuous random variable named
Pareto’s Distribution. It appears for the first time at his sem-
inar 1906’s work, Manuale di Economia Politica. Pareto’s
distribution is a probabilistic power law given by

(%)a for a > a,,,
Pr{A >a} =
1 fora < a,,

where a,, is the (positive) minimum possible value of X,
and « is a positive parameter, the Paretto Index. Both are the
distribution’s parameters. Pareto’s principle is the instance
where o = log, 5.

(When comparing to our previous notation, it is easy to
notice that the parameter & is, in fact, «, and that C' corre-
sponds to a.)

Pareto’s Distribution is widely used at many research
fields, including computer science, where it was found to
model recurring patterns, specially at networks [7] [2]. Nev-
ertheless, our choice was not made by its large spectrum of
possible applications. Pareto’s distribution belongs to a fam-
ily of probability distribution functions called power laws,

which some recent papers [8] [1] [4] show to be the recur-
rent distribution of attacks on both peer-to-peer and grids
implemented over efficient networks (which are also mod-
elled by power laws). So, the considerations on this paper
could be trivially extended to other power laws through a
simple parameter change, varying it according to best fit for
a real-world case.

The main advantage we focus is that a simple histogram
would not allow the defender to vary the granularity of
the pooling distribution — noted by k£ — on performing a
weighted version of the MCT algorithm. If a first statis-
cal histogram does not fit attacks distribution, another one
would have to be made over a (potentially) long period of
time. Through Pareto’s Distribution, however, we can al-
ways adjust our pooling by increasing or decreasing the
value of k. It also fits better real-world scenarios than the
pure random MCT algorithm, although it is not asymptoti-
cally better.

4. Conclusion

This is a preliminary paper, showing the main ideas that
could lead to a full academic work. Although it provides
some useful notations and ideas, it is incomplete in the fol-
lowing ways:

* It does not provide accurate mathematical modelling
of a Paretto Honeypot, int the sense that no parameter
range is given and proven to fit this peer-to-peer/grid
scenario.

* It lacks benchmarks and comparsions to real-world
attack scenarios. Specially, after parameters are esti-
mated, it would still lack of stochastical fitness tests —
e.g., x> (Qui-square).

* A modified MCT algorithm taking into account a
Pareto’s Diagram yet remains to be formally intro-
duced and proved to be correct.

The last fault is the main question that remains open
for future works. Specially, it should be verified whether
a simple weighted pooling is sufficient to implement a good
Pareto-weighted MCT algorithm, i.e., if testing the 20%
more attacked tasks with 80% of the random guesses —
and vice-versa — is sufficient to conform with the desired
error-catching rate. This is not simple, because, as previ-
ously stated, the values 20/80 are not fixed and, thus, MCT
must be able to efficiently handle any granularity of attacks
specified by the defender.

Beware, however, that this paper introduces a rele-
vant discussion and early notation about modelling the
distribution of massive attack attempts against large par-
allel/concurrent systems. A malicious user’s knowledge
of the priority of the tasks is used pro bonno and a fu-
ture Pareto-weighted MCT algorithm is likely to per-
form better at a real-world scenario. Also, one could
try to (dis)prove that it still retains its asymptotical ef-
ficiency when random distributed attacks are consid-
ered.



References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

M. Altunay, S. Leyffer, J. T. Linderoth, and Z. Xie. Optimal
response to attacks on the open science grid. Comput. Netw.,
55:61-73, January 2011.

P. Barford and M. Crovella. Generating representative web
workloads for network and server performance evaluation.
SIGMETRICS Perform. Eval. Rev., 26:151-160, June 1998.
R. Chayeh, C. Cerin, and M. Jemni. A probabilistic fault-
tolerant recovery mechanism for task and result certification
of large-scale distributed applications. In Proceedings of the
4th International Conference on Advances in Grid and Per-
vasive Computing, GPC *09, pages 471-482, Berlin, Heidel-
berg, 2009. Springer-Verlag.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. SIGCOMM Comput.
Commun. Rev., 29:251-262, August 1999.

A. W. Krings, J.-L. Roch, S. Jafar, and S. Varrette. A proba-
bilistic approach for task and result certification of large-scale
distributed applications in hostile environments. In EGC,
pages 323-333, 2005.

J.-L. Roch and S. Varrette. Probabilistic certification of di-
vide & conquer algorithms on global computing platforms:
application to fault-tolerant exact matrix-vector product. In
PASCO, pages 88-92, 2007.

B. Schroeder, S. Damouras, and P. Gill. Understanding latent
sector errors and how to protect against them. Trans. Storage,
6:9:1-9:23, September 2010.

W. Yu, S. Chellappan, X. Wang, and D. Xuan. Peer-to-peer
system-based active worm attacks: Modeling, analysis and de-
fense. Comput. Commun., 31:4005-4017, November 2008.



