Binary Pajé Trace Format Proposal

Scientific Initiation scholar: Vinícius A. Herbstrith Professor adviser: Lucas M Schnorr

WSPPD 2015 Porto Alegre, August 21th, 2015

Context

- Computation systems are getting bigger and more complex
 - High performance
 - Distributed computing

Context

- Computation systems are getting bigger and more complex
 - High performance
 - Distributed computing
- Parallel and distributed applications also get bigger

■ Space: Millions of processes

■ Time: Big number of events

Performance Analysis

- Parallelism Objective
 - Achieve the best possible performance for the application

Performance Analysis

- Parallelism Objective
 - Achieve the best possible performance for the application
- Workflow

Performance Analysis

- Parallelism Objective
 - Achieve the best possible performance for the application
- Workflow

- Data collection
 - Sampling, profilling, tracing

Application Collected Data

- Ondes3D: 3D Sismic propagation
 - 50s running → 100k events

Application Collected Data

- Ondes3D: 3D Sismic propagation
 - 50s running → 100k events
- LU.A.32: Gauss-Seidel method for solving linear equations
 - 4.79s running → 7 million events

Application Collected Data

- Ondes3D: 3D Sismic propagation
 - 50s running → 100k events
- LU.A.32: Gauss-Seidel method for solving linear equations
 - 4.79s running → 7 million events
- Naïve Particle Simulator(BSP based)
 - 6.26s running → 200 million events

Motivation

- Pajé Format
 - Achieve scalability through better performance on file reading

Outline

- Pajé trace file format
- Binary Pajé trace file format
 - Librastro, Poti, PajeNG
- Experiments and performance analysis
- Conclusion

Pajé trace file format

■ Pajé trace file format

```
%EventDef SendMessage 21
     Time date
   ProcessId int
   Receiver int
     Size int
%EndEventDef
%EventDef UnblockProcess 17
     Time date
  ProcessId int
   LineNumber int
     FileName string
%EndEventDef
21 3.233222 5 3 320
17 5.123002 5 98 sync.c
```

Pajé trace file format

- Pros
 - Extensibility

Pajé trace file format

- Pros
 - Extensibility
- Cons
 - Textual nature
 - Higher intrusion

Binary Pajé trace file format

■ Two version:

Binary Pajé trace file format

- Two version:
 - Standard version
 - Direct translation of the Pajé trace format

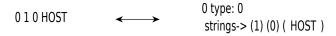
Binary Pajé trace file format

- Two version:
 - Standard version
 - Direct translation of the Pajé trace format
 - Reference version
 - Makes use of references from integer values to string values

Binary Pajé trace file format: libRastro + Pajé

- LibRastro
 - Generic tracing library to register the behavior of any computer program

Binary Pajé trace file format: libRastro + Pajé


- LibRastro
 - Generic tracing library to register the behavior of any computer program

Header Conversion

Pajé binary trace file format: libRastro + Pajé

- LibRastro
 - Generic tracing library to register the behavior of any computer program

Event Conversion on standard version

Binary Pajé trace file format: libRastro + Pajé

- LibRastro
 - Generic tracing library to register the behavior of any computer program

Event Conversion on references version

```
0 type: 888

strings-> ( HOST )

0 type: 888

strings-> (0)

0 type: 888

strings-> (1)

0 type: 0

u_int16_ts-> (2) (1) (0)
```

Binary Pajé trace file format: Poti + libRastro

- Poti
 - Library to create trace files in the Pajé file format

Binary Pajé trace file format: Poti + libRastro

- Poti
 - Library to create trace files in the Pajé file format
- libRastro integration
 - Create .rst files(libRastro format)
 - Convert Pajé text files to the new binary format
 - Convert Pajé binary files to Paje text

Binary Pajé trace file format: PajeNG + libRastro

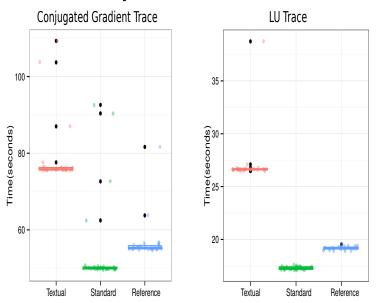
- PajeNG
 - Visualization tool for the analysis of Pajé trace files

Binary Pajé trace file format: PajeNG + libRastro

- PajeNG
 - Visualization tool for the analysis of Pajé trace files
- libRastro integration
 - Reading and decodification of .rst files generated on Poti
 - New class: PajeRastroTraceEvent
 - New class: PajeRastroReader
 - Standard: direct read
 - Reference: resolve the integer and string references

Experiments

- Computer:
 - Intel i7-4770 CPU (3.40GHz)
 - HD 1TB SATA II (3.0Gb/s)
 - 8GiB DIMM DDR3(1.6GHz)


Experiments

- Computer:
 - Intel i7-4770 CPU (3.40GHz)
 - HD 1TB SATA II (3.0Gb/s)
 - 8GiB DIMM DDR3(1.6GHz)
- Trace files:
 - LU decomposition application which generated a 0.77 GB trace file
 - Conjugated gradient application which generated a 2.1 GB trace file

Experiments

- Computer:
 - Intel i7-4770 CPU (3.40GHz)
 - HD 1TB SATA II (3.0Gb/s)
 - 8GiB DIMM DDR3(1.6GHz)
- Trace files:
 - LU decomposition application which generated a 0.77 GB trace file
 - Conjugated gradient application which generated a 2.1 GB trace file
- 30 executions for each trace file in it's textual, binary standard and binary reference version

Performance analisys

Conclusion

- 32% time reduction for the binary standard version
- 27% time reduction for the binary reference version

Conclusion

- 32% time reduction for the binary standard version
- 27% time reduction for the binary reference version
- File size:
 - 48% decrease on the the LU decomposition trace file
 - 43% decrease on the conjugated gradient trace file

Conclusion

- 32% time reduction for the binary standard version
- 27% time reduction for the binary reference version
- File size:
 - 48% decrease on the the LU decomposition trace file
 - 43% decrease on the conjugated gradient trace file
- Future work
 - Experiments on instrusion
 - Compression algorithms

Thank you for your attention

■ Contact: vaherbstrith@inf.ufrgs.br