
Static Process Mapping Heuristics Evaluation for MPI Processes
in Multi-core Clusters

Manuela K. Ferreira, Vicente S. Cruz, Philippe O. A. Navaux
Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS)

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil
{mkferreira, vscruz, navaux}@inf.ufrgs.br

Abstract

An important factor that must be considered to achieve
high performance on parallel applications is the mapping
of processes on cores. However, since this is an NP-hard
problem, it requires different mapping heuristics that de-
pend on the application and the hardware on which it will
be mapped. This work compares two static process mapping
heuristics, Maximum Weighted Perfect Matching (MWPM)
and Dual Recursive Bipartitioning (DRB), with the best
mapping found by Exhaustive Search (ES) in homogeneous
multi-core clusters using MPI. The objective is to compare
the performance improvement of MWPM with the already
established DRB. The analysis of the NAS benchmarks run-
ning with 16 processes presents very similar performance
improvements for both heuristics, with an average improve-
ment of 13.79% for MWPM and 14.07% for DRB.

1. Introduction

Multi-core processors can be found in personal comput-
ers and high performance computers (HPC). Four to eight
cores in a single chip are common today, and the trend is
that we will have more cores per chip since Moore’s law is
still applying [2]. Consequently, old methods for develop-
ing and executing programs do not make a reasonable use of
the resources of new architectures, e. g. leaving some cores
running in an idle state. Hence, new methods are required
to make an effective use of these resources.

When we place the processes of a parallel application
on current multi-core environments, we have an instance of
the process mapping problem [3], that is deciding in which
processing unit each parallel process will execute with the
goal to achieve the best performance. It is an NP-hard prob-
lem and consequently does not have a generic solution in
a polynomial time, so we can consider the software details
and hardware platform characteristics on which it will exe-
cute to find a specific solution.

The communication between processes has a significant
impact on the performance of parallel applications. Hence
it must be take into consideration in the development of
process mapping heuristics to decrease the communication
time and increase performance [6] [12]. Processes which
have the highest amount of communication between each
other should be placed on processors so that the communi-
cation cost is minimal.

The MPICH communication method, since version 2-
1.3, is nemesis [5] that combines the already used socket
communication method with the shared memory communi-
cation method. Moreover, it takes into account if the pro-
cesses are sharing memory to decide which communication
method to use. So, when running MPICH processes in a
multi-core cluster, the faster shared memory communica-
tion method is used when processes exchange data within a
chip – intrachip communication – or within a node – intra-
node communication. The socket communication method is
only used when a process sends a message to another pro-
cess located on a different node in the cluster (internode
communication).

This paper evaluates two static process mapping heuris-
tics for multi-core clusters, using the MPI version of
the NAS Parallel Benchmark as the workload [1]. The
first heuristic is the Maximum Weight Perfect Match-
ing (MWPM) algorithm [9], which uses the commu-
nication pattern of the application to create a mapping
using a variant of the Edmonds-Karp algorithm. The sec-
ond heuristic uses the Dual Recursive Bipartitioning
(DRB) algorithm, creating the mapping by applying a di-
vide and conquer method [10]. Both heuristics are com-
pared to the Exhaustive Search (ES).

The organization of this paper is the following. Section 2
presents the two heuristics that are compared on this work,
MWPV and DRB, and the ES. The heuristics performance
results are presented and analyzed in Section 3. On Section
4, we show some related works that uses static process map-
ping. Finally, Section 5 is dedicated for conclusion and fu-
ture works.



2. Exhaustive Search and Static Process Map-
ping Heuristics

To describe the heuristics, we need do introduce some
definitions. Let A(P,B) be the communication graph of
the application, where P is the set of processes that repre-
sents the vertices of A. Let B be the set of edges so that
B(px, py), where px, py ∈ P , represents the amount of
communication exchanged between the processes px and
py . In general, the three algorithms presented offer a method
of placing a pair of processes (px, py) on cores that have a
shared resource. Thus it is expected that the communica-
tion latency is minimized. in this work, the shared resource
is a level of memory hierarchy.

To get the amount of messages transfered between pro-
cesses and to create the communication pattern it is neces-
sary to execute the application that will mapped. The com-
munication pattern is stored on graph A, represented as an
adjacency matrix, and it is used as an input parameter of
both mapping heuristics.

The Exhaustive Search (ES) is used as performance
baseline. It provides the best process mapping, but it takes
a factorial time and is not suited for a considerable number
of processes and cores. Therefore, a good solution to over-
come this issue is to use a method which finds a reason-
ably good mapping in polynomial time. So, the reduction
of the application performance is amortized by reducing the
time needed to find a mapping. We compare the MWPM
and DRB heuristics with ES to examine the performance
difference between these algorithms.

All these methods are focused on process mapping on
cores which share the L2 cache. As output, they generate an
affinity file containing the ranks of the processes and core
numbers on which they should be mapped. The following
subsections describe the ES method and the two heuristics,
MWPM and DRB.

2.1. Exhaustive Search

This method obtains the best process placement in terms
of communication amount by searching exhaustively all
combinations of process pairs that can be mapped on pairs
of cores. After finding the best combination, it maps each
pair of processes to a respective pair of cores which share
the L2 cache.

The algorithm receives a list of all possible process pairs
where each list element is a possible process mapping. The
best mapping is defined by the element of the list where
the sum of communication amount of all process pairs is
the highest. Finally, these pairs are mapped to pairs of cores
which share the L2 cache.

Although the ES method provides the best process map-
ping in terms of communication amount, it is not practical

because the search comprises all tasks placement possibili-
ties, which takes a factorial time.

2.2. Maximum Weighted Perfect Matching

The MWPM algorithm creates a process placement in
polynomial time by modeling the mapping problem as a
maximum graph pairing with minimum cost. This approach
is a feasible solution and works in three steps. In the first
step, the algorithm groups the processes that have a signif-
icant amount of exchanged messages in pairs, and places
each of them in pairs of cores that shares a L2 cache and tak-
ing advantage of intrachip communication. The second step
allocates each pair of processes-pairs on the processors us-
ing the intranode communication. The third step distributes
the pairs of processes-pairs on the nodes considering the in-
ternode communication [7].

Basically, the algorithm works by choosing from the
application graph A(P,B) the processes that should stay
closer within the memory hierarchy based on the amount of
messages. The problem is to find a subset M of B so that
for every process p ∈ P there is only one edge b ∈ B to
which p is attached, and the sum of all edges b ∈ M is
maximal. This problem is solved by the Edmonds-Karp al-
gorithm with a time complexity of O(N3) [8]. We applied
this algorithm three times for each type of communication.

2.3. Dual Recursive Bipartitioning

The DRB algorithm is based on the divide and con-
quer method to generate the mapping graphs A(P,B) and
T (C, L) [10]. T (C, L) is the processor architecture graph,
where C represents the cores of the processors and L the set
of edges. L(cx, cy) is defined as the latency of the commu-
nication channel between the cores cx and cy .

To create the mapping, the algorithm starts with the set
of processes P of the application graph A, and a domain
structure comprising the whole set of cores C. Then, it ap-
plies the functions domain bipartitioning and process bipar-
titioning on the domain structure and set of processes, re-
spectively. This way, the domain structure is divided into
two subdomains of cores, and the set of processes, into two
disjoint subset of processes. The next step of the algorithm
consists of attaching each of the new subsets of processes
to a subdomain, and consequently minimizing the commu-
nication volume between these two subsets. These stages
are repeated recursively until the set of processes has only
one process and the subdomain has only one core, so the
process singleton subset is mapped to a core singleton sub-
domain [11].



Figure 1. Performance Improvement Compared to the MPICH2 Default Mapping

3. Experimental Results

To evaluate the three algorithms, we used the BT, CG,
EP, FT, IS, LU, SP and MG benchmarks of the NAS-NPB-
MPI benchmark suite. All of them were compiled for the
C class size and executed with 16 processes. To capture the
communication pattern of each application and create their
respective graphs A(P,B) based on the amount of data ex-
changed between the processes, we executed all applica-
tions using the MPE library of the MPICH2-1.2 MPI dis-
tribution. Then, we applied the mapping generated by the
three algorithms to a cluster containing two nodes with two
Intel Xeon E5405 quad-core processors each. Each proces-
sor contains two 6MB L2 caches, each of which is shared
between two cores. Finally, we measured the speedup of the
ES, MWPM and DRB algorithms compared to the MPICH2
default mapping (round-robin). Table 1 shows the execu-
tion time of these four mappings and the variability for
a confidence interval of 95%. Figure 1 shows the perfor-
mance improvements of the three algorithms compared to
the MPICH2 default mapping.

The FT and EP benchmarks present negative or very
small improvement because all processes of FT exchange
the same amount of messages, while the processes of EP
do not exchange any messages. The CG benchmark has the
best performance improvement for both heuristics since it
has a higher difference of communication volume between
specific pairs of processes, which is a good use case for the
mapping algorithms.

We observed that the MWPM and the DRB algo-
rithms improve the performance by the same amount.
Moreover, their improvement is very close to the improve-
ment achieved when mapping using the ES algorithm.
Using ES, performance was improved by 14.54% in av-
erage, compared to 13.79% when using MWPM and
14.07% when using the DRB. We concluded that, if we ex-
ecute the applications using 16 processes as we used in our
experiments, it is better to use the ES algorithm to gener-

ate the best static process mapping. However, even though
MWPM and DRB makes similar results, MWPM was de-
veloped for homogeneous architectures that share the
L2 cache between pairs of cores, DRB can be applied
on generic hardware architectures. Hence the latter al-
gorithm is recommended in most static process mapping
situations, but more research is needed to validate these re-
sults.

4. Related Works

A strategy to reduce the communication latency in par-
allel applications that have a static communication pattern
is presented in [11]. It uses the DRB algorithm applied to
a meteorology application, reaching a speedup of 9% us-
ing a technique that considers the cache memory sharing
within a chip. However, as in our work, a previous execu-
tion of the application is required, and it is advantageous
only in applications which are executed repeatedly, where
the time spent in the previous execution is compensated by
the speedup achieved on next computations. In our work,
the DRB is not restricted only to one application, but it is
executed in a generic way to compare the heuristics.

The work in [12] evaluates the process affinity on static
process mapping with MPI for SMP-CMP clusters, because
the authors argue that its impact on parallel applications per-
formance is not very clear. The execution of NAS bench-
marks is performed to analyze some characteristics, like
scalability and communication latency, that indicates a rea-
sonable affinity usage. In our work, we also analyze the im-
pact of process affinity, but through three process mapping
methods that explore the communication latency character-
istic.

The Hardware Locality (hwloc) is a software pre-
sented in [4] that collects hardware information related to
cores, caches and memory, and provides them to the map-
ping application. It was evaluated in pure MPI and hy-
brid MPI/OpenMP applications which use the information



Table 1. Execution Times

provided by this software to execute a static and dy-
namic process mapping. The experiments presented in
our work could be extended by using this tool to rec-
ognize the computer architecture when it is not known
beforehand.

5. Conclusions and Future Works

In this paper we have done a performance evaluation
with two static process mapping heuristics based on pro-
cesses communication volume using the Exhaustive Search
algorithm as a baseline for comparison. The results show
that performance improvement of both MWPM and DRB
are close to ES. For the execution on 16 cores, the ES had
an average improvement of 14.54%, compared to 13.79%
from MWPM and 14.07% from DRB, which means that
both heuristics achieved equivalent performance improve-
ments.

However, MWPM was developed for homogeneous ar-
chitectures that share L2 cache between each pair of cores,
while DRB does not have this restriction, since it can be ap-
plied to generic hardware architectures. It made us assume
that this last heuristic could be used in most situations, but
more research is needed to validate these results.

For the future, we intend to evaluate these heuristics in
a non-dedicated environmnent to take into account the con-
tention on the communication caused by the execution of
other parallel applications which do not belong to the eval-
uated benchmark. In parallel we will also generate more ex-
ecution time results considering different computer archi-
tectures rather than considering only processors that share
L2 caches between pairs of cores.

References

[1] National Aeronautics and Space Administration (NASA).
NAS Parallel Benchmarks (NPB3.3), Available in
http://www.nas.nasa.gov/Resources/Software/npb.html, ac-
cessed in may 2010.

[2] K. Asanovic, et al. A view of the parallel computing land-
scape. Commun. ACM, 52:56–67, October 2009.

[3] S. Bokhari. On the mapping problem. Computers, IEEE
Transactions on, C-30(3):207–214, march 1981.

[4] F. Broquedis, et al. hwloc: A generic framework for man-
aging hardware affinities in hpc applications. Parallel, Dis-
tributed, and Network-Based Processing, Euromicro Confer-
ence on, 0:180–186, 2010.

[5] D. Buntinas, G. Mercier, and W. Gropp. Implementation and
evaluation of shared-memory communication and synchro-
nization operations in mpich2 using the nemesis communica-
tion subsystem. Parallel Computing, 33(9):634 – 644, 2007.
Selected Papers from EuroPVM/MPI 2006.

[6] L. Chai, Q. Gao, and D. Panda. Understanding the im-
pact of multi-core architecture in cluster computing: A case
study with intel dual-core system. In Cluster Computing and
the Grid, 2007. CCGRID 2007. Seventh IEEE International
Symposium on, pages 471 –478, may 2007.

[7] E. Cruz, M. Alves, and P. Navaux. Process mapping based
on memory access traces. In Computing Systems (WSCAD-
SCC), 2010 11th Symposium on, pages 72 –79, oct. 2010.

[8] V. Kolmogorov, V. Blossom A new implementation of a
minimum cost perfect matching algorithm. In Mathemati-
cal Programming Computation, pages 43-67, 2009.

[9] C. Osiakwan and S. Akl. The maximum weight perfect
matching problem for complete weighted graphs is in pc. In
Parallel and Distributed Processing, 1990. Proceedings of
the Second IEEE Symposium on, pages 880 –887, dec 1990.

[10] F. Pellegrini and J. Roman. Experimental analysis of the dual
recursive bipartitioning algorithm for static mapping. Tech-
nical report, TR 1038-96, LaBRI, URA CNRS 1304, Univ.
Bordeaux I, 1996.

[11] E. Rodrigues, F. Madruga, P. Navaux, and J. Panetta. Multi-
core aware process mapping and its impact on communica-
tion overhead of parallel applications. In Computers and
Communications, 2009. ISCC 2009. IEEE Symposium on,
pages 811 –817, july 2009.

[12] C. Zhang, X. Yuan, and A. Srinivasan. Processor affinity
and mpi performance on smp-cmp clusters. In Parallel Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW),
2010 IEEE International Symposium on, pages 1 –8, april
2010.


