Trace-based Visualization as a Tool to Understand I/0O Performance of
Application and File System

Rodrigo Kassick, Francieli Zanon, Norton Barbieri, Philippe Navaux
Grupo de Processamento Paralelo
Instituto de Informatica - UFRGS

Abstract

For a long time, data I/O and storage has been a source
of performance contention for HPC applications: the lim-
ited bandwidth to transfer data in and out of processing
nodes and storage systems counters the increasing comput-
ing power provided by bigger clusters with faster proces-
sors and accelerators. Scaling applications to a large num-
ber of processors in this context is no longer only a matter
of good domain decomposition: data organization and ac-
cess must be an ever-present consideration to enable scala-
bility.

Understanding the behavior of applications and file sys-
tems (how much data is necessary to it’s execution, when
it is accessed, how it is distributed) is an important step to
provide indications as of what optimizations are necessary
— and at which points of the applications’ code or the in-
frastructure.

In this paper, we present the use of trace-based visual-
ization on two-levels — application and file system — as a
tool to help understand the performance issues of a paral-
lel application.

1. Introduction

Cluster architectures and parallel programing are nowa-
days the standard solution to develop high performance ap-
plications. These application are usually associated with
large data-sets used either as input or generated as result
of their execution. Due to the volume and characteristics of
these data-sets, there is need for a permanent storage facil-
ity accessible by all the instances of the application on the
cluster.

The performance of this infrastructure is limited by two
main factors: the speed of the underlying storage devices is
orders of magnitude lower than the speed of the process-
ing units; and the bandwidth available to transfer data from
processing nodes to the storage system is limited both in

the clients and at the storage servers. These factors com-
bined make the storage infrastructure a significant bottle-
neck for parallel applications [5].

Making applications scale up to thousands of process-
ing units requires developers, system administrators and de-
signers to understand the behavior of the application and the
I/O infrastructure.

One way of understanding this behavior is through vi-
sualization of events in the application generated through
trace libraries. In the case of 1/O, these events occur on a
variety of places:

the application code , managed by the developer

the VFS layer of the system’s kernels and other system
processes (e.g. FUSE)

the network stack of clients and servers

the processes of the storage servers , distributed on sev-
eral machines

In such scenario, studying the behavior of the application by
looking at only one of these levels may provide incomplete
information and lead to false assumptions on the perfor-
mance issues of the system. Thus, it’s necessary to make a
comprehensive instrumentation of all these layers involved
on the storage of data and study them in a combined fash-
ion.

In this paper, we describe the use of trace-based vi-
sualization to study the performance issues of OLAM on
the PVFES file system. The remaining of the paper is di-
vided as follows: in Section 2 we describe the Ocean-Land-
Atmosphere Model and it’s I/O issues. Section 3 we detail
the tracing and visualization tools used in this work. In Sec-
tion 4 we present the tracing strategy and events organiza-
tion to allow the intended performance study. Finally, we
present our conclusions on Section 5

2. The Ocean-Land-Atmosphere Model and
PVFS

The Ocean-Land-Atmosphere Model (OLAM) [8], de-
veloped at Duke University, aims to represent both global
and local scale phenomena, as well as bi-directional itera-
tions among regions on different scales. This is achieved by
a global grid that can be locally (statically) refined on given
points of interest. OLAM was developed to extend features
of the Regional Atmospheric Modeling System (RAMS) [9]
to the global domain. It uses many of RAMS’ functions,
such as physical parametrization and I/O formats.

The model consists of a global geodesic grid with trian-
gular mesh cells with local refinement capability, the full
comprehensible non-hydrostatic Navier-Stokes equations, a
finite volume formulation of conservation laws for mass,
momentum and potential temperature, and others. While the
global domain expands the range of atmospheric systems
and scale interactions that can be represented in the model,
local refinements can be specified to cover areas with more
resolution through recursion. OLAM is developed in FOR-
TRAN 90 and parallelized with Message Passing Interface
(MPI).

OLAM is an iterative model, where each timestep may
result in the output of data as defined in its parameters. The
amount of written data varies with the number of processes
running the simulation (the number of independent output
files increases with the processes count). This leads to an ac-
cess pattern of large amount of small files” that comes with
a great cost in terms of I/O performance: the overhead of file
creation and the small size of the writes causes the file sys-
tem to perform poorly.

PVES [4] is a good choice of parallel file system for
this situation since it includes optimizations target on small
files [3]. In recent works [6] we have shown that despite
such optimizations, OLAM’s I/O performance on PVFS
still suffers greatly.

To mitigate this problem, we evaluated a hybrid
MPI+OpenMP version of OLAM on top of PVFS [2].
The hybrid version outperformed the original MPI imple-
mentation by one order of magnitude due to the reduced
number of files. This led to the current approach of study-
ing the interaction of file system and application to better
understand what optimizations can be used to improve per-
formance.

3. Trace Libraries and Visualization Tools

To study the behavior of OLAM and the underlying file
system we choose to use a tracing library to register events
on the systems of interest and use them for later study. The
tool used to capture these events is LibRastro [10].

Using LibRastro requires the developer to manually add
the events of interest along the application code (as well
as all the data necessary to describe the event). Each pro-
cess involved in the target application generates a binary
trace file. These files need to be merged and converted to a
higher level language. This conversion must be made by an
application-specific code, since the semantic of the events
may change from one application to another.

One high-level event description language is Pajé [1].
Pajé allows the developer to describe events, states and ar-
rows between distinct containers (a container being a pro-
cess, a computing node, a cluster, a file or any element that
may have states, events or be source or target of an arrow).
The developer is free to create containers and the associ-
ated events in whatever fashion better describes his code.

The visualization of the events can be done either via
the Pajé Visualization Tool or Triva [7], built on top of
Pajé infrastructure. Pajé allows for agantt-chart style, time-
based visualization of the events and states of the contain-
ers. Triva, on the other hand, allows for visualization of
other kinds of relations, like analysis of the time spent on
each kind of state.

4. Application and File System Trace Extrac-
tion

To provide traces of the events in OLAM and PVFS, it’s
necessary to add LibRastro function calls around each code
block that represents a state (like function calls). This im-
plies inserting code in several points of OLAM and PVFS
client and server. So far, we have instrumented these sys-
tems to trace the following kinds of states:

e OLAM’s MPI and other utility functions
e OLAM’s physical simulation functions
e HDFS5 1/0 functions in OLAM

e PVFS Server’s state machine functions and states for
the following tasks:

— read

— write

— open

— close

— create

— meta-data operations
— actual I/O on disk

The traces generated by these processes are later merged
and converted to the Pajé language. This is done by a spe-
cially developed converter that transforms the events from
these different layers into more descriptive units of Pajé.

Figure 1 presents the proposed Pajé visualization of the
traces. Py and P; represent MPI Processes for the applica-
tion, while Servery and Server; represent instances of the
file system’s servers. The rectangles represent the states of
the application and the file system, indicating the time spent
on each given function. The arrows between the elements in
this visualization can represent either a point-to-point com-
munication (between processes), an I/O operation (between
a process and a file) or the origin of a given I/O state — pro-
cesses write to a file; a write state on a server represents a
write operation on one specific file, etc.

The temporal event visualization of Figure 1 is the stan-
dard visualization obtained with the Pajé Visualization Tool.
Triva will for other kinds of visualization, like temporal
analysis of the time spent on each state of the application
and file system, like studying what kind of I/O operation
represented a bottleneck on the file system or in the appli-
cation.

5. Conclusions

Studying I/O performance of distributed applications ex-
ecuting on top of parallel file systems is an important task to
identify points of contention and propose optimizations that
allow for better scalability. On the other hand, one-sided
studies may lead to wrong assumptions on the causes of
contention.

Trace visualization of both application and storage in-
frastructure’s events will allow us to get a bigger picture of
how these two independent systems interact and what are
the real sources of contention. To achieve the level of de-
tail intended in the beginning of the project, it’s still neces-
sary to finish instrumentation of PVFS’s client and the con-
clusion of the converter code.

The objective of the project is to identify possible opti-
mizations in OLAM and PVFS and implement and evaluate
such changes, targeting a conference paper.

References

[1] P. Augerat, C. Martin, and B. Stein. Scalable monitoring and
configuration tools for grids and clusters. In Parallel, Dis-
tributed and Network-based Processing, 2002. Proceedings.
10th Euromicro Workshop on, pages 147-153. IEEE, 2002.

[2] F. Boito, R. Kassick, L. Pilla, N. Barbieri, C. Schepke,
P. Navaux, N. Maillard, Y. Denneulin, C. Osthoff, P. Grun-
mann, P. Dias, and J. Panetta. I/O performance of a large at-
mospheric model using PVFS. In Rencontres francophones
du Parallélisme (RenPar’20), 2011.

[3] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and
T. Ludwig. Small-file access in parallel file systems. Par-

allel and Distributed Processing Symposium, International,
0:1-11, 2009.

[4] P. H. Carns, 1. 1. I. Walter B. Ligon, R. B. Ross, and
R. Thakur. Pvfs: a parallel file system for linux clusters.
In Proceedings of the 4th conference on 4th Annual Linux
Showcase and Conference (ALS’00), pages 28-28, Berkeley,
CA, USA, 2000. USENIX Association.

[5] J. Michalakes, J. Hacker, R. Loft, M. O. McCracken,
A. Snavely, N. J. Wright, T. Spelce, B. Gorda, and
R. Walkup. WRF Nature Run. Journal of Physics: Con-
ference Series, 125(1):012022, 2008.

[6] C. Osthoff, P. J. Grunmann, F. Boito, R. Kassick, L. Pilla,
P. O. Navaux, C. Schepke, J. Panetta, N. B. Maillard, P. L. S.
Dias, and R. Walko. Improving performance on atmospheric
models through a hybrid OpenMP/MPI implementation. In
Proceedings of the 9th IEEE International Symposium on
Parallel and Distributed Processing with Applications,2011.

[7] L. Schnorr, G. Huard, and P. Navaux. Triva: Interactive 3d vi-
sualization for performance analysis of parallel applications.
Future Generation Computer Systems, 26(3):348-358, 2010.

[8] R. Walko and R. Avissar. The Ocean-Land—Atmosphere
Model (OLAM). Part I: Shallow-Water Tests. Monthly
Weather Review, 136:4033-4044, 2008.

[9] R. Walko, C. Tremback, and R. Hertenstein. RAMS - The
Regional Atmospheric Modeling System - Version 3b - Users
Guide. ASTER Division, Fort Collins, CO, 1995.

[10] G. Wiedenhoft, P. da Silva, B. Stein, and L. de Computacao.
librastro: Uma biblioteca para gerag ao e leitura de rastros de
aplicag oes.

Po

P

©
fd
e C
© ()
o |
I OpenMP t0 -Iq—')
CU OpenMP t1 - —
d OpenMP t2 —
-: OpenMP t3 ;
; Computing Phase
- >
\\
\\
FIIe_rO open |[write | [write [[write | [Write | [write || write | » u » E%‘
[opened |
i Y Y Y Yy \ \
FI Ie_rl open || \rite)N write |[write | [write | [write [[write | u » & Close
[opened
A
Server, _——

Server;

7)
open write

Figure 1: Proposed Components in Pajé

