Overview of Task Parallelism Targeting Distributed Memory Architectures

Bruno Gallina Apel, Nicolas Maillard
Instituto de Informtica - UFRGS
Grupo de Processamento Paralelo e Distribudo
91501-970 Porto Alegre - RS - Brasil
{bgapel,nicolas } @inf.ufrgs.br

Abstract

This work deals with the use of the explicit task model
of parallelism at distributed memory environments. Task
parallelism is largely used in shared memory hardware,
but communication overheads bound it at the distributed
memory scenario. The paper lists current, state-of-the-art
challenges in transposing the current shared memory, task-
based model to the distributed memory paradigm, as well
as ideas in overcoming these challenges.

1. Introduction

One of the reasons that difficults the easy usage and mas-
sive propagation of parallel programming is the extensive
variety of computer architectures, like multicores, GPG-
PUs, shared memory, distributed memory and more, with-
out even citing the different programming paradigms like
message passing, data, task, and instruction parallelism.
The existence of an unified programming model would help
to overcome this scenario. However, to create this model is
not that simple, because every architecture/paradigm has its
own peculiarities and characteristics.

It is desirable to write code lines without thinking in
which type of hardware they will execute. So, the use of
system threads is an alternative, but it’s a non-portable and
low-level solution. By contrast, the use of libraries to ex-
press parallelism is portable, but in most cases is necessary
to re-write the algorithms and data structures due to partic-
ularities of the library [17].

Nowadays, the use of fasks, as units of work, is en-
couraged due to its facility to express non-structured paral-
lelism and his possibility to dynamically create new tasks at
runtime[1]. According to literature, OpenMP defines logical
tasks as “a specific instance of executable code and it’s data
environment”, whereas Intel Threading Building Blocks de-
scribes tasks as “quanta of computation mapped into phys-
ical threads.” To this work, one task will be defined as a se-

quence of instructions that can execute in parallel with other
tasks.

Trying to achieve an unified model of programming,
this work looks for a way to migrate the task parallelism
paradigm, already stablished and efficient in shared mem-
ory architectures, to distributed memory. This work relates
to Supporting Task Parallelism in MPI, also developed at
GPPD.

The rest of this paper is organized as follows. Section 2
discusses some definitions and challenges to effectively mi-
grate the task parallelism paradigm to distributed memory
environment. Section 3 presents tools which support task
parallelism, or have similarities with it. Section 4 does an
analysis of what tools or characteristics exposed in Section
3 could be used to achieve the objective of this work and
summarizes our conclusions.

2. Concepts and Challenges

The use of tasks brings some implicit efficiency, be-
cause avoids CPU’s under- or oversubscription [17]. It oc-
curs when the software creates respectively less and more
threads than available cores, creating an management over-
head. This fact does not happen with the use of tasks be-
cause the huge ammount of tasks are scheduled inside just
some threads.

Many types of schedulers can be used to manage tasks,
but those which are based in work stealing technique have
provably efficiency in terms of time and space over shared
memory[3]. The work stealing algorithm defines that every
idle processing node tries to “’steal” work from other nodes.

Despite the already established use of tasks in shared
memory architectures, when the paradigm changes to dis-
tributed memory some challenges must be overcome. There
is an extra communication overhead to treat when using ran-
domize work stealing with distributed memory. It occurs at
unsuccessful tries to steal work, i.e. when a “victim” node
does not have work.



Another problem to be solved is how to migrate tasks
between nodes. They need to be serialized due to be trans-
ported by network.

Besides, the determinant point associated with commu-
nication overhead is the granularity of the tasks. If they are
too small, there is an unnecessary overhead to communi-
cate all of them [15]. Fact avoided by using large tasks, or
various small tasks grouped as a bigger one.

To summarize, the challenges to overcome are:

e Which scheduler is better to use with tasks, on dis-
tributed memory architectures?

e How to pack and migrate task’s data?

e How to determine the best grain size of a task?

3. Support to Task Parallelism

This Section will list some tools which support some
level of task parallelism or could be used to obtain it on dis-
tributed memory.

Beginning with the the analysis of tools that work with
shared memory, there are Cilk, OpenMP, Intel Threading
Building Blocks and Google Go.

Cilk [4] is a language extension to C designed to sim-
plify programming shared memory multiprocessor systems.
It uses work stealing and concentrates on minimizing over-
heads that contribute to the work, even at the expense of
overheads that contributes to the critical path. There is also a
pre-compiler Cilk to C++ object-oriented language, named
Cilk++ [12]. Both work properly at environments with het-
erogeneous processors [2], but they were not designed for
environments that use distributed memory.

OpenMP [5] is one of the most widespread interfaces for
communication on shared memory. It is based on the inclu-
sion of compilation directives in order to parallelize exist-
ing code [16]. The scheduling in OpenMP could be static
or dynamic, moreover the granularity could be controled by
defining sizes of chunks to iterate. Initially focused on struc-
tured parallelism, i.e. loops, the OpenMP v3.0 includes the
possibility to manipulate nested parallelism and dynamic
creation of tasks.

Based on logical task concept, the Intel Threading Build-
ing Blocks (TBB) [13] maps these tasks in C++ objects.
They also are more lighter than threads, due to have less ag-
gregate data, like stacks and state of registers. During the
initialization is created one task pool to each thread and
these pools are managed by a work stealing scheduler. Also
provides support to data decomposition, automatic granu-
larity control and nested parallelism [14].

Google Go [9] is a programming language based in data
communication to obtain parallelism on shared memory en-
vironments. It shares data through channels, an adopted
concept to express communication. The channels are also

applied to synchronize two or more goroutines. Gorou-
tines are Google Go’s equivalent to tasks, also lighter and
cheaper. Presently, the goroutines scheduler is not as effi-
cient as it could be, being this a future work to its develop-
ers.

Moving to the tools that run on both shared and dis-
tributed memory, there are MPI, BoostMPI, KAAPI and
Charm++.

MPI [6] is the de facto standard on communication over
message passing on distributed memory. Its extension, MPI-
2, allows dynamic creation of process besides the use of
intercommunicators to facilitate its grouping and manage-
ment [7].

The Boost [10] libraries were created to extend and opti-
mize the C++ standard libraries. Relevant to this work there
are Boost MPI and Boost Serialization, among several op-
tions supported by Boost. The first one brings the standard
MPI to an object oriented approach, facilitating its integra-
tion with existing code. And, the second one provides ways
to desconstruct an arbitrary set of data, e.g. a C++ object, in
one byte sequence. This operation are important because al-
lows the data exchange between processor nodes.

The Kernel for Adaptative, Asynchronous Parallel and
Interactive Programming, or just KAAPI [8] is a C++
library which enables the fine/medium grain multithread
computation. Similar to Cilk, it also support dynamic data
flow synchronization and has a work stealing based sched-
uler.

And finally, Charm++ [11] is an object oriented paral-
lel language with asynchronous message passing. It defines
concurrent objects called chares, and entry methods to these
chares. An entry method is a special method which can be
invoked by another chares, besides to be the responsible to
define what to do with any message received. These meth-
ods returns void immediately after its invocation and guar-
antees that they will execute at some time.

Charm++ has a framework called Pack and UnPack
(PUP), responsible to do the packaging and data serializa-
tion, for future transfer. It also offers the Runtime System
(RTS) with the objective of remove from the developer the
need to know any characteristic of the hardware, from the
number of processor up to how they interact. The RTS is
also responsible for the load balancing, migrating chares be-
tween processors, and dynamic relocation of resources.

3.1. Conclusion

After the study of the tools above described, the follow-
ing can be concluded:

e Cilk, TBB and KAAPI use the algorithm of work steal-
ing to schedule. Which yet is considered one of the
most efficient schedulers to manage tasks.



OpenMP and TBB have its own concept of explicit
task. With the possibility of generic task definition, the
model proposed by TBB is close to the ideal. How-
ever, both tools can only execute on shared memory
environment.

Google Go and Charm++ creates concepts similar to
explicit task, which are goroutine and entry meth-
ods, respectively. Go runs only over shared memory,
Charm++ can be executed in both memory models.

KAAPI and Charm++ have similarities, but the dis-
tributed memory version of KAAPI is not stable. Be-
sides that Charm++ provides ways to serialize and mi-
grate objects.

MPI and Boost libraries do not provides ways
of scheduling or managing the granularity, mak-
ing these actions an user’s responsibilitie.

Therefore, as a future work is proposed the creation and
addition of work stealing scheduler and granularity control
to Charm++ to achieve similar performance that were ob-
tained in TBB. The development of these mechanisms will
be the objective of the author’s master thesis.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin,
F. Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang. The
design of openmp tasks. Parallel and Distributed Systems,
IEEE Transactions on, 20(3):404 —418, mar. 2009.

M. A. Bender and M. O. Rabin. Scheduling cilk multi-
threaded parallel programs on processors of different speeds.
In Proceedings of the twelfth annual ACM symposium on
Parallel algorithms and architectures, SPAA *00, pages 13—
21, New York, NY, USA, 2000. ACM.

R. Blumofe and C. Leiserson. Scheduling multithreaded
computations by work stealing. In Foundations of Com-
puter Science, 1994 Proceedings., 35th Annual Symposium
on, pages 356 —368, Nov. 1994.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiser-
son, K. H. Randall, and Y. Zhou. Cilk: an efficient multi-
threaded runtime system. In PPOPP ’95: Proceedings of the
fifth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 207-216, New York, NY,
USA, 1995. ACM.

0. A.R. Board. Openmp application program interface - ver-
sion 3.0. Technical report, 5 2008.

M. P. I. Forum. MPI: A Message-Passing Interface Stan-
dard. Technical Report CS-94-230, University of Tennessee,
Knoxville, Tennessee, 1994.

M. P. I. Forum. MPI: A Message-Passing Interface Standard
ver. 2.1. Technical report, Message Passing Interface Forum,
Junho 2008.

T. Gautier, X. Besseron, and L. Pigeon. Kaapi: A thread
scheduling runtime system for data flow computations on
cluster of multi-processors. In PASCO ’07: Proceedings of

(9]
(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

the 2007 international workshop on Parallel symbolic com-
putation, pages 15-23, New York, NY, USA, 2007. ACM.
Google Go Project Team. The go programming language
specification. Technical report, Google, 2011.

A. Gurtovoy and D. Abrahams. The boost c++ metaprogram-
ming library. Technical report, MetaCommunications, 2002.
L. V. Kale and S. Krishnan. Charm++: a portable concurrent
object oriented system based on c++. In Proceedings of the
eighth annual conference on Object-oriented programming
systems, languages, and applications, OOPSLA 93, pages
91-108, New York, NY, USA, 1993. ACM.

C. E. Leiserson. The cilk++ concurrency platform. In
DAC ’09: Proceedings of the 46th Annual Design Automa-
tion Conference, pages 522-527, New York, NY, USA, 2009.
ACM.

J. Reinders. Intel threading building blocks. O’Reilly & As-
sociates, Inc., Sebastopol, CA, USA, first edition, 2007.

A. Robison, M. Voss, and A. Kukanov. Optimization via re-
flection on work stealing in tbb. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Sympo-
sium on, pages 1-8, April 2008.

V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S. Kr-
ishnamoorthy. Lifeline-based global load balancing. In Pro-
ceedings of the 16th ACM symposium on Principles and
practice of parallel programming, PPoPP ’11, pages 201—
212, New York, NY, USA, 2011. ACM.

M. Sato. Openmp: parallel programming api for shared
memory multiprocessors and on-chip multiprocessors. In
System Synthesis, 2002. 15th International Symposium on,
pages 109 — 111, 2002.

T. Willhalm and N. Popovici. Putting intel ®threading build-
ing blocks to work. In IWMSE ’08: Proceedings of the Ist
international workshop on Multicore software engineering,

pages 3—4, New York, NY, USA, 2008. ACM.



