Comparison of sequential and parallel algorithms for word and context count

Names: Eduardo Ferreira, Francieli Zanon, Aline Villavicencio

Groups: Processamento de linguagem natural e

Processamento paralelo e distribuido (UFRGS)

Motivation

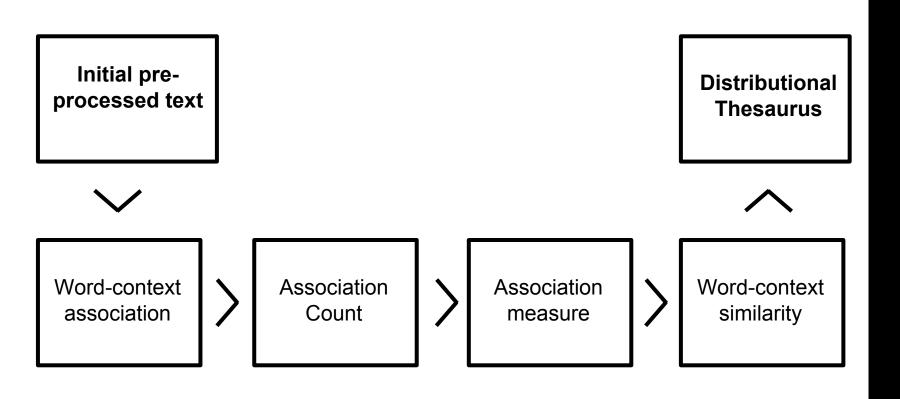
Parallelize one of the steps for Distributional Thesaurus creation

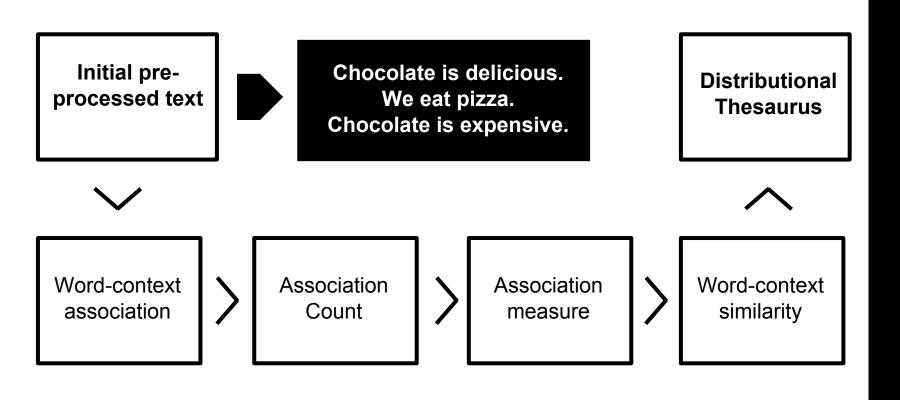
Create faster Distributional Thesaurus

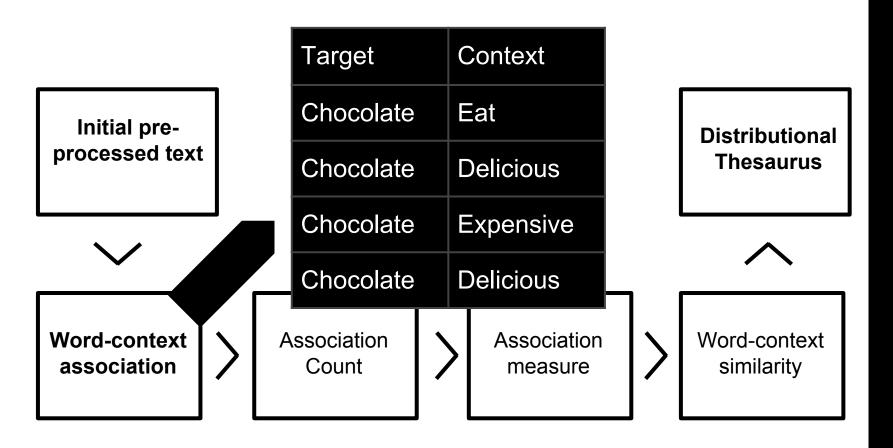
Used in many NLP applications

Machine Translation

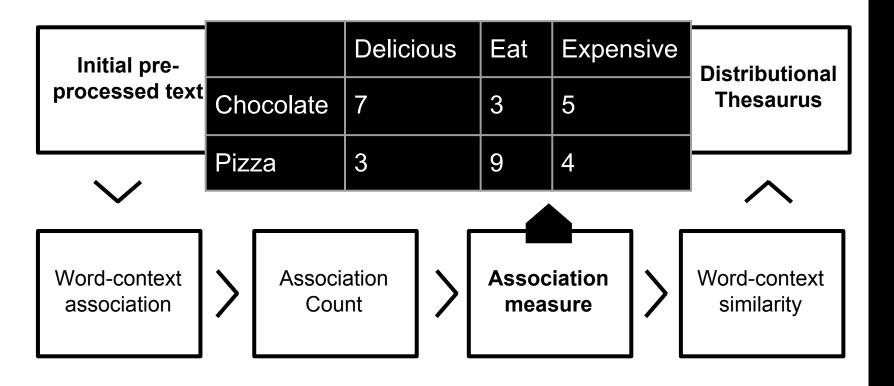
Question Answering


Needs great amount of data to be built


Agenda


- Distributional Thesaurus Creation
- Parallel Version
- Results

A thesaurus is a list of words associated by a specific characteristic.


word	synonyms
abandon	leave, desert, give up, surrender,
abide	tolerate, accept, endure, stand,

Context Target Count Chocolate Eat Initial pre-**Distributional** processed text **Thesaurus** 2 Chocolate Delicious Chocolate Expensive Word-context **Association** Association Word-context association Count similarity measure

similarity word1 word2 0.4 chocolate pizza Initial pre-**Distributional** processed text **Thesaurus** 8.0 chocolate delicious 0.9 pizza eat Word-context Association Association **Word-context** association Count similarity measure

Agenda

- Distributional Thesaurus Creation
- Parallel Version
- Results

Parallel version

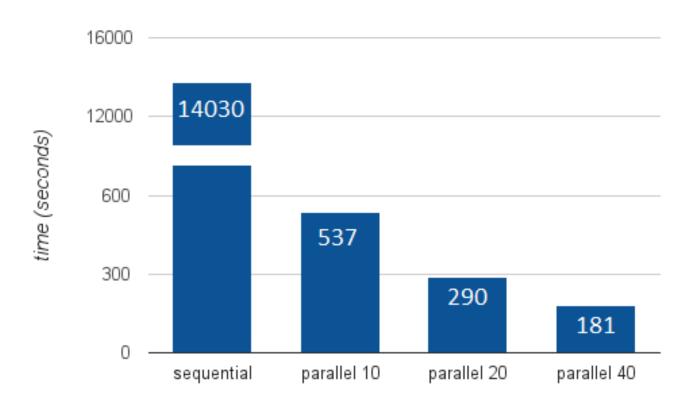
- Sequential process is too slow
- Fits the MapReduce paradigm
 - Map: input text divided in multiple parts
 - Reduce: results are grouped together

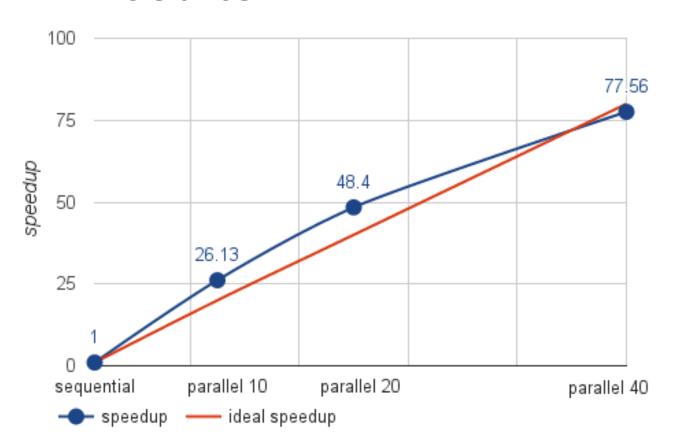
Parallel version

Spark framework Scala

Tests executed in Sagitaire cluster Grid 5000 up to 40 nodes used, each one with 2 cores.

Parallel version


					_				
Target	Context		Chocolate	Eat		Node	Target	Context	#
Chocolate	Eat		Chocolate	Delicious	/	1			
							Chocolate	Eat	1
Chocolate	Delicious								
			Chocolate	Expensive					
Chocolate	Expensive	\		<u> </u>	>	Node			<u> </u>
			Chocolate	Delicious	_	2	Chocolate	Delicious	3
Chocolate	Delicious								
	D								
Chocolate	Delicious		Chocolate	Delicious		Nada	Chocolate	Expensive	2
Chanalata	Evnoncivo					Node 3			
Chocolate	Expensive		Chocolate	Expensive		/			
					_				


Agenda

- Distributional Thesaurus Creation
- Parallel Version
- Results

	68 KB	
	sequential	parallel 40
time (in s)	0.09	45.31
speedup		0.0019
eficiency		0.000024

11 GB				
	sequential	parallel 10	parallel 20	parallel 40
time (in s)	14029.8	536.74	289.85	180.87
Std Deviation		1.056	1.46	3.3
speedup		26.13	48.40	77.56
eficiency		1.30	1.21	0.97

11 GB				
	parallel 10	parallel 20	parallel 40	
time (in s)	1466.34	1499.45	1670.47	
speedup	9.56	9.35	8.39	
eficiency	0.47	0.23	0.10	

Conclusions

The goal of this work was to parallelize the wordcontext count.

Spark reduced significantly the time required for getting word-context counts.

Performance improvement for large corpora.

Future Work

Test the parallelization using other forms of file distribution (HDFS).

Integrate tuple counts with the other 2 steps:

- Association measure
- Word-context similarity